
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 22 (2015) pp 42839-42845

© Research India Publications. http://www.ripublication.com

42839

Compression and Construction of Optimal IP Routing Using Optimal Route Table

Construction Algorithm

Rupa Madhuri

Pattanaik

College of Engineering and Technology, Ghatikia, Bhubaneswar rupamadhuri.mr@gmail.com

J. Chandrakanta Badajena

College of Engineering and Technology, Ghatikia, Bhubaneswar chand.cet@gmail.com

Chinmayee Rout

Ajay Binay Institute of Technology, Sector-1, CDA, Cuttack chinu123.abit@gmail.com

Shatabdinalini

College of Engineering and Technology, Ghatikia, Bhubaneswar Shatabdi.ira88@gmail.com

Abstract

Generally Internet routers stores paths to destinations. This

information is stored in memory which is expensive, and it

requires to be updated continuously as internet use is

increasing day by day. But the existing routing protocols are

not efficiently handling the situation when memory becomes

full and increasing memory due to increasing routing table

size. The objective of this paper is to primarily focus on

improving ORTC algorithm which will optimize the routing

table in an efficient way that will reduce number of prefixes

present in the older table without affecting the criteria.

For this we have taken publicly available routing data from
internet and evaluate through our algorithm to produce

optimized output.

Keywords-RIB, FIB, ORTC, MMS

Introduction

As the Internet grows to all every corner of the world, the

demands on the Internet backbone routers keep increasing.

One of the major problems facing the backbone routers today

is the increasing number of routing entries or prefixes that
they have to handle. The number of routes in the Internet

backbone has been growing by 10,000 per year for the last

several years. The rapid and sustained growth of the Internet

over the past several decades has resulted in large state

requirements for IP routers. In recent years, these

requirements are continuing to worsen, due to increased

disaggregation(advertising more-specific routes) arising from

load balancing and security concerns, the fact that routers run

multiple routing protocols simultaneously (each with their

own routing state), and increasing demand for Virtual Private

Networks,which requires multiple routing tables.

Memory growth occurs in two different data structures located
on routers, known as the RIB and FIB. The Routing

Information Base (RIB) stores the set of routes advertised

from neighboring routers. The RIB must store a copy of

attributes and reachability information for hundreds of

thousands of prefixes, which must be kept up-to-date in the

presence of failures and network churn. The Forwarding

Information Base (FIB) contains entries that map incoming

packets to outgoing links

RIB and FIB sizes are determined by many factors, but are

both impacted by the number of routable prefixes (i.e. sets of

reachable IP addresses).

Growth of memory requirements presents a serious problem

to ISP operators. Routing protocols are not designed to handle

scenarios where memory is exhausted, leading to incorrect

behavior when this occurs. Memory exhaustion leads to
highly serious failure modes, such as route oscillations and

incorrect forwarding decisions. To protect against this,

network operators are forced to repeatedly upgrade their

equipment at enormous expense due to the large cost of doing

an infield deployment of new hardware. To avoid repeated

field deployments, network operators can aggressively over-

provision memory on routers. However, provisioning is itself

a highly challenging problem because memory requirements

depend on external factors outside the ISP’s control. In

addition, misconfigurations such as “route-leaks” cause

temporary spikes in the number of advertised routes and are
hard to predict. When faced with overload conditions,

operators can employ route filters to restrict the amount of

information learned by a router, but these filters may disrupt

connectivity.

Optimal Route Table Construction (ORTC) is most vital

algorithm which helps to find a optimal routing table. The

ORTC algorithm operates only on FIB memory, taking a FIB

as input and producing a more compact FIB as output. It

guarantees that the compact FIB has the exact same

forwarding behavior as the input, and given that constraint,

that the output FIB has a provably minimal number of entries.

Experimental tests conducted in 1998 have shown that it can
reduce the number of FIB entries by up to 50%. Despite this

benefit, ORTC has not been adopted in practice, as it suffers

from several major drawbacks. First, it is computationally

mailto:Shatabdi.ira88@gmail.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 22 (2015) pp 42839-42845

© Research India Publications. http://www.ripublication.com

42840

expensive: the original implementation takes approximately

500 milliseconds to run for every routing update received; in

modern networks routers must process tens of updates per

second on average and tens of thousands of updates per

second during spikes, making it difficult to use this algorithm

in practice. Moreover, it is inflexible; it must always produce
an output that forwards exactly the same as the input.

However, there may be times when even a “compressed” FIB

will not fit in memory. In this case, it may be preferable to

alter forwarding behavior to allow further compression instead

of allowing the router to crash. If these two problems were

fixed, ORTC could be a useful building block in a larger

system that managed memory.

Managing ISP Memory with an MMS
The focus of our research is to improve performance of the

ORTC algorithm to enable its use in practical settings, to
measure its use in modern networks, and to leverage it to

design a generic memory management system (MMS) to

manage the memory usage in the routers of an ISP’s network.

Moreover, the MMS provides multiple levels of compression,

allowing for a trade-off between unaltered routing and

“maximal memory compression”. The MMS can be deployed

either locally on each router or in a logically-centralized

system that monitors and compresses state at all routers in the

AS-wide network. In a local deployment, each router

independently performs the operations of an MMS over its

own local routing state. This enables our system to run in a
completely distributed fashion. However, this does have some

drawbacks. It requires router software upgrades and possible

hardware upgrades (if CPU power is lacking). Moreover,

there are limitations to the potential memory savings, as

routers still need to maintain BGP control sessions (and hence

cannot compress RIBs, only FIBs) with neighboring routers,

and also because each router only has a local view of the

network and acts independently. To circumvent these

problems, the MMS can also be deployed in an AS-wide

setting, where it runs on a set of servers that collectively

assume responsibility for the routing interaction of an AS with

neighboring ASes. The MMS receives routing updates from
neighboring ASes, preprocesses these updates before sending

routes to routers within the MMS-enabled network, and

communicates selected routes to neighboring ASes.

Neighboring ASes can be configured to send updates directly

to the MMS, rather than to the border routers. If neighboring

ASes do not wish to perform any re-configuration, border

routers can act as proxies and relay BGP messages between

the MMS and neighboring ASes. Not only does this

deployment enable extra compression, but this approach

allows for additional amortization techniques to be applied.

Memory saving approaches and limitations

The primary goal of the MMS is to reduce router memory

usage within an ISP. To do this reduction, the MMS performs

route coalescing, i.e., replacing groups of routes sharing the

same next-hop with smaller, equivalent sets. Although this

seems like a simple procedure, several operational challenges

of ISPs make this process quite complex.

Routing across ISPs

The Internet is composed of a collection of Autonomous

Systems (ASs), each of which corresponds to a single ISP,

enterprise network, or other organizational entity. Each AS

has a set of border routers which communicate to border

routers of adjacent ASs through the use of the Border
Gateway Protocol (BGP). BGP communicates information

about routes and constructs forwarding paths to allow data

packets to flow across ASs. Paths are newly advertised or

withdrawn by exchanging update messages containing

reachability information. The updated routing information

replaces old information and is used for forwarding data

packets. After processing an update, the router notifies its

neighbors if any routing changes occurred. BGP is a path

vector protocol, where routers exchange the entire AS-level

path they use to reach the destination. Each AS has a globally

unique AS number. When routes are propagated, the current

AS adds its AS number to the head of the AS path contained
in the routing update. This allows other networks to quickly

detect if the path contains routing loops (by scanning for their

own AS number in the list) as well as providing a simple

metric for determining which routes are shorter than others

(by preferring routes with fewer AS-level hops). BGP

propagates routes for prefixes, which denote a collection of

host addresses immediately adjacent in the IP namespace.

Prefixes are represented by an IP address followed by a mask.

For example, the prefix 12.1.0.0/16 represents all IP addresses

whose first 16 bits match 12.1. Prefixes specify reachability

on multiple levels of granularity, creating ambiguity in
reachability information. For example, a route to 12.0.0.0/8

could have a next-hop of 1.1.1.1, while a route to 12.0.0.0/9

could use 2.2.2.2. To eliminate this ambiguity, routers select

the longest matching prefix when there are multiple choices.

However, longest prefix matching significantly complicates

aggregation, i.e., the ability to take two prefixes with the same

next-hop information and combine them into a single, larger

prefix. An example of such a complication with aggregation is

shown in Figure 1. To avoid introducing such difficult-to-

predict side effects, ISPs are constrained in the types of

aggregation they can perform. Although ISPs cannot

aggregate advertised routes (RIB), they can aggregate
forwarding entries (FIB). As previously shown, even if two

prefixes have the same next-hop, an ISP cannot announce an

aggregate route, as it causes problems for other ASes.

However, in the case of forwarding, there are no negative

effects from such aggregation. Aggregating FIB entries is

completely transparent to other routers; an aggregated FIB

forwards exactly the same as a disaggregated one. Moreover,

if we choose routes from the RIB that have the same next-hop,

we can aggregate these entries in the FIB. In other words, our

choices of routes in the RIB will determine the

compressibility of the FIB. To summarize, Autonomous
Systems cannot advertise compressed routes to neighboring

ASes. While forwarding entries can be coalesced, routing

entries cannot.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 22 (2015) pp 42839-42845

© Research India Publications. http://www.ripublication.com

42841

Fig.1 Aggregation can have unintended consequences (a)

Suppose AS 1 originates 12.0.0.0/16 and AS 2 originates

12.1.0.0/16. When no ASes perform aggregation, AS 5 can

route traffic to 12.1.0.0/16 via AS 3, and traffic to

12.0.0.0/16 to AS 4. (b) However, if AS 3 decides to

aggregate 12.1.0.0/16 and 12.0.0.0/16 into 12.0.0.0/15, AS 5

can no longer use the route via AS3. The reason is that all

of 12.0.0.0/15 is covered by more specific prefixes that are

reachable via alternate exit points, and Internet routing

always prefers more-specific prefixes.

Routing within an ISP

ISP networks earn revenue by providing transit service, i.e.,

by forwarding traffic between their neighbors. Hence, ISPs

must share reachability information received from one

neighbor with the others. This is often done by establishing
BGP sessions between border routers (when BGP is run

within an ISP, it is referred to as iBGP). Internal reachability

between border routers is provided by an intra-domain routing

protocol such as OSPF or IS-IS iBGP sessions are sometimes

established in a full-mesh configuration, where each border

router maintains a session to every other border router.

However, since routers must maintain routing state separately

for each iBGP session, full-mesh configurations can have very

large RIB memory requirements. For example, if there are n

border routers, then each border router may need to store and

maintain up to n − 1 internal routes for each of the hundreds
of thousands of prefixes in the routing table. To circumvent

this problem, larger networks often deploy route reflectors at

strategic locations within their network. Route reflectors act as

internal accumulation points, which collect routing updates

from a subset of border routers, and only advertise the most

preferred route to their iBGP neighbors; as such, border

routers only receive the most preferred routes from their
associated route reflectors. Unfortunately, the use of route

reflectors introduces a set of problems. They can induce

persistent forwarding loops and oscillations if deployed

improperly. They require additional work for network

operators to maintain, as they must be reconfigured to match

changes in the underlying network topology. While route

reflectors reduce memory usage, they do not reduce the

number of prefixes in the routing table. Hence route reflectors

do not reduce the size of the router’s forwarding table (which

is commonly stored in expensive, fast memory).

Router-Level Routing
Routers are logically divided into a control plane, which

contains the RIB, and a data plane, which contains the FIB.

The goal of the control plane is to compute the set of routes

the router should use locally, and of these, which should be

advertised to neighboring routers. The goal of the data plane is

to forward data packets, by selecting from a set of next-hops

computed by the control plane. In addition to storing the next-

hop and prefix information, the RIB also stores a set of

attributes that define properties of the route (e.g., the AS-path,

cost metrics, where the route was learned from). The RIB also

stores multiple routes per prefix—this is done so that if the
currently-used route fails, the router may use an alternative

route through a different neighbor to circumvent the failure.

Unfortunately, when routers run out of memory, they can

continuously reboot, crash, or begin behaving incorrectly.

Reducing RIB memory is quite difficult. RIB entries contain

routing information that may be vital when primary links fail

and backup routes are needed. Moreover, routing information

is often exchanged between routers and used to determine

forwarding paths. As such, care must be taken when

attempting to reduce RIB memory-data cannot be simply

discarded.

The FIB stores the set of routes which will be used to forward
packets to individual prefixes. The FIB must perform

forwarding lookups very quickly and are hence typically

implemented in fast memory with low access times, such as

SRAM or TCAM. There are two restrictions regarding FIB

memory reduction. First, the contents of the FIB must

“match” the RIB (each entry in the FIB should be the most

preferred route in the RIB) to prevent routing loops.

Therefore, prefixes can be coalesced if such actions do not

change the forwarding behavior advertised by the router.

Routing table compression

Figure 2 shows the general process steps involved in

compressing a routing table. At step 50, the compression

program 48 converts the routing table 30 into a binary tree

structure that represents the address prefixes in the routing

table. The tree is stored in volatile memory 44 during the

compression process.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 22 (2015) pp 42839-42845

© Research India Publications. http://www.ripublication.com

42842

Fig.2 Flow diagram showing steps for compressing routing

table

Initial work on routing for large networks established that

hierarchical routing produces routing tables logarithmic in the

number of network hosts with negligible increase in message

path lengths. This is important for achieving scalability as

network sizes increase. Internet routing today takes advantage

of this principle. Internet address lookup would be simple if

we could lookup a 32-bit IP destination address in a table that
lists the output link for each assigned Internet address.

However, each router would have to keep an entry for every

Internet host millions of entries. To reduce database size and

routing update trafic, an Internet router database consists of a

much smaller set of prfixes. This reduces database size, but at

the cost of requiring a more complex lookup called longest

matching prefix. Each prefix P has an associated next hop or

output link information, which specifies where a packet is to

be forwarded if its longest matching prefix is P. We will write

prefixes as bit strings of up to 32 bits followed by a `*'. For

example, the prefix 01* matches any address that begins with
the bits 01. The prefix * matches every address. Thus if the

destination address begins with 01000 and we had only two

prefix entries (01* 1; 0100*  2), the longest-matching

prefix would be 0100* a the packet would be directed to

nexthop 2.

Fig.3 Binary tree Representation of a binary table

The Internet initially used a simple hierarchy in which 32-bit

addresses were divided into a network prefix and a host

number, so that routers would only store entries for networks.

For flexible address allocation, the network prefixes came in

three sizes: Class A (8 bits), Class B (16 bits), and Class C (24

bits). Organizations that required more than 256 hosts were
given class A or B addresses; these organizations could

further structure their addresses for internal routing with

subnetting.

For example, if P1=00* is a network, then P2=0011* is a

subnet under P1. However, the Class A and B spaces did not

scale to handle the Internet's growth. This led to the invention

of Classless Inter-Domain Routing (CIDR). CIDR can give

organizations multiple contiguous network prefixes that can

still be aggregated by a common prefix, which reduces

backbone router table size. Supernetting denotes the

aggregation of adjacent prefixes that have the same next-hop

information.

Constructing optimal routing table

The algorithm for reducing number of entries in routing table

generalizes the concept of subnetting and supernetting. Here

we have represented an initiative explanation of the algorithm

operation. To simplify the explanation, the initial description

relies on having a single next hop for a prefix and having a

default route for the null prefix. I remove these restrictions in

the final subsection.

To graphically depict a set of prefixes, we use a binary tree
representation. Each successive bit in a prefix corresponds to

a link to a child node in the tree, with a 0 corresponding to the

left child and a 1 corresponding to the right child. Note that

the binary tree generally contains more nodes than there are

prefixes, since every successive bit in the prefix produces a

node. We labeled nodes with next-hop information, typically a

small integer or a set of small integers.

Fig.4 Example of routing table after ORTC

Figure 3 and 4 shows an example with four routes. For

instance, the root node in the tree represents the null prefix,

with a default route to next-hop 1. The lower left tree node

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 22 (2015) pp 42839-42845

© Research India Publications. http://www.ripublication.com

42843

represents the prefix 00*, and the next hop associated with

this prefix is 2. Figure 6.1 shows the output of the algorithm

on this example. By changing the default route at the root of

the tree from 1 to 2, ORTC reduces the number of routes from

four to three. Note that the optimized routing table encodes

forwarding behavior equivalent to the original routing table.
Using the longest matching prefix algorithm, both routing

tables forward 00 to next-hop 2, 01 to next-hop 1, 10 to next-

hop 2, and 11 to next-hop 3.

In Figure 3, next-hop 2 is most prevalent in the original

routing table: it accounts for half of the possible destinations.

Hence ORTC in its simplest form, ORTC optimizes a routing

table using three passes over the binary tree representation.

(The next subsection describes optimizations to the basic

algorithm, including combining the first two passes.) The first

pass propagates routing information down to the tree's leaves.

The second pass finds the most prevalent next hops, by

percolating information (sets of next hops) from the leaves
back up towards the root. Finally, a third pass moves down the

tree, choosing a next hop from the set of possibilities for a

prefix and eliminating redundant routes. This description of

the algorithm makes two simplifying assumptions about

routing tables, which do not hold for real backbone routing

tables. First, we assume that every routing table has a default

route, or equivalently, that the null prefix at the root of the

tree has a next hop. Second, we assume produces a smaller

routing table by moving it to the root of the tree and using

longer prefixes to represent routes to next-hops 1 and 3.

Pass One

The first pass “normalizes" the binary tree representation of

the routing table, in preparation for the second and third

passes. It enlarges the tree so that every node has either zero

or two children. It does this by creating new leaf nodes and

initializing the next hop for a new node with the next hop that

the new node inherits from its nearest ancestor that has a next

hop. Once the tree is fully populated with leaf nodes, the next-

hop information for interior nodes is no longer needed and

may be discarded. In preparation for the second pass, which

uses sets of next hops, the first pass converts the next hop for

each prefix to a singleton set.

Pass Two

The second pass calculates the most prevalent next hops at

every level of the routing table by percolating sets of next

hops up the tree. An implementation of the second pass could

use a post-order traversal of the tree or a traversal by levels

from the bottom up towards the root. At each parent node

visited in the traversal, a set of next hops is calculated.

Pass Three

The third pass moves down the tree selecting next hops for
prefixes and eliminating redundant routes via subnetting. An

implementation could use either a pre-order traversal of the

tree or a traversal by levels from the root down. Each node

visited will have a set of possible next hops, computed in the

second pass. Except for the root node, the node will inherit a

next-hop from the closest ancestor node that has a next hop. If

this inherited next hop is a member of the node's set of

potential next hops, then the node does not need a next hop of

its own: it is inheriting an appropriate next hop. However, if

the inherited next hop is not a member of the node's set of

potential next hops, then the node does need a next hop. Any

member of the node's set of potential next hops may be

chosen as the node's next hop.

The pseudo-code algorithm operates on a binary tree. The
symbol N denotes a node in the tree. nexthops(N) denotes a

set of next hops associated with the node N. If the routing

table does not assign next hops to N, then nexthops(N) is

defined to be the empty set ;. We assume nexthops(root)

!= ;. For nodes with children, left(N) and right(N) denote the
left and right child nodes. Similarly, we define parent(N) for

all nodes except the root. The operation choose(A) picks an

element from the non-empty set A.

A#B operation on two sets of next hops can be defined as:

The function inherited(N) on nodes other than the root is

defined as:

The first and third passes perform a traversal from the tree's

root down to its leaves. This can be either a pre-order traversal

or a traversal by levels. Similarly, the second pass performs a

traversal from the leaves up to the root, using either a post-

order traversal or a traversal by levels.

Pass One.

for each node N (root to leaves) {

if N has exactly one child node,

create the missing child node

if nexthops(N) = ;
nexthops(N)  inherited(N)
}

Pass Two.

for each node N (leaves to root) {

if N is a parent node,

nexthops(N) 

nexthops(left(N))#nexthops(right(N))

}

Pass Three.

for each node N (root to leaves) {

if N is not the root and

inherited(N) nexthops(N)

nexthops(N)  ;
else

nexthops(N)  choose(nexthops(N));

}

Algorithm

Pseudo-code for the ORTC algorithm. Each node represents a

different prefix. rib info represents the chosen route for a

prefix (as dictated by the RIB). NULL next-hop indicates no

FIB entry needed for that prefix.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 22 (2015) pp 42839-42845

© Research India Publications. http://www.ripublication.com

42844

// Normalization: all nodes to have 0 or 2 children.

for node N in t in preorder traversal:

if N has one child:

create missing child for N

// Prevalent hop calculation: find the set of

// maximally coalescable next-hops.
for node N in t in postorder traversal:

if N has no children:

N.prev set = {N.rib info}

else:

N.prev set is the intersection of its children’s prev sets

if N.prev set ==
N.prev set is the union of its children’s prev sets

// Next-hop selection.

for node N in t in preorder traversal:

if N is root of t:

N.next hop = arbitrary element of N.prev set

else:

clst = closest ancestor of N with non-NULL next-hop

if clst.next hop N.prev set ;
N.next hop = NULL

else

N.next hop = arbitrary element in N.prev set

Selecting Routes to Improve Compression

Although ORTC coalesces the prefixes in a FIB, it is bound

by the requirement that the forwarding behavior is unchanged.

Now let us check how it is possible to further improve the

compression results by allowing the MMS to modify the

forwarding behavior. The BGP decision process is run over

the RIB to select the route to populate into the FIB. This
decision process uses a series of rules to pick routes. Each rule

eliminates a subset of routes, and rules are applied until a

single route remains. The router

(1) first chooses the routes with the highest LocalPref (a

numericvalue assigned by the operator to indicate

which next-hops are most preferred),

(2) the routes with shortest AS-path length (the routing

update contains the AS-path, which is the sequence

of AS-level hops to the destination),

(3) the routes with the lowest origin type (a flag

indicating whether the route originated internally or

externally to the ISP),
(4) routes with the lowest MED (a numeric value

advertised by a neighboring ISP, to indicate which

entry point should be used, when the two ISPs peer

in multiple locations),

(5) routes learned through eBGP (BGP sessions with

neighboring ASes) are preferred over iBGP routes

(routes learned through other border routers in the

local AS),

(6) the router chooses the closest exit point (or shortest

internal route) to reach the destination prefix,

(7) to break ties, if multipleoptions still exist, the router
chooses the route advertised by the router with the

smallest router ID.

The process is designed around several goals, such as

maximizing revenue (through local preference settings),

attempting to minimize latency (through shortest AS paths),

load balancing (through IGP metrics), and so on. The BGP

decision process constrains the level of compression

achievable, as it places constraints on the set of routes that are

populated into the FIB. To improve compression further, the

MMS allows the operator to select sets of routes that are

acceptable for use. By allowing the compression algorithms
flexibility to choose amongst this set, additional compression

can be achieved. In particular, an operator configures the

MMS with a threshold level. The threshold level determines

how many steps of the BGP decision process to execute. All

routes that are equally good at a particular level.

Network Simulation

In ORTC algorithm, if root node makes a optimized route for

a particuler router and its interfaced network then the packets

to that particuler router will go through a specific route only

which is somewhat similar to a dedicate path, hence there will
be no packet fragments to that router from other neigbhouring

routers for a prticuler transaction.This indicates due to

selection of specific paths there is less interaction between

other links

When a new router is added to the network, it has to be

configured by specific ports and routing rules according to the

networking. The figure 13 is a overview of these

configuration packets forwarded without ORTC algorithm.

.

Fig.5 due to selection of specific paths there is less

interaction between other links.

Fig.6 Forwarded packets vs Number of Routers added

without compression

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 22 (2015) pp 42839-42845

© Research India Publications. http://www.ripublication.com

42845

Fig.7 Forwarded packets vs Number of routers added with

compression

Conclusion

The compression techniques are described above in the

context of compressing routing tables in routers. More

generally, the same techniques may be applied to optimally

reduce the size of a set of prefixes, where the prefixes

are being selected according to the longest matching prefix

algorithm. Deploying an MMS within an ISP has several

benefits. An MMS can prevent router memory requirements

from exceeding capacity, as well as extend the lifetime of
routers. Moreover, experimental results show substantial

reduction of routers’ FIBs. Reducing these requirements and

safely preventing routers from becoming overloaded reduces

the need to upgrade them as often, decreasing operational

costs and administrative work.

References

[1] T. Bu, L. Gao, and D. Towsley, “On characterizing

BGP routing table growth,” Computer Networks, vol.

45, pp. 45-54, May 2004.
[2] P. Smith, R. Evans, and M. Hughes, “RIPE routing

working group recommendations on route

aggregation,” http://www.ripe.net/ripe/docs/ ripe-

399.html, Dec. 2006.

[3] J. Chabarek, J. Sommers, P. Barford, C. Estan, D.

Tsiang, and S. Wright, “Power awareness in network

design and routing,” in Proc. 2008 IEEE INFOCOM.

[4] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A.

Shukla, “Packet classifiers in ternary CAMs can be

smaller,” in Proc. 2006 ACM SIGMETRICS.

[5] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal,
“Wire speed packet classification without tcams: a

few more registers (and a bit of logic) are enough,”

in Proc. 2007 ACM SIGMETRICS.

[6] P. Gupta, “Address lookup and classification,”

course lecture, May 2006,

www.stanford.edu/class/ee384y/ Handouts/ lookup-

and-classification-lec2.ppt.

[7] D.-F. Chang, R. Govindan, and J. Heidemann, “An

empirical study of router response to large BGP

routing table load,” in Proc. 2002 Internet

Measurement Workshop.

[8] R. Draves, C. King, S. Venkatachary, and B. Zill,
“Constructing optimal IP routing tables,” in Proc.

1999 IEEE INFOCOM.

[9] “The BGP instability report,” http://bgpupdates.

potaroo.net /instability/ bgpupd.html, Aug. 2009.

[10] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A.

Shaikh, and J. van der Merwe, “Design and

implementation of a routing control platform,” in

Proc. 2005 NSDI.
[11] A. Greenberg, G. Hjalmtysson, D. Maltz, A. Meyers,

J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang,

“A clean slate 4D approach to network control and

management,” ACM Computer Commun. Rev., Oct.

2005.

[12] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker, “NOX: towards an

operating system for networks,” ACM Computer

Commun. Rev., July 2008.

[13] “BGP reports,” http://bgp.potaroo.net.

[14] J. Moy, OSPF: Anatomy of an Internet Routing

Protocol. Addison-Wesley, 1998.
[15] D. Oran, “OSI IS-IS Intra-domain routing protocol,”

RFC 1142, Feb.1990.

http://www.stanford.edu/class/ee384y/

