
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 7 (2015) pp. 18489-18502

© Research India Publications

http://www.ripublication.com

Multi-Core Processor Based TCP/IP Client and

Server Module Using OpenMP

Ch. Venkata siva prasad
1
, Dr. S.Ravi

2
 and V. Karthikeyan

3

1
Research Scholar, ECE Department,

Dr.M.G.R.Educational and Research Institute, Chennai

Email:siva6677@gmail.com
2
Professor & Head, ECE Department,

Dr.M.G.R.Educational and Research Institute, Chennai

Email:ravi_mls@yahoo.com
3
Asst.Professor, ECE Department, Dr.M.G.R.Educational and Research Institute

Email:keyansethu@gmail.com

Abstract

Data streaming, processing and interaction across the different OS, display

functions, etc. forms a key link to realize contention less data flow. In this

context, timeliness, accuracy and efficiency of communication among

different cores (latency effects) directly affect the performance of a system.

Multi-threaded realization process both at the protocol level (TCP/IP) and at

the operating system (OS) level (socket creation and binding and its

semaphore based sharing) between client/server is discussed in this paper. The

paper discusses how to manage data received between client and server in

both asynchronous and synchronous mode. The studied metrics include, core

affinity with respect to different process, collective communication

performance and scalability under multi-core environment. The work is tested

on a dual-core AMD Gizmo Processor Multi-core board (running in Linux

OS) with the openMP programming model.

Keywords: TCP/IP, Multi-Core, OpenMP, Multi-thread, Client, Server

Introduction

TCP/IP (Transmission Control Protocol /Internet Protocol)

The TCP is a core protocol of the Internet Protocol Suit.TCP provides reliable,

ordered, and error-checked delivery of a stream of octets between applications

running on hosts communicating over an IP network. The Two sets of TCP/IP nodes

mailto:ravi_mls@yahoo.com

18490 Ch. Venkata siva Prasad et al

exist: TCPIP Server nodes and TCPIP Client nodes. Both these nodes perform

identical function in terms of accessing the data streams, but, one node uses client

connections and the other node uses server connection sets. As a result, the nodes

establish the connections in different ways but they use the streams in the same way

when the connections have been established. All TCPIP Server nodes that use the

same port must be in the same execution group because the port is tied to the running

process. TCPIP Client nodes on the same port can be used in different execution

groups, but client connections cannot be shared because the client connections are tied

to a particular execution group. Within the two sets of nodes (TCPIP Client and

TCPIP Server), are three types of node.

 TCPIP Server Input and TCPIP Client Input

 TCPIP Server Receive and TCPIP Client Receive

 TCPIP Server Output and TCPIP Client Output

The Connection process activity program between client and server is shown

on the Figure 1.

Figure 1: Interaction mechanism in client and server module

Multi-Core Processor Based TCP/IP Client and Server Module 18491

TCP Client/Server Interaction

Server starts by getting ready to receive client connections. This is illustrated in

Table 1.

Table 1: TCP Client/server interaction

Server Client

1. Establish a listening socket and wait for

connections from clients.

 2. Create a client socket and attempt

to connect to server.

3. Accept the client's connection attempt.

4. Send and receive data. 4. Send and receive data.

5. Close the connection. 5. Close the connection.

TCP/IP communication standard and bus mode design

In realtime applications, certain functions are divided into control layer, application

layer and process layer according to the standard. Separate communication systems

for controlling and measuring data will be merged together, and the standard is

considered based on process bus and the application mode as shown in Figure 2.

Figure 2: Communication System Interface and Communication Mode

OpenMP- Multi thread Programming

Open Multi-Processing is collection of API that supports multi-platform shared

memory multiprocessing programming in C, C++, and Fortran, on most processor

architectures and operating systems in present years. The OpenMP uses a portable,

18492 Ch. Venkata siva Prasad et al

scalable model that gives programmers a simple and flexible interface for developing

parallel applications. However, if the software does not take advantage of these

multiple cores, it may not run any faster. That is where OpenMP plays a key role by

providing an easy method for threading applications without burdening the

programmer with the complications of creating, synchronizing, load balancing, and

destroying threads. These OpenMP consists of:

(i) Set of compiler directives

(ii) Library functions

(iii) Environment variables

In multithreading programming the Open Multi-Processing (OpenMP) is an

implementation of multithreading, a method of parallelization whereby the master

"thread" (a series of instructions executed consecutively) "forks" a specified number

of slave "threads" and a task is divided among them. The threads then run

concurrently, with the runtime environment allocating threads to different processors.

The core elements of OpenMP are the constructs for thread creation, workload

distribution (work sharing), data-environment management, thread synchronization,

user-level runtime routines and environment variables. Figure .3 illustrates the

multithread programming concept. In a shared memory multiprocessor, threads in

OpenMP are eventually bound to physical processors for efficient parallel execution.

Thus, OpenMP parallel loop directives can be used to execute data receiving in

parallel for different remote computers/servers.

Figure 3: Illustration of Multithreading

Implementation& Performance analysis

The parameters for the performance analysis of testing model includes

(i) The client/server of the stream buffers and

(ii) The number of threads

The hardware details are listed in Table 2

http://en.wikipedia.org/wiki/Openmp

Multi-Core Processor Based TCP/IP Client and Server Module 18493

Table 2: Hardware Details

Hardware Requirements Software Requirements

Processors: AMD Gizmo

Multi-core Soc&Multiple operating system

52.8 GFLOPS at less than 10W

 64-bit processing

Operating System: Linux,windows

Software: openMP 4.0

openMP GCC compiler

With the advent of the APU, the silicon-level integration of general purpose,

programmable processor cores for high speed parallel processing establishes a new

level of AMD gizmo processor of low-power x86 CPU as shown in Figure 4 with the

parallel processing performance of a discrete-level general-purpose graphics

processing unit (GPGPU) in a single device drives the high speed processing required

to handle the intensive number crunching that characterizes high performance

embedded systems.

The AMD Embedded G-Series APU at the heart of each Gizmo development

board combines a low-power CPU and a discrete-level GPU on a single die with a

high-speed bus architecture. Combining a GPU core on the same die as the CPU

enables the system to offload computation-intensive data processing from the CPU to

the GPU. Freed from this task, the CPU can serve I/O requests with much lower

latency, significantly improving the real-time performance of the whole system. With

AMD G-Series APUs, the general purpose processor engines within the embedded

GPU – up to 80 shader cores running at 280MHz (AMD G-Series T40E APU) – far

outstrip the computational capabilities of traditional multi-core CPU-GPU hybrid

compute models. The Explorer Board: A companion board for Gizmo, the Explorer

expansion I/O board allows for even greater experimentation and exploration

opportunities. This two-layer board connects to Gizmo via the low-speed connector

and provides an alpha-numeric keypad, a micro-display, and a sea of holes for

prototyping and customization.

18494 Ch. Venkata siva Prasad et al

Figure 4: GIZMO Board

Client

When the client starts running it creates a socket through which it connects to server

and using this the actual communication happens. This is done by the function

socket(), sockfd = socket(AF_INET, SOCK_STREAM, 0);

This function creates socket and give descriptor for the created socket sockfd.

After creating socket client adds up its address attributes and sends a connection

request to server. This is done by function

connect(), connect(sockfd, (structsockaddr *)&server_addr, SIZE);

Once the connection is established client can send and receive data through the

created socket. This is done by function

write() and read().

Algorithm for client

The algorithm for a master-slave mode of data communication between the client(s)

concurrently among two cores is illustrated below:

 Start

 Define relevant macros (to optimize the code during compilation)

 Enter the ip address

Multi-Core Processor Based TCP/IP Client and Server Module 18495

 Read the ip address

 Create the TCP/IP socket

 Configure the settings

 Set the port number

 Call the default number of threads (2) here parallel region starts

 Initialize some private copy

 Divide the program into two sections

 One thread take care of the sending data and 2
nd

 section (receiving data) is

executed by other thread simultaneously

 Execute 1and continue with thread 2 simultaneously

 Continue with thread 1

 Enter the data

 Send the data; enter data

 Continue with thread 2

 Continuously monitor receiving port

 If data comes print the data on the screen. Goto Continuously monitor

receiving port

 Stop

Control flow graph for the client is shown in Figure 5.

Server

The server responds to the call from clients (by running in a openMP parallel loop)

and dispatch the received files to clients. In case of multiple files, a scheduler co-

exists. When server is up and running it creates a socket through which it accepts

client connection request. This is done by the function

socket(), sockfd = socket(AF_INET, SOCK_STREAM, 0);

This function creates new socket with socket descriptor sockfd. Next the server

sets up its address attributes and binds to the socket. This is done by function bind(),

bind(sockfd, (structsockaddr *)&server_addr, SIZE);

After binding to socket server listen to socket for any connection request from

clients. This is done by function

listen(), listen(sockfd, 5);

This function listens on the socket sockfd for connection requests. If any

connection request comes from client, server accepts the request by function

accept().

Newsockfd = accept(sockfd, (structsockaddr *)&client_addr, &client_addr_len);

18496 Ch. Venkata siva Prasad et al

This function accepts the client request for connection and provides each

client with new unique socket descriptor.

Figure 5: Control flow graph for Client

Algorithm for server

 Start

 Define some macros

 Initialize some variables

 Enter the ip address

 Read the ip address

 Create the TCP/IP socket

 Configure the settings

 Set the port number

 Bind the address to the socket

 Call the default number of threads (2) here parallel region starts

 Initialize some private copy

 Divide the program into two sections

Define the values

Start

Enter IP address to
communicate

Enter Message Client
server

IP authorized

Threads are
0 for Exit

1 for message to
Server

IP status

IP forbidden

If Thread 1 =“ 0 ”

Stop

If Thread 2 =“ 1”

Waiting for IP address
to assign response

from server

Multi-Core Processor Based TCP/IP Client and Server Module 18497

 One thread take care of the sending data and 2
nd

 section (receiving data) is

executed by other thread simultaneously

 Execute Thread 1 and Thread 2 steps simultaneously

 Continue with thread 1

 Enter the data

 Send the data; goto enter data

 Continue with thread 2

 Continuously monitor receiving port

 If data comes print the data on the screen. Goto step receiving data

 Stop

The control flow graph for server is shown in Figure 6.

Figure 6: Control Flow Graph of a Server

Configuring Input and Output nodes

The client IP address input node allows access to a connection's input stream. The

node is triggered by the arrival of data in the stream and starts processing the message

Start

Stop

Waiting for the

Request from client

Create the TCP/IP

socket form client to

server

Assign the IP

address from client

Receive the message

from client packet

Continue with

send/receive the

message from client

IP address not

assigned

18498 Ch. Venkata siva Prasad et al

flow. The TCP/IP nodes are not transactional in the way that they interact with

TCP/IP, but other nodes in the same flow can be transactional The input node does

not create a thread for every connection being used, but waits for two requirements to

be met: For example, 1,000 TCP/IP connections can be handled by one input node

that has only one additional instance. This situation is possible because the node does

not poll the connections, but is triggered when the specified conditions are met.

Output nodes

The output node sends data to a server connection. It is triggered by a message

arriving on its „IN‟ terminal, and subsequently sends the data contained in the

message to the stream.

Combining nodes

The client and server nodes can be combined to provide more complex operations for

reducing the time delay and latency between the nodes. For example, an output node

followed by a receive node enables a synchronous request of data: If the message

flows used are single threaded and only one connection ever exists, the sequence of

nodes requires no further configuration. Two additional mechanisms are included to

enable multithreading and multiple connection

By applying OpenMP commands and threads to that particular program, we

can derive a program which can be run in multi-core processors. We have

implemented our program in OpenMP by studying several examples in OpenMP like

Matrix Multiplication, Vector Multiplication, Hello World, Loop Sharing, Arithmetic

Expressions etc. After running the program in multi-core processors, we found the

increased performance in parallel execution of getting data from server to client and

client to server.TCP/IP control nodes between Client and server is shown in Figure 7.

Figure 7: TCP/IP control nodes B/W Client and Server

Multi-Core Processor Based TCP/IP Client and Server Module 18499

Results and Discussion

A new programming (portable and high performance) client and server module for

TCP/IP clusters in client and server (both asynchronous and synchronous modes) is

presented in both single core and multi core. It uses an OpenMP programming

environment on top of a multi-threaded system and the OpenMP abstraction translator

bridges the gap between the application specification (client) and the underlying

runtime system (server).The code uses openMP directives of the single core is

responsible for accepting incoming connections and then produce the new tasks to the

server of output files. Multi-core (server) offers explicit support for executing

multiple threads in parallel and thus reduces the idle time compare with the single

core processor. We also solved socket connection between the two nodes (client

&server) using OpenMP to improve performance by reducing execution time in multi

core programming while running the threads in parallel. with the TCP/IP nodes

sockets creating the communication in client and server that assign the IP address to

communicate the client mode for that has server to client has openMP multithread

programming has been running across with Linux OS with the new implementation of

threads. The experimental results of data transferring and assigning from Client to

Server and from Server to Client with assign the received packet from 127.0.0.1: XX

openMP tools (Multithreading) of asynchronous (single core) and synchronous

modes(multi core) are shown in the Figure 8 and Figure 9 respectively.

Figure 8: Multithread socket for control nodes B/W Client and Server

18500 Ch. Venkata siva Prasad et al

Figure 9: Multithread socket for control nodes B/W Server and Client

Conclusion and Future work

The work has successfully solved interaction between the both client and server

using OpenMP on multi-core threading in single core and multi core processor. In this

paper, the socket communication between the client and server with openMP

multithreading concept has received/sending messages between the client to server

vice versa with assigning the IP address from the TCP socket. The client module has

the AMD Multi-core kit has used for execution of the messages between the client to

server using a two cores parallel on the multi threading concept. With this module we

will develop the large data base servers from getting the input across the OS change

socket has developed in Linux threads. The method presented shows improved

performance between the client and server with the multi-core processor performance

and parallaziation is done. The main limitation of the research work is that its

practical implementation requires client to server the number of multi-core units that

the number of threads used in openMP compliers. The future enhancement of this

work is highly laudable as parallelization using OpenMP is gaining popularity with

multi core processor. This work will be carried out in the near future for the real time

implementation over a large Scale. The experimental results client and server with

two kernels and two real applications on a Linux cluster demonstrate the benefits of

the proposed environment, easy and portable programming, and high performance

execution, the openMP programming system shows the performance.

Multi-Core Processor Based TCP/IP Client and Server Module 18501

References

[1] Leyuan Liu, Weiqiang Kong, and Akira Fukuda , 2014, “Implementation and

Experiments of a Distributed SMT Solving Environment”, International

Journal on Computer Science and Engineering (IJCSE), Vol.6, No.3

[2] W. Kong, T. Shiraishi, N. Katahira, M. Watanabe, T. Katayama, and A.

Fukuda, 2011, “An smt-based approach to bounded model checking of designs

in state transition matrix”, IEICE Transactions, vol. 94-D, no. 5, pp. 946–957

[3] Sebastien Salva, Clement Delamare, and Cedric Bastoul, 2007, “Web Service

Call Parallelization Using OpenMP”, IWOMP 2007, LNCS 4935, pp. 185–

194

[4] Zhang Xinyang, 2014, “Research of Network Communication Key

Technology Based On Multi-core Multi-thread Digital Substation”,

International Conference on Mechatronics, Electronic, Industrial and Control

Engineering (MEIC 2014)

[5] Vijayalakshmi Saravanan, Mohan Radhakrishnan , A.S.Basavesh , and D.P.

Kothari, 2012, “A Comparative Study on Performance Benefits of Multi-core”

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2

[6] Shi Jung Kao, 2003, “Managing C++OpenMP code and its exception

handling”, International conference on openMP shared memory parallel

programming, pp- 227-243

[7] Walter Goralski, 2009, “The Illustrated Network How TCP/IP works in a

modern Network”, Morgan Kaufmann Publishers is an imprint of Elsevier

[8] Yun(Helen) He, 2007, “ Intoduction to OpenMP”, Cray XE6 workshop

[9] F. Liu and V. Chaudhary, 2003, “Extending OpenMP for heterogeneous chip

multiprocessors Parallel Processing”, Proceedings of International Conference

on Parallel Processing, pp. 161-168.

[10] T. Wang, F. Blagojevic and D. S. Nikolopoulos, 2004, “Runtime Support for

Integrating Pre-computation and Thread-Level Parallelism on Simultaneous

Multithreaded Processors”, the Seventh Workshop on Languages, Compilers,

and Run-time Support for Scalable Systems, Houston, TX.

[11] Cristiano Pereira, Harish Patil and Brad Calder, 2008, “Reproducible

simulation of multi-threaded workloads for architecture design exploration”,

in Proceedings of the IEEE International Symposium on Workload

Characterization, pp. 173-182.

[12] Priya Mehta, Sarvesh Singh, Deepika Roy and M. Manju Sharma, 2014,

“Comparative Study of Multi-Threading Libraries to Fully Utilize Multi

Processor/Multi Core Systems”, International Journal of Current Engineering

and Technology, Vol. 4, No. 4.

[13] Sanjay Kumar Sharma and Kusum Gupta, 2012, “Performance Analysis of

Parallel Algorithms on Multi-core System using OpenMP”, International

Journal of Computer Science, Engineering and Information Technology, Vol.

2, No. 5.

18502 Ch. Venkata siva Prasad et al

[14] V.Karthikeyan, Dr.S.Ravi and S. Flora Magdalene, 2014, “OpenMP based fast

data searching with Multithreading”, International Journal of Applied

Engineering Research, Vol.9, No.21,pp.9497-9508

[15] http://spcl.inf.ethz.ch/Teaching/2014-dphpc/assignments/openmp-tutorial.pdf

[16] http://www.gizmosphere.org/wp-content/uploads/2013/07/Gizmo-Explorer-

Kit-User-Guide-Rev-2.6.pdf

[17] http://www.openmp.org/mp-documents/spec30.pdf

http://spcl.inf.ethz.ch/Teaching/2014-dphpc/assignments/openmp-tutorial.pdf
http://www.gizmosphere.org/wp-content/uploads/2013/07/Gizmo-Explorer-Kit-User-Guide-Rev-2.6.pdf
http://www.gizmosphere.org/wp-content/uploads/2013/07/Gizmo-Explorer-Kit-User-Guide-Rev-2.6.pdf
http://www.openmp.org/mp-documents/spec30.pdf

