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Abstract 

Defects defined in disparate terms are aberrations from 

specifications or ardent expectations leading to procedure 

failures. Classification and prediction extracting models to 

describe defect data classes or predict future defect trends is 

the foundation for Software Defect Prediction. Classification 

algorithms that identify software defects or faults based on 

software metrics have a big role in software risk management. 

Popular software metrics including Line of Code, Cyclomatic 

complexity and its derivatives are easy to measure and can be 

automated. In this paper, a cubic spline based improved 

activation function for Multi-Layer Perceptron Neural 

Networks to classify defects based on software metrics is 

proposed. A Glow-worm Swarm Optimization algorithm to 

train MLPNN is also proposed to reduce the mean squared 

error. The proposed technique is evaluated with KC1 dataset 

with and shows improved classification accuracy compared to 
Multi-Layer Perceptron Neural Network. 

 

Keywords: Software Defect Prediction (SDP), Software 

metrics, Multi-Layer Perceptron Neural Network (MLPNN), 

Back-propagation algorithm, Glow Swarm Optimization. 

 

 

Introduction 

Studies show that most defects are found in only few software 

modules. Such modules cause software failures, increase 

development and maintenance cost, and decrease customer 

satisfaction [1]. So, prediction of defect-prone software 

modules helps software developers focus on quality assurance 

and allocate effort and resources efficiently. This leads to 

substantial improvement in software quality [2]. Identification 

of defect-prone software modules is achieved through binary 

prediction models that classify a module as either defective or 

not. Such prediction models use static product metrics 

associated with defects as independent variables [3]. 

To predict software modules defect-proneness, software 

metrics provide a quantitative description of program 

attributes. Most software metrics are developed for this, and 

most are based on size and complexity. Lines Of Code (LOC) 
are a common size metric for defect prediction while McCabe 

and Halstead are mostly complexity metrics. Many works 

were undertaken to locate correlation between software 

metrics and defect proneness by constructing different 

predictive models including statistical methods, discriminant 

analysis, parametric models, machine learning methods, and 

mixed algorithms [4]. 

As relationship between software metrics and defect-

proneness in software modules is complicated and nonlinear, 

machine learning methods like Neural Networks (NN) are 

adequate for the problem compared to traditional linear 

models [5]. NN approaches were a universal adaptor for any 

non-linear continuous function with arbitrary accuracy [6]. 

Many papers in literature state that NN offer promising 

approaches for software reliability estimation and modelling 

[7-12]. NN, are a collection of fast processing and computing 

nodes called artificial neurons designed based on the study 

and behaviour of biological neurons. They are connected in a 

specific manner in a layer like structure called NN 

architecture. It is an output based computing technique. It is a 

technology used for optimizing problems. NNs consist of 

many computational unit layers, interconnected in a feed-

forward way. NN is applied to estimate parameters of a formal 

model and learn the process to predict future outcomes. It 
revealed that a feed forward network is useful for prediction. 

Back-error propagation is a widely used NN paradigm applied 

in application studies in varied areas [13]. 

An emphasis in NN research is on learning algorithms and 

architectures. Finding a suitable network structure and optimal 

weight values, make NN’s design difficult optimization 

problems. Multi-Layer Perceptron Neural Networks 

(MLPNN) model has 3 layers. The first is an input layer, the 

next is a hidden layer, and last is an output layer. Such 

artificial networks have many properties making them suit 

complex pattern classification problems. But, the success of 

their application to real world problems depends on a training 

algorithm. They need this to locate a nearly globally optimal 

set of weights in a short time. Traditional MLPNN training 

algorithm called back propagation, often finds a good set of 

weights in reasonable time [14]. Backpropagation is a 

variation of gradient search and the key to backpropagation is 

a method to calculate error gradient regarding weights for a 

given input by propagating an error backwards through a 

network. But, backpropagation has drawbacks like getting 

stuck in local minima and computational complexity [14]. 

During learning, weights and other parameters are updated 

after every input/output pair representation requiring a 
modification of weight for each layer thereby expanding 

search space for finding optimized weights and bias matrix. 

Many global optimization methods are proposed to train 

MLPNN to overcome gradient based algorithms 

disadvantages. Nature inspired meta-heuristics like Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO) 
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algorithm, Artificial Bee Colony (ABC) algorithm are applied 

successfully for training MLPNN [15-17]. 

Software criticality in present day applications has led to an 

increase in work being carried out in SDP. Use of intelligent 

NN and hybrid techniques in place of traditional statistical 

techniques has shown great improvement in software 

reliability prediction recently. This study investigates MLPNN 

classification accuracy for an SDP and proposes an improved 

cubic spline based activation function for MLPNN. This study 

uses Glow-worm Swarm Optimization (GSO) algorithm to 

train MLPNN to classify defects 

 
 

Related Work 

An artificial NN based approach for software reliability 

estimation and modelling was proposed by Su and Huang [7]. 

The NN approach builds a dynamic weighted combinational 

model. The proposed model’s applicability is proved through 

real software failure data sets. Results from experiments show 

that the new model has fairly accurate prediction capability. 

Three cost-sensitive boosting algorithms to boost NN for SDP 

were proposed by Zheng [8]. The first algorithm based on 

threshold-moving attempts to shift a classification threshold to 

not-fault-prone modules so that more fault-prone modules are 

classified correctly. The other two weight-updating based 

algorithms incorporate misclassification costs into a weight-

update rule in boosting procedure so that the algorithms boost 

more weights on samples associated with misclassified defect-

prone modules. The 3 algorithms performances are evaluated 

by 4 datasets from NASA projects regarding a singular 

measure and normalized expected cost of misclassification. 

Results suggest that threshold-moving is best choice to build 

cost-sensitive SDP models with boosted NN among the 3 

algorithms studied, specially for datasets from projects 

developed by object-oriented language. 
Hu et al., [9] proposed a robust recurrent NN modelling for 

software fault detection and correction prediction in which the 

author suggested the following approach. First, recurrent NN 

was applied to model the processes. A systematic network 

configuration approach was developed in the framework, with 

GA according to prediction performance. An extra factor 

characterizing dispersion of prediction repetitions was 

incorporated into performance function to ensure robust 

predictions. Comparison with feed forward and NN analytical 

models was developed regarding a real data set. 

An improved NN dynamic prediction model for software 

reliability evaluation was proposed by Ma et al., [10]. The 

new model has a selective model framework, using selected 

models to build a combination model. To evaluate the 

proposed model’s performance experiments on real failure 

data was conducted. Results showed that the new model 

improved prediction capability due to well-selected data 

models. It was seen that the improved structure adopted well 

selected data models from data models to build a combination 

model. 

A software reliability prediction model using feed-forward 

NN for better reliability prediction through back-propagation 

algorithm was described by Singh and Kumar [11] who 
discuss issues of network architecture and data representation 

methods. Comparative analysis between the new approach 

and 3 popular software reliability growth prediction models 

using 7 different failure datasets from standard software 

projects testing the proposed method’s validity was presented. 

A numerical example was cited to illustrate results that 

revealed major improvement using artificial neural network 

over conventional statistical models based on non-

homogeneous Poisson process. 

Bayesian networks to model the relationships among metrics 

and defect proneness on multiple data sets were proposed by 

Okutan and Yildiz [12]. Bayesian networks determine 

probabilistic influential relationships among software metrics 

and detect defect proneness. Also, in addition to metrics used 
in Promise data repository, two more metrics, i.e. NOD for the 

number of developers and LOCQ for the source code quality 

are defined. 

The advantages and disadvantages in the existing system 

obtained from the literature survey are tabulated. 

 

Author Technique 

proposed 

Disadvantage Improvement 

direction 

Su and 

Huang 

Neural 

Network 

Parameter 

optimization not 

done 

Heuristic methods 

can be used to solve 

the NP problem 

Zheng Neural 

Network 

Thresh holding 

value is 

ambiguous 

Optimization 

techniques to be 

investigated 

Hu et al., Recurrent 

Neural 

Network with 

GA 

Training 

optimization not 

done 

Move away from 

traditional training 

technique 

Singh 

and 

Kumar 

Artificial 

Neural 

Network 

Number of 

hidden layer is 

large 

Reduce and 

optimize 

 

 

From literature survey it can be seen that Neural Networks 

perform better than Bayesian network based classifiers. 

However solutions in Neural Networks can be suboptimal due 

to the non-deterministic polynomial characteristics of its 

parameters. Most work concentrated on the Neural Network 

with back propagation algorithm which is shown to give sub 
optimal solution. In this work it is proposed to optimize the 

training parameters of 

In this work we propose a new activation function based on 

the spline algorithm and improve the training algorithm by 

proposing a glow swarm optimization technique. This work 

assumes significance as even a small improvement in 

classification accuracy has a direct impact in cost savings for 

the software industry. 

 

 

Materials and Methods 

In this work a novel MLPNN activation function based on the 

principles of cubic spline is proposed to replace the popular 

sigmoidal or tanh activation function. Since back propagation 

algorithms have high training error a Glow-worm Swarm 

Optimization (GSO) algorithm to train MLPNN is proposed. 

The improved classifier is tested on the KC1 dataset and its 

performance measured. 
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KC1 dataset, a public, NASA Metrics Data Program [18] 

verifies and improves predictive software engineering models. 

KC1 is a C++ system implementing storage management for 

ground data receipt and processing. Dataset includes McCabe 

and Halstead features code extractors. Measures are module 

based. KC1 dataset has 2109 instances, 22 different attributes 

including 5 different LOC, 12 Halstead metrics, 3 McCabe 

metrics, a branch count and 1 goal-field. Dataset attribute 

information is McCabe's line count of code, design 

complexity, effort, program length, cyclomatic complexity, 

Halstead, total operands, class, and others. 

Back propagation is a popular supervised learning algorithm 
with multi-layered feed-forward networks [19, 20]. Inputs are 

fed to input layer and propagated through layers to get an 

output. The output signal is computed with weights, bias, and 

an activation function. Propagation rule trains a network by 

back propagating errors and changing nodes weights. The 

difference between output obtained and desired output is the 

error. 

 

The input to the first hidden layer  is given by 

 

The output of neuron  is given by 

 
The process is extended to all hidden units. The net input to 

 to output layer is computed by 

 
The output is given by 

 

Each output unit  whose target is, error 
correction is given by 

 
Based on the error obtained, weights and bias are updated 

such that 

 
is sent to all the hidden layers 

Each hidden unit nij sums its delta inputs from output units so 

that 

1

( )
m

j j ij

i

in  



 

The term 
( ) jin

is multiplied with derivative of 
( ( ) )jf n in

 

to calculate error term: 

( ) '( ( ) )j j jin f n in 
 

Bias and weights are propagated and updated in every hidden 

layer. Bias and weights of each output unit is updated as 

follows: 

 
Each hidden unit updates its bias and weights: 

 
The above is continued for a specified number of epochs or 

when actual output equals target output. The learning rate,α, 

affects BPN convergence. A larger value of α may speed up 

convergence but result in overshooting. A smaller value ofα 

has the reverse effect. The range used is from 0.001 to 10. So, 

a higher learning rate results in rapid learning but there is 

weights oscillation, while lower learning rate leads to slower 

learning. Gradient descent is very slow if learning rate αis 
small and oscillates widely if α is very large. One efficient and 

common method that allows bigger learning rate without 

oscillations is through adding a momentum factor to normal 

gradient descent method. 

The momentum factor is denoted by  0,1
 and value of 0.9 

is used for momentum factor. This approach is also useful 

when training data are different from majority of data. A 

momentum factor is used by either pattern by pattern updating 

or batch-mode updating. In batch mode, it effects a complete 

averaging over patterns. Even though averaging is only partial 

in pattern-by-pattern mode, it leaves useful information for 

weight updating. 
Weight updating formulas used here are, 

 
and 

 
Momentum factor helps faster convergence. 

where n is number of input neurons (equal to problem 

dimension), K number of hidden layer nodes, and function f is 

an activation function. A feed-forward MLPNN’s structure is 

seen in Figure 1. W and θ are unknown weights to be learned. 

A common activation function is logistic function, with form: 

 
1

1 cx
f x

e


  
 

k
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Fig.1. Feed Forward MLPNN Network Model 

 

 

A. Proposed Activation 

In this work an improved cubic spline based activation 

function is proposed. The new spline activation function 

reproduces whole cubic spline shape with directions specified 

by weight wj, j=1,..,n and written as: 

 
3

1

N

j i j ij

i

w x c w x 



 

New activation function is written as: 

   
1

n

j j j

j

f x w x 



 

 and wj j
 are found using back propagation, thereby 

locating optimal set of parameters and coordinates. 

Spline tracts are described through a coefficients combination. 

Activation function is represented by local spline basis 

functions controlled by 4 coefficients. Catmull-Rom cubic 

spline is used, and its ith tract expressed as: 

 
 
 

, 3 2

,

1
1

2

x i

i

y i

F u
F u u u u

F u

 
     

   
When using evolutionary algorithms to train MLPNN, it is 

done through minimizing an error function. The latter function 

used is Mean Squared Error (MSE), which is calculated 

   
2

1 1

1 p m

ij ij ij

i j

MSE w T F
pm  

   

where p denotes number of training patterns, m number of 

MLPNN outputs, Tij target, Fij actual value, both for output j 

and i input pattern. In nature inspired algorithms, the idea is 

that a solution in a population represents a connection weights 

vector of a MLPNN. Appropriate operators change weights, 

and the error by MLPNNs is used as fitness measure to guide 

selection. 
The enhanced version of Glow-worm Swarm Optimization 

(GSO) algorithm is used to train MLPNN. GSO is based on a 

luciferin induced glow in a glow-worm which attracts mates 

or prey [21]. In GSO optimizing multi-modal functions, 

physical agents i(i=1,..,n) are randomly deployed in objective 

function space. An agent in a swarm decides movement 

direction by the strength of signal picked up from neighbours. 

The brighter the glow, the more is the attraction. GSO 

algorithm has 5 major steps to optimize a multi-modal 

function: 

1) Each glow-worm i encodes objective function value 

J (xi(t)) at its current location xi(t) into a luciferin value li(t) 

 
Where li(t) represents luciferin level associated with glow-

worm i at time t, ρ is luciferin decay constant (0 <ρ< 1), γ is 

luciferin enhancement constant, and J (xi(t)) represents value 

of objective function at agent i’s location at time t. 

An initial random solution for a 3-2-1 Network is shown 

 

0.314 0.872 0.545 0.76 0.213 0.302 

0.498 0.231 0.169 0.609 0.683 0.184 

0.881 0.564 0.085 0.5 0.093 0.271 

0.314 0.924 0.678 0.111 0.838 0.422 

0.032 0.589 0.166 0.912 0.899 0.158 

0.817 0.168 0.429 0.622 0.07 0.744 

 

The fitness computed using MSE as the parameter can be 

given by 

 

0.736 

0.359 

0.717 
0.763 

0.138 

0.741 

 

2) Constructing neighborhood set Ni(t) 

3) Each glow-worm i calculates move to j probability 

pij(t) 

 
where j ∈ Ni(t), Ni(t) = {j : dij(t) <rid (t); li(t) <lj (t)} is the set 
of neighbors of glow-worm i at time t, dij (t) represents 

Euclidean distance between glow-worms i and j at time t, and 

rid (t) represent variable neighbourhood range associated with 

glow-worm i at time t. 

4) Select moving objects j* and calculate new location 

xi(t+1), s is a moving step 

 
where xi(t) ∈ Rm is location of glow-worm i, at time t, in m-

dimensional real space Rm, ||•|| represents Euclidean norm 
operator, and s (> 0) is step size. 

The new solution based on the above is given by 

 

0.893 0.914 0.449 0.049 0.734 0.459 

0.109 0.021 0.453 0.903 0.161 0.425 

0.816 0.654 0.049 0.057 0.167 0.672 

0.337 0.055 0.27 0.874 0.208 0.013 

0.125 0.669 0.339 0.696 0.493 0.504 

0.893 0.179 0.39 0.552 0.095 0.592 
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5) Update radius of dynamic decision domain. 

 
where β is a constant parameter and nt a parameter to control 

neighbours. The choice of parameters influences the 
algorithm’s performance. Parameter values used are tabulated 

in table 1. 

 

TABLE 1. The GSO parameters used 

 

Parameter Value 

ρ 0.4 
  0.6 

β 0.08 

nt 5 

s 0.03 

l0 5 

 

 

Results and Discussion 

The KC1 Dataset is used for the performance evaluation of 

the proposed technique; 2107 samples was used of which 

1391 samples are used as training set and 716 samples are 

used for testing. The software complexity measures Base 

Halstead measures, LOC measure, Cyclomatic complexity, 

and Derived Halstead measures are used to classify the 

software modules. The proposed spline activation function 

reproduces the shape of whole cubic spline along the 

directions specified by weight wj, j=1,..,n. The MLPNN is 

made up of 20 input neurons and two hidden layers. Table 2 

shows the results obtained from our experiments. 

 

TABLE 2. Results obtained from our experiments 

 
 MLP  

(Zheng  

et al.,) 

MLP  
with  

proposed  
activation 

MLP  
with  

proposed 
GSO  

training 

MLP with  
proposed  

activation  
& GSO  

training 

Classification  
accuracy 

0.925 0.9335 0.9364 0.9497 

Precision  
for defect 

0.835 0.8619 0.8692 0.9043 

Precision for  

no defect 

0.9344 0.9415 0.944 0.9552 

Recall  

for defect 

0.5719 0.6199 0.637 0.7123 

Recall for  

no defect 

0.9818 0.984 0.9846 0.9879 

F measure  

for defect 

0.9575 0.9623 0.9639 0.9713 

F measure  
for no defect 

0.6788 0.7211 0.7352 0.7969 

 

 
 

 

 
 

 
 

 

 

  
  %   

      

Pr  %   
  

Re %  

           tan   

      

TN TP
Classification Accuracy

TN FN FP TP

TP
ecision

FP TP

TP
call

FN TP

where TP True Positive Number of correct predictions that an ins ce is valid

TN True Negative Number of




  











 

 

    tan   

          tan   

          tan   

correct predictions that an ins ce is invalid

FP False Positive Number of incorrect predictions that an ins ce is valid

FN False Negative Number of incorrect predictions that an ins ce is inva



 lid

 

All the proposed techniques improves significantly over 

existing techniques in literature using Neural Network (Zheng 

et al.,). An improvement of over one percent in the 

classification accuracy reduces maintenance cost in software 

industry which is a recurring cost. 

 

 
 

Fig.2. Classification accuracy 

 

 

From figure 2, it is observed that the proposed MLP with 

proposed activation with GSO training increased classification 

accuracy by1.72% when compared with MLP with proposed 

activation. 
 

 
 

Fig.3. Precision 
 

 

From figure 3, it is observed that the proposed MLP with 

proposed activation with GSO training increased precision by 

4.80% and 1.44% with defect and no defect respectively when 

compared with MLP with proposed activation. 
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Fig.4. Recall 

 

 
From figure 4, it is observed that the proposed MLP with 

proposed activation with GSO training increased recall by 

13.87% and 0.39% with defect and no defect respectively 

when compared with MLP with proposed activation. 

 

 
 

Fig.5. F measure 
 

 

From figure 5, it is observed that the proposed MLP with 

proposed activation with GSO training increased f 

measureby0.93% and 9.98% with defect and no defect 

respectively when compared with MLP with proposed 

activation. From the results it can be seen that the proposed 

technique not only improves the classification accuracy but 

also improves both precision and recall. 

 

 

 

Conclusion 

Software defect prediction aims to improve software quality 

and testing efficiency by constructing predictive classification 

models from code attributes to ensure timely identification of 

fault-prone modules. SDP techniques assess systems 

dependability using defect metrics. Various techniques have 

been proposed in literature to improve the classification rate 

with Neural Network showing good performance. Since most 

work in literature used sigmoidal or tanh activation function, 

this work investigated a new activation function based on 

cubic splines. Neural Network suffer from parameter 

optimization problems which has not been addressed for the 
Software Defect Prediction Problem. To overcome the poor 

convergence of Genetic Algorithm, an improved Glow Swarm 

Optimization (GSO) algorithm to train the Neural Network 

parameter was proposed. The new MLPNN with cubic spline 

activation function and GSO training achieves classification 

accuracy of 94.97%. Further investigations can be carried out 

in the direction of hybridizing GSO algorithm with local 

search algorithms to improve the convergence characteristics. 
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