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Abstract 

Generally Internet routers stores paths to destinations. This 

information is stored in memory which is expensive, and it 

requires to be updated continuously as internet use is 

increasing day by day. But the existing routing protocols are 

not efficiently handling the situation when memory becomes 

full and increasing memory due to increasing routing table 

size. The objective of this paper is to primarily focus on 

improving ORTC algorithm which will optimize the routing 

table in an efficient way that will reduce number of prefixes 

present in the older table without affecting the criteria. 

For this we have taken publicly available routing data from 
internet and evaluate through our algorithm to produce 

optimized output. 
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Introduction 

As the Internet grows to all every corner of the world, the 

demands on the Internet backbone routers keep increasing. 

One of the major problems facing the backbone routers today 

is the increasing number of routing entries or prefixes that 
they have to handle. The number of routes in the Internet 

backbone has been growing by 10,000 per year for the last 

several years. The rapid and sustained growth of the Internet 

over the past several decades has resulted in large state 

requirements for IP routers. In recent years, these 

requirements are continuing to worsen, due to increased 

disaggregation(advertising more-specific routes) arising from 

load balancing and security concerns, the fact that routers run 

multiple routing protocols simultaneously (each with their 

own routing state), and increasing demand for Virtual Private 

Networks,which requires multiple routing tables. 

Memory growth occurs in two different data structures located 
on routers, known as the RIB and FIB. The Routing 

Information Base (RIB) stores the set of routes advertised 

from neighboring routers. The RIB must store a copy of 

attributes and reachability information for hundreds of 

thousands of prefixes, which must be kept up-to-date in the 

presence of failures and network churn. The Forwarding 

Information Base (FIB) contains entries that map incoming 

packets to outgoing links 

RIB and FIB sizes are determined by many factors, but are 

both impacted by the number of routable prefixes (i.e. sets of 

reachable IP addresses). 

Growth of memory requirements presents a serious problem 

to ISP operators. Routing protocols are not designed to handle 

scenarios where memory is exhausted, leading to incorrect 

behavior when this occurs. Memory exhaustion leads to 
highly serious failure modes, such as route oscillations and 

incorrect forwarding decisions. To protect against this, 

network operators are forced to repeatedly upgrade their 

equipment at enormous expense due to the large cost of doing 

an infield deployment of new hardware. To avoid repeated 

field deployments, network operators can aggressively over-

provision memory on routers. However, provisioning is itself 

a highly challenging problem because memory requirements 

depend on external factors outside the ISP’s control. In 

addition, misconfigurations such as “route-leaks” cause 

temporary spikes in the number of advertised routes and are 
hard to predict. When faced with overload conditions, 

operators can employ route filters to restrict the amount of 

information learned by a router, but these filters may disrupt 

connectivity. 

Optimal Route Table Construction (ORTC) is most vital 

algorithm which helps to find a optimal routing table. The 

ORTC algorithm operates only on FIB memory, taking a FIB 

as input and producing a more compact FIB as output. It 

guarantees that the compact FIB has the exact same 

forwarding behavior as the input, and given that constraint, 

that the output FIB has a provably minimal number of entries. 

Experimental tests conducted in 1998 have shown that it can 
reduce the number of FIB entries by up to 50%. Despite this 

benefit, ORTC has not been adopted in practice, as it suffers 

from several major drawbacks. First, it is computationally 
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expensive: the original implementation takes approximately 

500 milliseconds to run for every routing update received; in 

modern networks routers must process tens of updates per 

second on average and tens of thousands of updates per 

second during spikes, making it difficult to use this algorithm 

in practice. Moreover, it is inflexible; it must always produce 
an output that forwards exactly the same as the input. 

However, there may be times when even a “compressed” FIB 

will not fit in memory. In this case, it may be preferable to 

alter forwarding behavior to allow further compression instead 

of allowing the router to crash. If these two problems were 

fixed, ORTC could be a useful building block in a larger 

system that managed memory. 

 

 

Managing ISP Memory with an MMS 
The focus of our research is to improve performance of the 

ORTC algorithm to enable its use in practical settings, to 
measure its use in modern networks, and to leverage it to 

design a generic memory management system (MMS) to 

manage the memory usage in the routers of an ISP’s network. 

Moreover, the MMS provides multiple levels of compression, 

allowing for a trade-off between unaltered routing and 

“maximal memory compression”. The MMS can be deployed 

either locally on each router or in a logically-centralized 

system that monitors and compresses state at all routers in the 

AS-wide network. In a local deployment, each router 

independently performs the operations of an MMS over its 

own local routing state. This enables our system to run in a 
completely distributed fashion. However, this does have some 

drawbacks. It requires router software upgrades and possible 

hardware upgrades (if CPU power is lacking). Moreover, 

there are limitations to the potential memory savings, as 

routers still need to maintain BGP control sessions (and hence 

cannot compress RIBs, only FIBs) with neighboring routers, 

and also because each router only has a local view of the 

network and acts independently. To circumvent these 

problems, the MMS can also be deployed in an AS-wide 

setting, where it runs on a set of servers that collectively 

assume responsibility for the routing interaction of an AS with 

neighboring ASes. The MMS receives routing updates from 
neighboring ASes, preprocesses these updates before sending 

routes to routers within the MMS-enabled network, and 

communicates selected routes to neighboring ASes. 

Neighboring ASes can be configured to send updates directly 

to the MMS, rather than to the border routers. If neighboring 

ASes do not wish to perform any re-configuration, border 

routers can act as proxies and relay BGP messages between 

the MMS and neighboring ASes. Not only does this 

deployment enable extra compression, but this approach 

allows for additional amortization techniques to be applied. 

 

 

Memory saving approaches and limitations 

The primary goal of the MMS is to reduce router memory 

usage within an ISP. To do this reduction, the MMS performs 

route coalescing, i.e., replacing groups of routes sharing the 

same next-hop with smaller, equivalent sets. Although this 

seems like a simple procedure, several operational challenges 

of ISPs make this process quite complex. 

Routing across ISPs 

The Internet is composed of a collection of Autonomous 

Systems (ASs), each of which corresponds to a single ISP, 

enterprise network, or other organizational entity. Each AS 

has a set of border routers which communicate to border 

routers of adjacent ASs through the use of the Border 
Gateway Protocol (BGP). BGP communicates information 

about routes and constructs forwarding paths to allow data 

packets to flow across ASs. Paths are newly advertised or 

withdrawn by exchanging update messages containing 

reachability information. The updated routing information 

replaces old information and is used for forwarding data 

packets. After processing an update, the router notifies its 

neighbors if any routing changes occurred. BGP is a path 

vector protocol, where routers exchange the entire AS-level 

path they use to reach the destination. Each AS has a globally 

unique AS number. When routes are propagated, the current 

AS adds its AS number to the head of the AS path contained 
in the routing update. This allows other networks to quickly 

detect if the path contains routing loops (by scanning for their 

own AS number in the list) as well as providing a simple 

metric for determining which routes are shorter than others 

(by preferring routes with fewer AS-level hops). BGP 

propagates routes for prefixes, which denote a collection of 

host addresses immediately adjacent in the IP namespace. 

Prefixes are represented by an IP address followed by a mask. 

For example, the prefix 12.1.0.0/16 represents all IP addresses 

whose first 16 bits match 12.1. Prefixes specify reachability 

on multiple levels of granularity, creating ambiguity in 
reachability information. For example, a route to 12.0.0.0/8 

could have a next-hop of 1.1.1.1, while a route to 12.0.0.0/9 

could use 2.2.2.2. To eliminate this ambiguity, routers select 

the longest matching prefix when there are multiple choices. 

However, longest prefix matching significantly complicates 

aggregation, i.e., the ability to take two prefixes with the same 

next-hop information and combine them into a single, larger 

prefix. An example of such a complication with aggregation is 

shown in Figure 1. To avoid introducing such difficult-to-

predict side effects, ISPs are constrained in the types of 

aggregation they can perform. Although ISPs cannot 

aggregate advertised routes (RIB), they can aggregate 
forwarding entries (FIB). As previously shown, even if two 

prefixes have the same next-hop, an ISP cannot announce an 

aggregate route, as it causes problems for other ASes. 

However, in the case of forwarding, there are no negative 

effects from such aggregation. Aggregating FIB entries is 

completely transparent to other routers; an aggregated FIB 

forwards exactly the same as a disaggregated one. Moreover, 

if we choose routes from the RIB that have the same next-hop, 

we can aggregate these entries in the FIB. In other words, our 

choices of routes in the RIB will determine the 

compressibility of the FIB. To summarize, Autonomous 
Systems cannot advertise compressed routes to neighboring 

ASes. While forwarding entries can be coalesced, routing 

entries cannot. 
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Fig.1 Aggregation can have unintended consequences (a) 

Suppose AS 1 originates 12.0.0.0/16 and AS 2 originates 

12.1.0.0/16. When no ASes perform aggregation, AS 5 can 

route traffic to 12.1.0.0/16 via AS 3, and traffic to 

12.0.0.0/16 to AS 4. (b) However, if AS 3 decides to 

aggregate 12.1.0.0/16 and 12.0.0.0/16 into 12.0.0.0/15, AS 5 

can no longer use the route via AS3. The reason is that all 

of 12.0.0.0/15 is covered by more specific prefixes that are 

reachable via alternate exit points, and Internet routing 

always prefers more-specific prefixes. 

 

 

Routing within an ISP 

ISP networks earn revenue by providing transit service, i.e., 

by forwarding traffic between their neighbors. Hence, ISPs 

must share reachability information received from one 

neighbor with the others. This is often done by establishing 
BGP sessions between border routers (when BGP is run 

within an ISP, it is referred to as iBGP). Internal reachability 

between border routers is provided by an intra-domain routing 

protocol such as OSPF or IS-IS iBGP sessions are sometimes 

established in a full-mesh configuration, where each border 

router maintains a session to every other border router. 

However, since routers must maintain routing state separately 

for each iBGP session, full-mesh configurations can have very 

large RIB memory requirements. For example, if there are n 

border routers, then each border router may need to store and 

maintain up to n − 1 internal routes for each of the hundreds 
of thousands of prefixes in the routing table. To circumvent 

this problem, larger networks often deploy route reflectors at 

strategic locations within their network. Route reflectors act as 

internal accumulation points, which collect routing updates 

from a subset of border routers, and only advertise the most 

preferred route to their iBGP neighbors; as such, border 

routers only receive the most preferred routes from their 
associated route reflectors. Unfortunately, the use of route 

reflectors introduces a set of problems. They can induce 

persistent forwarding loops and oscillations if deployed 

improperly. They require additional work for network 

operators to maintain, as they must be reconfigured to match 

changes in the underlying network topology. While route 

reflectors reduce memory usage, they do not reduce the 

number of prefixes in the routing table. Hence route reflectors 

do not reduce the size of the router’s forwarding table (which 

is commonly stored in expensive, fast memory). 

 

Router-Level Routing 
Routers are logically divided into a control plane, which 

contains the RIB, and a data plane, which contains the FIB. 

The goal of the control plane is to compute the set of routes 

the router should use locally, and of these, which should be 

advertised to neighboring routers. The goal of the data plane is 

to forward data packets, by selecting from a set of next-hops 

computed by the control plane. In addition to storing the next-

hop and prefix information, the RIB also stores a set of 

attributes that define properties of the route (e.g., the AS-path, 

cost metrics, where the route was learned from). The RIB also 

stores multiple routes per prefix—this is done so that if the 
currently-used route fails, the router may use an alternative 

route through a different neighbor to circumvent the failure. 

Unfortunately, when routers run out of memory, they can 

continuously reboot, crash, or begin behaving incorrectly. 

Reducing RIB memory is quite difficult. RIB entries contain 

routing information that may be vital when primary links fail 

and backup routes are needed. Moreover, routing information 

is often exchanged between routers and used to determine 

forwarding paths. As such, care must be taken when 

attempting to reduce RIB memory-data cannot be simply 

discarded. 

The FIB stores the set of routes which will be used to forward 
packets to individual prefixes. The FIB must perform 

forwarding lookups very quickly and are hence typically 

implemented in fast memory with low access times, such as 

SRAM or TCAM. There are two restrictions regarding FIB 

memory reduction. First, the contents of the FIB must 

“match” the RIB (each entry in the FIB should be the most 

preferred route in the RIB) to prevent routing loops. 

Therefore, prefixes can be coalesced if such actions do not 

change the forwarding behavior advertised by the router. 

 

 

Routing table compression 

Figure 2 shows the general process steps involved in 

compressing a routing table. At step 50, the compression 

program 48 converts the routing table 30 into a binary tree 

structure that represents the address prefixes in the routing 

table. The tree is stored in volatile memory 44 during the 

compression process. 
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Fig.2 Flow diagram showing steps for compressing routing 

table 

 

 

Initial work on routing for large networks established that 

hierarchical routing produces routing tables logarithmic in the 

number of network hosts with negligible increase in message 

path lengths. This is important for achieving scalability as 

network sizes increase. Internet routing today takes advantage 

of this principle. Internet address lookup would be simple if 

we could lookup a 32-bit IP destination address in a table that 
lists the output link for each assigned Internet address. 

However, each router would have to keep an entry for every 

Internet host millions of entries. To reduce database size and 

routing update trafic, an Internet router database consists of a 

much smaller set of prfixes. This reduces database size, but at 

the cost of requiring a more complex lookup called longest 

matching prefix. Each prefix P has an associated next hop or 

output link information, which specifies where a packet is to 

be forwarded if its longest matching prefix is P. We will write 

prefixes as bit strings of up to 32 bits followed by a `*'. For 

example, the prefix 01* matches any address that begins with 
the bits 01. The prefix * matches every address. Thus if the 

destination address begins with 01000 and we had only two 

prefix entries (01* 1; 0100*  2), the longest-matching 

prefix would be 0100* a the packet would be directed to 

nexthop 2. 

 

 
 

Fig.3 Binary tree Representation of a binary table 

The Internet initially used a simple hierarchy in which 32-bit 

addresses were divided into a network prefix and a host 

number, so that routers would only store entries for networks. 

For flexible address allocation, the network prefixes came in 

three sizes: Class A (8 bits), Class B (16 bits), and Class C (24 

bits). Organizations that required more than 256 hosts were 
given class A or B addresses; these organizations could 

further structure their addresses for internal routing with 

subnetting. 

For example, if P1=00* is a network, then P2=0011* is a 

subnet under P1. However, the Class A and B spaces did not 

scale to handle the Internet's growth. This led to the invention 

of Classless Inter-Domain Routing (CIDR). CIDR can give 

organizations multiple contiguous network prefixes that can 

still be aggregated by a common prefix, which reduces 

backbone router table size. Supernetting denotes the 

aggregation of adjacent prefixes that have the same next-hop 

information. 
 

 

Constructing optimal routing table 

The algorithm for reducing number of entries in routing table 

generalizes the concept of subnetting and supernetting. Here 

we have represented an initiative explanation of the algorithm 

operation. To simplify the explanation, the initial description 

relies on having a single next hop for a prefix and having a 

default route for the null prefix. I remove these restrictions in 

the final subsection. 

To graphically depict a set of prefixes, we use a binary tree 
representation. Each successive bit in a prefix corresponds to 

a link to a child node in the tree, with a 0 corresponding to the 

left child and a 1 corresponding to the right child. Note that 

the binary tree generally contains more nodes than there are 

prefixes, since every successive bit in the prefix produces a 

node. We labeled nodes with next-hop information, typically a 

small integer or a set of small integers. 

 

 
 

Fig.4 Example of routing table after ORTC 

 

 

Figure 3 and 4 shows an example with four routes. For 

instance, the root node in the tree represents the null prefix, 

with a default route to next-hop 1. The lower left tree node 
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represents the prefix 00*, and the next hop associated with 

this prefix is 2. Figure 6.1 shows the output of the algorithm 

on this example. By changing the default route at the root of 

the tree from 1 to 2, ORTC reduces the number of routes from 

four to three. Note that the optimized routing table encodes 

forwarding behavior equivalent to the original routing table. 
Using the longest matching prefix algorithm, both routing 

tables forward 00 to next-hop 2, 01 to next-hop 1, 10 to next-

hop 2, and 11 to next-hop 3. 

In Figure 3, next-hop 2 is most prevalent in the original 

routing table: it accounts for half of the possible destinations. 

Hence ORTC in its simplest form, ORTC optimizes a routing 

table using three passes over the binary tree representation. 

(The next subsection describes optimizations to the basic 

algorithm, including combining the first two passes.) The first 

pass propagates routing information down to the tree's leaves. 

The second pass finds the most prevalent next hops, by 

percolating information (sets of next hops) from the leaves 
back up towards the root. Finally, a third pass moves down the 

tree, choosing a next hop from the set of possibilities for a 

prefix and eliminating redundant routes. This description of 

the algorithm makes two simplifying assumptions about 

routing tables, which do not hold for real backbone routing 

tables. First, we assume that every routing table has a default 

route, or equivalently, that the null prefix at the root of the 

tree has a next hop. Second, we assume produces a smaller 

routing table by moving it to the root of the tree and using 

longer prefixes to represent routes to next-hops 1 and 3. 

 

Pass One 

The first pass “normalizes" the binary tree representation of 

the routing table, in preparation for the second and third 

passes. It enlarges the tree so that every node has either zero 

or two children. It does this by creating new leaf nodes and 

initializing the next hop for a new node with the next hop that 

the new node inherits from its nearest ancestor that has a next 

hop. Once the tree is fully populated with leaf nodes, the next-

hop information for interior nodes is no longer needed and 

may be discarded. In preparation for the second pass, which 

uses sets of next hops, the first pass converts the next hop for 

each prefix to a singleton set. 

 

Pass Two 

The second pass calculates the most prevalent next hops at 

every level of the routing table by percolating sets of next 

hops up the tree. An implementation of the second pass could 

use a post-order traversal of the tree or a traversal by levels 

from the bottom up towards the root. At each parent node 

visited in the traversal, a set of next hops is calculated. 

 

Pass Three 

The third pass moves down the tree selecting next hops for 
prefixes and eliminating redundant routes via subnetting. An 

implementation could use either a pre-order traversal of the 

tree or a traversal by levels from the root down. Each node 

visited will have a set of possible next hops, computed in the 

second pass. Except for the root node, the node will inherit a 

next-hop from the closest ancestor node that has a next hop. If 

this inherited next hop is a member of the node's set of 

potential next hops, then the node does not need a next hop of 

its own: it is inheriting an appropriate next hop. However, if 

the inherited next hop is not a member of the node's set of 

potential next hops, then the node does need a next hop. Any 

member of the node's set of potential next hops may be 

chosen as the node's next hop. 

The pseudo-code algorithm operates on a binary tree. The 
symbol N denotes a node in the tree. nexthops(N) denotes a 

set of next hops associated with the node N. If the routing 

table does not assign next hops to N, then nexthops(N) is 

defined to be the empty set  ;. We assume nexthops(root) 

!=  ;. For nodes with children, left(N) and right(N) denote the 
left and right child nodes. Similarly, we define parent(N) for 

all nodes except the root. The operation choose(A) picks an 

element from the non-empty set A. 

A#B operation on two sets of next hops can be defined as: 

 
The function inherited(N) on nodes other than the root is 

defined as: 

 
The first and third passes perform a traversal from the tree's 

root down to its leaves. This can be either a pre-order traversal 

or a traversal by levels. Similarly, the second pass performs a 

traversal from the leaves up to the root, using either a post-

order traversal or a traversal by levels. 

 

Pass One. 

for each node N (root to leaves) { 

if N has exactly one child node, 

create the missing child node 

if nexthops(N) = ; 
nexthops(N)  inherited(N) 
} 

 

Pass Two. 

for each node N (leaves to root) { 

if N is a parent node, 

nexthops(N)  

nexthops(left(N))#nexthops(right(N)) 

} 

 

Pass Three. 

for each node N (root to leaves) { 

if N is not the root and 

inherited(N)  nexthops(N) 

nexthops(N)   ; 
else 

nexthops(N)  choose(nexthops(N)); 

} 

 

Algorithm 

Pseudo-code for the ORTC algorithm. Each node represents a 

different prefix. rib info represents the chosen route for a 

prefix (as dictated by the RIB). NULL next-hop indicates no 

FIB entry needed for that prefix. 
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// Normalization: all nodes to have 0 or 2 children. 

for node N in t in preorder traversal: 

if N has one child: 

create missing child for N 

// Prevalent hop calculation: find the set of 

// maximally coalescable next-hops. 
for node N in t in postorder traversal: 

if N has no children: 

N.prev set = {N.rib info} 

else: 

N.prev set is the intersection of its children’s prev sets 

if N.prev set ==  
N.prev set is the union of its children’s prev sets 

// Next-hop selection. 

for node N in t in preorder traversal: 

if N is root of t: 

N.next hop = arbitrary element of N.prev set 

else: 

clst = closest ancestor of N with non-NULL next-hop 

if clst.next hop  N.prev set ; 
N.next hop = NULL 

else 

N.next hop = arbitrary element in N.prev set 

 

Selecting Routes to Improve Compression 

Although ORTC coalesces the prefixes in a FIB, it is bound 

by the requirement that the forwarding behavior is unchanged. 

Now let us check how it is possible to further improve the 

compression results by allowing the MMS to modify the 

forwarding behavior. The BGP decision process is run over 

the RIB to select the route to populate into the FIB. This 
decision process uses a series of rules to pick routes. Each rule 

eliminates a subset of routes, and rules are applied until a 

single route remains. The router 

(1)  first chooses the routes with the highest LocalPref (a 

numericvalue assigned by the operator to indicate 

which next-hops are most preferred), 

(2)  the routes with shortest AS-path length (the routing 

update contains the AS-path, which is the sequence 

of AS-level hops to the destination), 

(3)  the routes with the lowest origin type (a flag 

indicating whether the route originated internally or 

externally to the ISP), 
(4)  routes with the lowest MED (a numeric value 

advertised by a neighboring ISP, to indicate which 

entry point should be used, when the two ISPs peer 

in multiple locations), 

(5) routes learned through eBGP (BGP sessions with 

neighboring ASes) are preferred over iBGP routes 

(routes learned through other border routers in the 

local AS), 

(6)  the router chooses the closest exit point (or shortest 

internal route) to reach the destination prefix, 

(7)  to break ties, if multipleoptions still exist, the router 
chooses the route advertised by the router with the 

smallest router ID. 

 

The process is designed around several goals, such as 

maximizing revenue (through local preference settings), 

attempting to minimize latency (through shortest AS paths), 

load balancing (through IGP metrics), and so on. The BGP 

decision process constrains the level of compression 

achievable, as it places constraints on the set of routes that are 

populated into the FIB. To improve compression further, the 

MMS allows the operator to select sets of routes that are 

acceptable for use. By allowing the compression algorithms 
flexibility to choose amongst this set, additional compression 

can be achieved. In particular, an operator configures the 

MMS with a threshold level. The threshold level determines 

how many steps of the BGP decision process to execute. All 

routes that are equally good at a particular level. 

 

 

Network Simulation 

In ORTC algorithm, if root node makes a optimized route for 

a particuler router and its interfaced network then the packets 

to that particuler router will go through a specific route only 

which is somewhat similar to a dedicate path, hence there will 
be no packet fragments to that router from other neigbhouring 

routers for a prticuler transaction.This indicates due to 

selection of specific paths there is less interaction between 

other links 

When a new router is added to the network, it has to be 

configured by specific ports and routing rules according to the 

networking. The figure 13 is a overview of these 

configuration packets forwarded without ORTC algorithm. 

. 

 
 

Fig.5 due to selection of specific paths there is less 

interaction between other links. 
 

 
 

Fig.6 Forwarded packets vs Number of Routers added 

without compression 
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Fig.7 Forwarded packets vs Number of routers added with 

compression 
 

 

Conclusion 

The compression techniques are described above in the 

context of compressing routing tables in routers. More 

generally, the same techniques may be applied to optimally 

reduce the size of a set of prefixes, where the prefixes 

are being selected according to the longest matching prefix 

algorithm. Deploying an MMS within an ISP has several 

benefits. An MMS can prevent router memory requirements 

from exceeding capacity, as well as extend the lifetime of 
routers. Moreover, experimental results show substantial 

reduction of routers’ FIBs. Reducing these requirements and 

safely preventing routers from becoming overloaded reduces 

the need to upgrade them as often, decreasing operational 

costs and administrative work. 
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