
International Journal of Applied Engineering Research 
ISSN 0973-4562 Volume 10, Number 7 (2015) pp. 17815-17826 
© Research India Publications 
http://www.ripublication.com 

 
 

FACTS Based Multi Objective Optimal Reactive Power 
Dispatch Using NSGA-II 

 
 

Dr. S. K. Nandha Kumar1, R. M. Dhivya 2, Dr. I. Gerald Christopher Raj3 
Department of Electrical and Electronics Engineering1,2,3 

PSNA College of Engineering and Technology 
Dindigul, India. 

 
Abstract 

 
This paper proposes the Shunt susceptance model of Static VAR Compensator 
(SVC) for Multi Objective Optimal Reactive Power dispatch (MOORPD) 
using the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II). The 
objectives considered are the minimization of transmission line losses and the 
bus voltage profile improvement. The standard IEEE 30-bus test system is 
considered to analyze the performance of NSGA-II for the SVC-MOORPD 
problem. The results depict the effectiveness of the proposed approach when 
compared to MOORPD with conventional capacitors.  
 
Index Terms: Multi Objective Optimal Reactive Power Dispatch, Non-
dominated Sorting Genetic Algorithm-II, FACTS, Static VAR Compensator, 
Conventional capacitors. 

 
 
Introduction 
Control of voltage and reactive power is required for efficient and reliable operation 
of power systems which can be accomplished by controlling the production, 
absorption and flow of reactive power at all levels in the system [14]. The devices 
used for this purpose are series capacitors, shunt capacitors, shunt reactors, 
synchronous condensers, tap changing transformers and Flexible AC Transmission 
Systems (FACTS) etc.,. Among these, series capacitors, shunt capacitors and shunt 
reactors, which are generally called as Conventional VAR sources, provide the 
discrete static compensation. They are either switched or permanently connected to 
the transmission system. They contribute to voltage control by modifying the network 
characteristics. FACTS devices provide continuous dynamic compensation by 
controlling the electrical parameters of the network. They reduce system losses and 
improve stability without generation rescheduling or topological changes [16].  
     Optimal Reactive Power Dispatch (ORPD) is an important problem in power 
system operational planning as it minimizes the transmission system line losses and 



17816  S. K. Nandha Kumar 

improves the voltage profile of the system [3]. These objectives can be achieved by 
adjusting the generator terminal voltages (continuous), transformer tap settings 
(discrete), shunt capacitors/reactors (discrete) or FACTS devices (continuous). Due to 
the presence of continuous and discrete control variables, the problem of ORPD is a 
complex combinatorial optimization problem involving non-linear functions having 
multiple local minima [10]. 
     In the literature, many methodologies have been proposed for ORPD and most of 
them employed the conventional VAR sources [1-10] and only a few have reported 
about FACTS based VAR sources for ORPD [19]. In this paper, both the 
conventional VAR sources (shunt capacitors) and the FACTS devices (Shunt 
susceptance model of SVC) are considered for the MOORPD. 
     To solve the ORPD problem, number of conventional optimization techniques 
have been proposed in the literature earlier [1-4]. They include Linear Programming, 
Non Linear Programming, Gradient based method, Integer Programming and 
quadratic programming methods. Recently, the ORPD problem is formulated as a 
multi objective optimization problem [7]. In the case of multi objective optimization 
also conventional and non conventional methods are reported in the literature. 
However, these works not treated the MOORPD problem as a true multi objective 
problem [7]. Instead, it was converted to a single objective problem by linear 
combination of different objectives as a weighted sum or considered only the most 
preferred objective and the other objectives as constraints bounded by some allowable 
levels of  [5]. The most obvious weaknesses of these approaches are that they are 
time consuming and tends to find weakly non dominated solutions. In contrast, 
Evolutionary Algorithms (EAs) can find multiple optimal solutions in single 
simulation run due to their population approach [11]. Recently, some successful 
application of EAs to ORPD have been reported where minimizing voltage 
differences have been considered as an objective in addition to loss minimization [6]. 
This paper proposes the NSGA-II algorithm for the SVC-MOORPD problem. 
 
 
ORPD With Conventional And Facts Devices 
  
Conventional VAR Sources 
In this paper, Shunt Capacitors are used for Conventional ORPD and the optimal 
settings of these devices are identified by using the NSGA – II Algorithm. Shunt 
Capacitors supply reactive power to compensate the reactive power absorption of 
transmission system to ensure satisfactory voltage levels during heavy loading 
conditions [14]. Advantages of shunt capacitors are low cost, flexibility of installation 
and operation. The principal disadvantage is the reactive power output being 
proportional to square of voltage. These are connected either directly to high voltage 
bus or to tertiary winding of the main transformer. 
 
FACTS Devices 
In this paper, Shunt susceptance model of SVC [15] is used for FACTS based ORPD 
and the optimal settings of these devices are identified by using the NSGA – II 
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Algorithm. SVC is a shunt connected static VAR generator or absorber whose output 
is adjusted to control the parameters of electrical power system [14].  
 
Shunt Susceptance Model of SVC 
Early SVC models treat SVC as a generator behind an inductive reactance [19]. The 
reactance accounts for SVC voltage - regulation characteristics. These generator 
models of SVC are invalid for operation outside limits because of the assumption of 
constant reactive power output of generator (IEEE Special Stability Controls Working 
Group 1995). To overcome this difficulty, the shunt susceptance model of SVC [15], 
as in Figure 1, is used for ORPD in this paper. 
  
 
 
 
 
 
 
 
 
 

Figure 1: Shunt Susceptance Model of SVC 
 
     In this model, the reactive power drawn by SVC is a function of susceptance of 
SVC and nodal voltage magnitude. Since the nodal voltage magnitude is dependent 
on network operating conditions, the reactive power drawn by susceptance model 
varies with nodal voltage magnitude, whereas, it is constant for generator model [15].  
     With reference to Figure 1, current drawn by SVC is, 
     SVC SVC kI jB V           (1) 

     And, the reactive power injected by SVC at bus ‘k’ is, 
     2

SVC k k SVCQ Q V B             (2) 

     Where, VK is the voltage at kth bus and BSVC is the susceptance offered by SVC.  
 
 
Conventional and Facts Based Moorpd Problem Formulation 
The problem of MOORPD is to optimize the steady state performance of a power 
system while satisfying several equality and inequality constraints. It is concerned 
with the attempt to minimize each objective function simultaneously. Meanwhile, the 
equality and inequality constraints of the system must be satisfied. Generally the 
problem can be represented as follows [10]: 
 
Minimization of Transmission line losses 
The primary goal of ORPD is to minimize the transmission line losses of the system 
[3]. An expression for transmission line losses in a power system is defined as, 

VK 
ISVC 

BSVC 
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      2 2 2loss k i j i j ij
k

P G V V V V Cos           (3) 

     Where, Ploss is the network real power losses, Gk is the conductance of branch k. Vi 
and Vj are the voltage magnitudes of buses i and j and θij is the voltage angle 
difference between buses i and j.  
 
Minimization of Voltage Deviation 
Another objective of ORPD is to improve the bus voltage profiles of the system. The 
reason for using this objective is that, the reactive power transfer is highly dependent 
on system bus voltage levels. By keeping load bus voltages close to their nominal 
values, less reactive power will be transferred to each load bus in the system. This has 
the effect of reducing line currents which also reduces the network real power losses. 
So, in this paper, a two fold objective function [6] is considered in order to minimize 
the losses and to improve the voltage profile by minimizing the load bus voltage 
deviations from 1.0 per unit which can be expressed through the following equation. 

     
1

1.0
NL

K
K

VD V


            (4) 

 
Equality Constraints 
ORPD equality constraints are represented by the power flow equations [3]. These 
equations define the physical link between scheduled generation and load demand and 
cannot be violated as they define the state variable conditions for a given system 
operating point. The power flow equations that govern the physics of the system are 
given in the following equations: 

      
 

0

0

i i j ij ij ij ij
j Ni

i i j ij ij ij ij
j Ni

P V V G Cos B Sin

Q V V G Sin B Cos

 

 





  

  
        (5) 

     Where, Vi and Vj are the voltage magnitudes of buses i and j. θij is the voltage angle 
difference between buses i and j. Pi and Qi are the real and reactive powers at bus i. 
Gij and Bij are the conductance and susceptance values of a branch connected between 
buses i and j.  
 
Inequality Constraints 
With respect to the ORPD, inequality constraints define the tolerable limits on both 
state variables and equipment usage. Important inequality constraints used in the 
ORPD problem are the transformer tap settings, bus voltage magnitudes, Capacitor 
and SVC outputs which can be expressed as follows [3], [15]: 

     
min max

min max

k k k T

Gi Gi Gi G

T T T k N
V V V i N

  

  
         (6) 

     For Conventional MOORPD, 

     min max
Ci Ci Ci CQ Q Q i N           (7) 

     For SVC based MOORPD, 
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     min max
SVCi SVCi SVCi SVCB B B i N           (8) 

     Where, VGi is the generator bus voltage magnitude. Tk is the tap setting value of a 
transformer connected at branch k. Qci represents the reactive power injected by 
Conventional VAR sources. BSVCi is the SVC susceptance value. NC and NSVC are the 
total number of Capacitor and SVC installments. NG and NT are the total number of 
generators and transformers. 
     In the above formulation, generator bus voltages, transformer tap settings and 
VAR source outputs, are the control variables, so they are self restricted. Load bus 
voltages and reactive power generations are the state variables which are restricted by 
the use of penalty terms. 
 
 
Non-Dominated Sorting Genetic Algrithm-Ii (Nsga-II) 
In NSGA-II, Simulated Binary Crossover (SBX) and polynomial mutation are used to 
generate new offspring and the tournament selection is used to select the population 
for next iteration [11-13]. 
 
Simulated Binary Crossover (SBX) 
SBX puts the stress on generating offspring near the parents and guarantees that the 
extent of the children or offspring is proportional to the extent of the parents. It also 
favors that, near parent individuals are monotonically more likely to be chosen as 
children than individuals distant from the parents in the solution space [11]. The SBX 
operator simulates the working principle of Single Point Crossover in binary strings. 
It works with two parent solutions as, 

     
         

         

1, 1 1, 2,

2, 1 1, 2,

0.5 1 1

0.5 1 1

t t t
i qi i qi i

t t t
i qi i qi i

x x x

x x x

 

 





     
     

       (9) 

     Where, xi
(1,t) and xi

(2,t) are the parent solutions. qi  is the spread factor which can be 
calculated as,  

     

1
1

1
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1
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rand if rand

otherwise
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









 


 

                (10) 

     Where, randi is a random number between 0 and 1. c  is the crossover constant. A 
larger value of c  gives a higher probability for creating ‘near parent’ solutions and a 
smaller value of c  allows distant solutions to be selected as offspring. In this work, 
the crossover constant is considered as 5. 
 
 
 
 



17820  S. K. Nandha Kumar 

Polynomial Mutation 
The probability of creating a solution near to the parent is higher than the probability 
of creating one distant from it. The shape of the probability distribution is directly 
controlled by an external parameter m and the distribution remains unchanged 
throughout the iterations. Like in the SBX operator, the probability distribution can 
also be a polynomial function, instead of a normal distribution [11]. 

     
 
 

(1, 1) (1, 1)

(2, 1) (2, 1)

t t U L
i i i i i

t t U L
i i i i i
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



 

 

  
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                 (11) 

     Where, xi
U and xi

L are the upper and lower limits of variable xi. δi is the polynomial 
probability distribution parameter which can be calculated as, 
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               (12) 

     Where, randi is a random number between 0 and 1 and m  is the mutation 
constant. The mutated individuals are called as offspring. Obtain the offspring fitness 
and form the combined population of parents and offspring. 
  
Tournament Selection 
Selection is made using tournament between two individuals. The individual with the 
lowest front number is selected if the two individuals are from different fronts. The 
individual with the highest Crowding Distance (CD) is selected if they are from the 
same front. i.e., a higher fitness is assigned to individuals located on a sparsely 
populated part of the front. In each iteration, the ‘N’ existing individuals (parents) 
generate ‘N’ new individuals (offspring). Both parents and offspring compete with 
each other for inclusion in the next iteration. 
 
Step by Step Implementation of NSGA-II  
The following steps are adopted for the implementation of NSGA-II algorithm. Figure 
2 shows the flowchart of NSGA-II algorithm [10]. 
     Step 1: Identify the control variables. 
     Step 2: Select the parameters such as number of population, maximum number 

of iteration, crossover and mutation probabilities. 
     Step 3:  Generate initial population. 
     Step 4:  Evaluate the objective functions (i.e., f1, f2) for initial population. 
     Step 5:  Set the iteration count. 
     Step 6:  Perform SBX and polynomial mutation for the set of individuals. 
     Step 7:  Perform non-dominated sorting. (i.e., sort the population according to 

each of the objective function value in ascending order of magnitude). 
     Step 8:  Calculate the Crowding Distance between the solutions. 
     Step 9:  Perform the selection based on the tournament selection thereby a 

higher fitness is assigned to individuals located on a sparsely populated 
part of the front. 
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     Step 10: Increment the iteration count and repeat the steps from 6 to 9 until the 
count reaches the specified  maximum number of iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Flowchart of NSGA-II Algorithm 
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Simulation Results 
IEEE 30-bus test system is used to analyze the performance of the proposed approach. 
The detailed data of this system are given in [1]. The system has 6 generator buses 
and 4 transformer branches. Bus numbers 1, 2, 5, 8, 11, and 13 are the generator 
buses. The voltage magnitude of these buses is varied from 0.95 p.u. to 1.1 p.u. 
Branches (6 - 9), (6 - 10), (4 - 12) and (28 - 27) are under load tap setting transformer 
branches with tap setting value 0.9 p.u. to 1.1 p.u. For this system, to eliminate 
voltage and reactive power violations, for Conventional ORPD [1], the shunt 
capacitors are installed at buses 10, 12, 15, 17, 20, 21, 23, 24, 29 and for SVC based 
ORPD, four SVC’s are installed at buses 10, 12, 24 and 29 with rating 0 to 5 MVAr. 
Therefore, for Conventional ORPD using shunt capacitors, the number of variables to 
be optimized is 19 and for SVC based ORPD, the number of variables to be optimized 
is 14.  
     During the implementation of NSGA-II to MOORPD, the objective functions are 
subjected to power flow constraints and control variable (continuous and 
discontinuous) limits [10] with uniform population size of 40. Based on 50 trials of 
various combinations of parameters, it is concluded that, crossover probability of 0.9, 
mutation probability of 1/number of control variables, crossover index of 5 and 
mutation index of 10 yield better results for the MOORPD problem. Number of 
fitness function evaluations of 200 is used as a stopping criterion. Fifteen independent 
trials are conducted to select the better individuals from the NSGA-II algorithm. 
Figures 3 and 4 show the Pareto optimal front of Transmission line losses and Voltage 
Deviation obtained from the NSGA-II algorithm for the Conventional and SVC based 
ORPD.  
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Figure 3: Pareto optimal front of Transmission line losses and Voltage Deviation for 

Conventional ORPD 
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Figure 4: Pareto optimal front of Transmission line losses and Voltage Deviation for 

SVC based ORPD 
 
     From Figures 3 and 4, it is clear that, the optimal values of transmission line losses 
and Voltage Deviation for SVC based ORPD are 0.047979 p.u and 0.5553 p.u 
whereas, for Conventional ORPD, these values are 0.048795 p.u and 0.5761 p.u 
respectively. The optimal values obtained from the Pareto optimal fronts indicates 
that, the SVC based ORPD is better when compared to Conventional ORPD.  
     Optimal control variables obtained from NSGA-II for Conventional and SVC 
based ORPD are given in Table 1. From the Table, it is clear that, the minimum 
Transmission line losses from SVC based ORPD is 4.7979 MW which is less by 
0.0816 MW (i.e. 1.7 %) when compared to Conventional ORPD. Also, the minimum 
Voltage Deviation from SVC based ORPD is 0.5553 p.u which is less by 0.0208 p.u 
(i.e. 3.746 %) when compared to Conventional ORPD.  
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Table 1: Optimal control variables obtained from NSGA-II for Conventional and 
SVC based ORPD 

 
Control variables SVC based ORPD  Conventional ORPD 
V1 1.0999 1.0947 
V2 1.0942 1.0848 
V5 1.0660 1.0638 
V8 1.0689 1.0659 
V11 1.0621 0.9564 
V13 1.0385 1.0389 
T6-9 1.1000 0.9821 
T6-10 1.0030 1.0369 
T4-12 1.0500 1.0206 
T28-27 1.0286 1.0441 
QSVC 10 0.0221 - 
QSVC 12 0.0181 - 
QSVC 24 0.0139 - 
QSVC 29 0.0134 - 
QC 10 - 0.0200 
QC 12 - 0.0500 
QC 15 - 0.0500 
QC 17 - 0.0500 
QC 20 - 0.0200 
QC 21 - 0.0100 
QC 23 - 0.0400 
QC 24 - 0.0500 
QC 29 - 0.0300 
RPL, MW 4.7979 4.8795 
VD, p.u 0.5553 0.5761 

 
 
Conclusion 
In this paper, the Shunt susceptance model of SVC has been proposed for the 
MOORPD problem. Minimization of transmission line losses and the improvement of 
bus voltage profile via minimization of Voltage Deviation have been considered for 
the MOORPD. The optimal control variables have been obtained by using the NSGA-
II algorithm. Simulation results from the IEEE 30-bus test system depict the 
effectiveness of the proposed approach when compared to the conventional 
MOORPD with conventional capacitors.  
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