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Abstract

In this paper, we prove the existence and uniqueness of fuzzy solutions for a class of
second order nonlinear boundary value problems with integral boundary conditions
by using the Banach fixed point theorem.
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1. Introduction

The theory of fuzzy sets, fuzzy valued functions and the necessary calculus of fuzzy
functions have been investigated in the monograph by Lakshmikantham and Mohapatra
[17] and the references cited therein. Recently, there have been new advances in the
theory of fuzzy differential equations [29, 26, 27], fuzzy integral equations [23, 28, 30]
and fuzzy integrodifferential equations [3, 6, 7, 25].

The topics of fuzzy integral equations which attracted growing interest in literature
due to its application in relation to fuzzy control, have been developed in recent years.
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Most mathematical models used in many problems of physics, biology, chemistry and
engineering are based on integral equations.

The fixed point theorems like the Banachfls principle and the Darbofls theorem were
the tools used to prove, on one hand the existence and on the other hand the existence and
uniqueness of the solution of fuzzy integral equations (see [5, 9, 8, 10, 21, 20, 22, 31]).
Mordeson and Newman [18] started the study in the topic of fuzzy integral equations.
Sufficient conditions for the boundedness of the solutions of fuzzy integral equations
were obtained in [15, 19]. A distinct study on the existence of a unique solution for
fuzzy Fredholm integral equations is carried out in [18]. Some applications of the fuzzy
volterra equations to control models with fuzzy uncertainties are presented in [14].

The theory of boundary-value problems with integral boundary conditions for ordi-
nary differential equations arises in different areas of applied mathematics and physics.
For example, heat conduction, chemical engineering, underground water flow, thermo-
elasticity, and plasma physics can be reduced to nonlocal problems with integral bound-
ary conditions. Integral boundary conditions appear in population dynamics [13] and
cellular systems [2].

Fuzzy boundary value problems with integral boundary conditions constitute a very
interesting and important class of problems. They include two, three, multipoint and
nonlocal boundary value problems as special cases. Benchohra et al [4] studied the
existence of fuzzy solutions for multipoint boundary value problems. Ahmad and Nieto
[1] analysed the existence results for nonlinear boundary value problems of fractional
integrodifferential equations with integral boundary conditions. Belarbi and Benchohra
[11] examined the existence results for nonlinear boundary-value problems with integral
boundary conditions. Benchohra et al [12] determined the method of upper and lower
solutions for second order differential inclusions with integral boundary conditions.

This paper is concerned with the existence and uniqueness of fuzzy solutions for more
general boundary value problems for second order differential equations with integral
boundary conditions of the form

x
′′
(t) = f (t, x(t)), for all t ∈ [0, 1], (1)

x(0) − k1x
′
(0) =

∫ 1

0
h1(x(s))ds, (2)

x(1) + k2x
′
(1) =

∫ 1

0
h2(x(s))ds, (3)

where f : [0, 1] × En → En is a continuous function, En is the set of all upper semi-
continuous, convex, normal fuzzy numbers with α-level, hi : En → En(i = 1, 2) are
continuous functions and ki (i = 1, 2) are nonnegative constants. The conditions (2)–(3)
used in this paper are of special interest in the study of boundary value problems than
those considered in the previous literatures. Our approach here is based on the Banach
contraction principle.

This paper is organized as follows: In Section 2, we will recall briefly some basic
definitions and preliminary facts which will be used in the later sections. In Section 3,



Existnce of Fuzzy Solutions for Boundary Value Problems

we prove the existence of fuzzy solutions for boundary value problems with integral
boundary conditions. Finally, in Section 4, we give an example to show the advantage
gained by the fuzzification of the differential operator in the differential equation to
illustrate the theory presented in the previous sections.

2. Preliminaries

In this section, we introduce notations, definitions and preliminary facts which are used
throughout this paper.

Definition 2.1. {fuzzy set} Let X be a nonempty set. A fuzzy set A in X is characterized
by its membership function A : X → [0, 1] and A(x) is interpreted as the degree of
membership of element x in fuzzy set A for each x ∈ X.

The value zero is used to represent complete non-membership, the value one is
used to represent complete membership, and values in between are used to represent
intermediate degrees of membership. The mapping A is called the membership function
of fuzzy set A.

Example 2.2. The membership function of the fuzzy set of real numbers “close to one”
can be defined as

A(t) = exp(−β(t − 1)2), where β is a positive real number .

Example 2.3. Let the membership function for the fuzzy set of real numbers “close to
zero” defined as follows

B(t) = 1

1 + x3

Using this function, we can determine the membership grade of each real number in this
fuzzy set, which signifies the degree to which that number is close to zero. For instance,
the number 3 is assigned a grade of 0.035, the number 1 a grade of 0.5 and the number
0 a grade of 1.

Let CC(Rn) denotes the set of all nonempty compact, convex subsets of Rn. Denote
by, En = {u : Rn → [0, 1] such that they satisfy (i) − (iv) mentioned below},

(i) u is normal i.e., there exists an x0 ∈ Rn such that u(x0) = 1;
(ii) u is fuzzy convex, that is for x, z ∈ Rn and 0 < λ ≤ 1

u(λx + (1 − λ)z) ≥ min{u(x), u(z)},

(iii) u is upper semicontinuous;

(iv) [u]0 = {x ∈ Rn : u(x) > 0} is compact.
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For 0 < α ≤ 1, we denote [u]α = {x ∈ Rn : y(x) ≥ α}. Then from (i)− (iv), it follows
that the α-level sets [u]α ∈ CC(Rn). If g : Rn × Rn → Rn is a function, then by using
Zadeh’s extension principle we can extend g to En × En → En by the equation

[g(u, v)(z) = sup
z=g(x,y)

min {u(x), v(y)} .

It is well known that [g(u, v)]α = g([u]α, [v]α) for all u, v ∈ En, 0 ≤ α ≤ 1 and
continuous function g. Further, we have [u + v]α = [u]α + [v]α, [ku]α = k[u]α, where
u, v ∈ En, k ∈ R, 0 ≤ α ≤ 1.

Let A, B be two nonempty bounded subsets of Rn. The distance between A and B

is defined by the Hausdorff metric

Hd(A, B) = max

{
sup
a∈A

inf
b∈B

‖a − b‖ , sup
b∈B

inf
a∈A

‖a − b‖
}

where ‖.‖ denotes the usual Euclidean norm in Rn. Then (CC(Rn), Hd) is a complete
and seperable metric space [24]. We define the supremum metric d∞ on En by

d∞(u, v) = sup
0<α≤1

Hd([u]α, [v]α)

for all u, v ∈ En. (En, d∞) is a complete metric space. The supremum metric H1 on
C([0, 1], En) is defined by

H1(x, y) = sup
t∈J

d∞(x(t), y(t)).

(C([0, 1], En), H1) is a complete metric space.

Definition 2.4. [24] A mapping f : [0, 1] → En is strongly measurable if, for all
α ∈ [0, 1] the set-valued map fα : [0, 1] → CC(Rn) defined by fα(t) = [f (t)]α is
Lebesgue measurable when CC(Rn) has the topology induced by the Hausdorff metric d.

Definition 2.5. [24] A map f : [0, 1] → En is called levelwise continuous at t0 ∈ [0, 1]
if the multi-valued map fα(t) = [f (t)]α is continuous at t = t0 with respect to the
Hausdorff metric d for all α ∈ [0, 1].

A map f : [0, 1] → En is said to be integrably bounded if there is an integrable
function h(t) such that ‖x(t)‖ ≤ h(t) for every x(t) ∈ f0(t).

Definition 2.6. Let f : [0, 1] → En. The integral of f over [0, 1], denoted
∫ 1

0
f (t)dt

is defined by the equation[∫ 1

0
f (t)dt

]α

=
∫ 1

0
fα(t)dt

=
{∫ 1

0
v(t)dt | v : [0, 1] → Rn is a measurable selection for fα

}
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for all α ∈ (0, 1].
A strongly measurable and integrably bounded map f : [0, 1] → En is said to be

integrable over [0, 1], if
∫ 1

0
f (t)dt ∈ En.

If f : [0, 1] → En is strongly measurable and integrably bounded, then f is inte-
grable.

Definition 2.7. A map f : [0, 1] → En is called differentiable at t0 ∈ [0, 1] if there
exists a f

′
(t0) ∈ En such that the limits

lim
h→0+

f (t0 + h) − f (t0)

h
and lim

h→0+
f (t0) − f (t0 − h)

h

exist and are equal to f
′
(t0). Here the limit is taken in the metric space (En, Hd). At the

end points of [0, 1], we consider only the one-sided derivatives.
If f : [0, 1] → En is differentible at t0 ∈ [0, 1], then we say that f

′
(t0) is the fuzzy

derivative of f (t) at the point t0 or the Hukuhara derivative of f (t) at t0, usually denoted
by DHf (t0). For the concepts of fuzzy measurability and fuzzy continuity we refer to
[16].

Definition 2.8. A map f : [0, 1] × En → En is called levelwise continuous at point
(t0, x0) ∈ [0, 1]×En provided, for any fixed α ∈ [0, 1] and arbitrary ε > 0, there exists
a δ(ε, α) > 0 such that

Hd([f (t, x)]α, [f (t, x0)]α) < ε

whenever |t − t0| < δ(ε, α) and Hd([x]α, [x0]α) < δ(ε, α) for all t ∈ [0, 1], x ∈ En.

3. The Main Result

In this section, we are concerned with the existence and uniqueness of solutions for the
problem (1)–(3).

Definition 3.1. A function x ∈ C2([0, 1], En) is said to be the solution of (1)–(3) if x

satisfies the equation x
′′
(t) = f (t, x(t)) on [0, 1] and the conditions (2)–(3).

We need the following auxiliary result. Its proof uses a standard argument.

Lemma 3.2. For any ρ1(t), ρ2(t) ∈ C([0, 1], En), the nonhomogeneous linear problem

x
′′
(t) = f (t, x(t)), for all t ∈ [0, 1],

x(0) − n1x
′
(0) =

∫ 1

0
ρ1(s)ds, x(1) + n2x

′
(1) =

∫ 1

0
ρ2(s)ds,
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has a unique solution x ∈ C2([0, 1], En) given by

x(t) = �(t) + h(t, x(t))

∫ 1

0
G(t, s)f (s, x(s))ds +

∫ 1

0
g(t, s, x(s))ds,

where

�(t) = 1

1 + n1 + n2
{(1 − t + n2)

∫ 1

0
ρ1(s)ds + (n1 + t)

∫ 1

0
ρ2(s)ds}

is the unique solution of the problem

x′′(t) = 0, for all t ∈ [0, 1],

x(0) − n1x
′(0) =

∫ 1

0
ρ1(s)ds, x(1) + n2x

′
(1) =

∫ 1

0
ρ2(s)ds,

and

G(t, s) = −1

n1 + n2 + 1

{
(n1 + t)(1 − s + n2), 0 ≤ t < s ≤ 1,

(n1 + s)(1 − t + n2), 0 ≤ s < t ≤ 1

is the Green’s function of the homogeneous problem.

Let us introduce the following hypotheses which are assumed hereafter:

Theorem 3.3. Assume that

(H1) There exists a constant d such that

Hd([h(t, x(t))f (s, x(s))]α, h(t, y(t))f (s, y(s))]α) ≤ dHd([x(s)]α, [y(s)]α),

for all t ∈ [0, 1] and all x, y ∈ En.

(H2) There exists a constant d1 such that

Hd([h1(x(s))]α, ([h1(y(s))]α) ≤ d1Hd([x(s)]α, [y(s)]α).

(H3) There exists a constant d2 such that

Hd([h2(x(s))]α, ([h2(y(s))]α) ≤ d2Hd([x(s)]α, [y(s)]α).

(H4) There exists a constant d3 such that

Hd([g(t, s, x(s))]α, [g(t, s, y(s))]α ≤ d3Hd([x(s)]α, [y(s)]α).
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If
1 + n2

1 + n1 + n2
d1 + d2(1 + n1) + d sup

(t,s)∈[0,1]×[0,1]
|G(t, s)| < 1,

then the BVP (1) − (3) has a unique fuzzy solution on [0, 1].
Proof. Transform the problem into a fixed point problem. It is clear that the solutions of
the problem (1)–(3) are fixed points of the operator � : C([0, 1], En) → C([0, 1], En)

defined by:

�(x)(t) = �(x)(t) + h(t, x(t))

∫ 1

0
G(t, s)f (s, x(s))ds +

∫ 1

0
g(t, s, x(s))ds

with

�(x)(t) = 1

1 + n1 + n2
(1 − t + n2)

∫ 1

0
h1(x(s))ds + (n1 + t)

∫ 1

0
h2(x(s))ds.

we shall show that � is a contraction operator. Indeed, consider x, y ∈ C([0, 1], En)

and α ∈ (0, 1], then

Hd([�(x)(t)]α, [�(y)(t)]α)

= Hd

([
1 − t + n2

1 + n1 + n2

∫ 1

0
h1(x(s))ds + (n1 + t)

∫ 1

0
h2(x(s))ds + h(t, x(t))

×
∫ 1

0
G(t, s)f (s, x(s))ds +

∫ 1

0
g(t, s, x(s))ds

]α

,

[
1 − t + n2

1 + n1 + n2

∫ 1

0
h1(y(s))ds + (n1 + t)

∫ 1

0
h2(y(s))ds

+ h(t, y(t))

∫ 1

0
G(t, s)f (s, y(s))ds +

∫ 1

0
g(t, s, y(s))ds

]α)

≤ Hd

([
1 − t + n2

1 + n1 + n2

∫ 1

0
h1(x(s))ds

]α

,

[
1 − t + n2

1 + n1 + n2

∫ 1

0
h1(y(s))ds

]α
)

+ Hd

([
(n1 + t)

∫ 1

0
h2(x(s))ds

]α

,

[
(n1 + t)

∫ 1

0
h2(y(s))ds

]α
)

+ Hd

([
h(t, x(t))

∫ 1

0
G(t, s)f (s, x(s))ds

]α

,

[
h(t, y(t))

∫ 1

0
G(t, s)f (s, y(s))ds

]α
)

+ Hd

([∫ 1

0
g(t, s, x(s))ds

]α

,

[∫ 1

0
g(t, s, y(s))ds

]α
)
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≤ 1 − t + n2

1 + n1 + n2
Hd

([∫ 1

0
h1(x(s))ds

]α

,

[∫ 1

0
h1(y(s))ds

]α
)

+ (n1 + t)Hd

([∫ 1

0
h2(x(s))ds

]α

,

[∫ 1

0
h2(y(s))ds

]α
)

+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|Hd

([∫ 1

0
h(t, x(t))f (s, x(s))ds

]α

,

[∫ 1

0
h(t, y(t))f (s, y(s))ds

]α
)

+ Hd

([∫ 1

0
g(t, s, x(s))ds

]α

,

[∫ 1

0
g(t, s, y(s))ds

]α
)

≤ 1 − t + n2

1 + n1 + n2

∫ 1

0
Hd([h1(x(s))]α, [h1(y(s))]α)ds

+ (n1 + t)

∫ 1

0
Hd([h2(x(s))]α, [h2(y(s))]α)ds

+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|
∫ 1

0
Hd([h(t, x(t))f (s, x(s))]α,

[h(t, y(t))f (s, y(s))]α)ds +
∫ 1

0
Hd((x(s))α, (y(s))α)

≤ 1 + n2

1 + n1 + n2
d1 sup

α∈[0,1]
d∞(x(s), y(s)) + (n1 + 1)d2d∞(x(s), y(s))

+ d sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|d∞(x(s), y(s)) + d3d∞(x(s), y(s))

≤
(

1 + n2

1 + n1 + n2
d1 + d2(n1 + 1) + d3 + d sup

(t,s)∈[0,1]×[0,1]
|G(t, s)|

)
d∞(x(s), y(s))

≤
(

1 + n2

1 + n1 + n2
d1 + d2(n1 + 1) + d3 + d sup

(t,s)∈[0,1]×[0,1]
|G(t, s)|

)
H1(x, y).

Hence,

H1(�(x), �(y))

≤
(

1 + n2

1 + n1 + n2
d1 + d2(n1 + 1) + d3 + d sup

(t,s)∈[0,1]×[0,1]
|G(t, s)|

)
H1(x, y).

So, � is a contraction and thus, by Banach fixed point theorem, � has a unique fixed
point which is the solution to (1)–(3). �
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4. Example

Example 4.1. In this section, we present an example to show the advantage gained by
the fuzzification of the differential operator in the differential equation.

Consider the crisp initial value problem with unknown initial value x0, that is,

x
′ = −x, x(0) = x0 ∈ [−1, 1] (4)

The solution of problem (4) when restricted to the interval [−1, 1] is

x(t) = [−et , e−t ], t ≥ 0.

The fuzzy differential equation corresponding to (4) in E1 is

DHx = −x x(0) = x0 = [−1, 1], x0 ∈ E1. (5)

Suppose that

[x]α = [xα
1 , xα

2 ], [DHx]α =
[
dxα

1

dt
,
dxα

2

dt

]
are α−level sets for 0 ≤ α ≤ 1. By extension principle, (5) becomes

dxα
1

dt
= −xα

2 ,
dxα

2

dt
= −xα

1 , 0 ≤ α ≤ 1. (6)

The solution of (6) is given by

xα
1 (t) = −et , xα

2 (t) = et , t ≥ 0

and therefore the fuzzy function x(t) solving (5) is

x(t) = [−et , et ], t ≥ 0,

which shows that the diameter diam(x(t)) → ∞ as t → ∞. This may be interpreted
as the increasing of incertainty to go by the time, which is, infact, reasonable.
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