
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37813-37823

© Research India Publications. http://www.ripublication.com

37817

An Improved Neural Network Learning Algorithm Using Glow-worm

Swarm Optimization for Software Defect Prediction

V.Jayaraj

Bharathidasan University, Trichy, Tamil Nadu,

N. Saravana Raman,

Research Scholar, Bharathidasan University Trichy, Tamil Nadu

nsaravanaraman@gmail.com

Abstract

Defects defined in disparate terms are aberrations from

specifications or ardent expectations leading to procedure

failures. Classification and prediction extracting models to

describe defect data classes or predict future defect trends is

the foundation for Software Defect Prediction. Classification

algorithms that identify software defects or faults based on

software metrics have a big role in software risk management.

Popular software metrics including Line of Code, Cyclomatic

complexity and its derivatives are easy to measure and can be

automated. In this paper, a cubic spline based improved

activation function for Multi-Layer Perceptron Neural

Networks to classify defects based on software metrics is

proposed. A Glow-worm Swarm Optimization algorithm to

train MLPNN is also proposed to reduce the mean squared

error. The proposed technique is evaluated with KC1 dataset

with and shows improved classification accuracy compared to
Multi-Layer Perceptron Neural Network.

Keywords: Software Defect Prediction (SDP), Software

metrics, Multi-Layer Perceptron Neural Network (MLPNN),

Back-propagation algorithm, Glow Swarm Optimization.

Introduction

Studies show that most defects are found in only few software

modules. Such modules cause software failures, increase

development and maintenance cost, and decrease customer

satisfaction [1]. So, prediction of defect-prone software

modules helps software developers focus on quality assurance

and allocate effort and resources efficiently. This leads to

substantial improvement in software quality [2]. Identification

of defect-prone software modules is achieved through binary

prediction models that classify a module as either defective or

not. Such prediction models use static product metrics

associated with defects as independent variables [3].

To predict software modules defect-proneness, software

metrics provide a quantitative description of program

attributes. Most software metrics are developed for this, and

most are based on size and complexity. Lines Of Code (LOC)
are a common size metric for defect prediction while McCabe

and Halstead are mostly complexity metrics. Many works

were undertaken to locate correlation between software

metrics and defect proneness by constructing different

predictive models including statistical methods, discriminant

analysis, parametric models, machine learning methods, and

mixed algorithms [4].

As relationship between software metrics and defect-

proneness in software modules is complicated and nonlinear,

machine learning methods like Neural Networks (NN) are

adequate for the problem compared to traditional linear

models [5]. NN approaches were a universal adaptor for any

non-linear continuous function with arbitrary accuracy [6].

Many papers in literature state that NN offer promising

approaches for software reliability estimation and modelling

[7-12]. NN, are a collection of fast processing and computing

nodes called artificial neurons designed based on the study

and behaviour of biological neurons. They are connected in a

specific manner in a layer like structure called NN

architecture. It is an output based computing technique. It is a

technology used for optimizing problems. NNs consist of

many computational unit layers, interconnected in a feed-

forward way. NN is applied to estimate parameters of a formal

model and learn the process to predict future outcomes. It
revealed that a feed forward network is useful for prediction.

Back-error propagation is a widely used NN paradigm applied

in application studies in varied areas [13].

An emphasis in NN research is on learning algorithms and

architectures. Finding a suitable network structure and optimal

weight values, make NN’s design difficult optimization

problems. Multi-Layer Perceptron Neural Networks

(MLPNN) model has 3 layers. The first is an input layer, the

next is a hidden layer, and last is an output layer. Such

artificial networks have many properties making them suit

complex pattern classification problems. But, the success of

their application to real world problems depends on a training

algorithm. They need this to locate a nearly globally optimal

set of weights in a short time. Traditional MLPNN training

algorithm called back propagation, often finds a good set of

weights in reasonable time [14]. Backpropagation is a

variation of gradient search and the key to backpropagation is

a method to calculate error gradient regarding weights for a

given input by propagating an error backwards through a

network. But, backpropagation has drawbacks like getting

stuck in local minima and computational complexity [14].

During learning, weights and other parameters are updated

after every input/output pair representation requiring a
modification of weight for each layer thereby expanding

search space for finding optimized weights and bias matrix.

Many global optimization methods are proposed to train

MLPNN to overcome gradient based algorithms

disadvantages. Nature inspired meta-heuristics like Genetic

Algorithm (GA), Particle Swarm Optimization (PSO)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37813-37823

© Research India Publications. http://www.ripublication.com

37818

algorithm, Artificial Bee Colony (ABC) algorithm are applied

successfully for training MLPNN [15-17].

Software criticality in present day applications has led to an

increase in work being carried out in SDP. Use of intelligent

NN and hybrid techniques in place of traditional statistical

techniques has shown great improvement in software

reliability prediction recently. This study investigates MLPNN

classification accuracy for an SDP and proposes an improved

cubic spline based activation function for MLPNN. This study

uses Glow-worm Swarm Optimization (GSO) algorithm to

train MLPNN to classify defects

Related Work

An artificial NN based approach for software reliability

estimation and modelling was proposed by Su and Huang [7].

The NN approach builds a dynamic weighted combinational

model. The proposed model’s applicability is proved through

real software failure data sets. Results from experiments show

that the new model has fairly accurate prediction capability.

Three cost-sensitive boosting algorithms to boost NN for SDP

were proposed by Zheng [8]. The first algorithm based on

threshold-moving attempts to shift a classification threshold to

not-fault-prone modules so that more fault-prone modules are

classified correctly. The other two weight-updating based

algorithms incorporate misclassification costs into a weight-

update rule in boosting procedure so that the algorithms boost

more weights on samples associated with misclassified defect-

prone modules. The 3 algorithms performances are evaluated

by 4 datasets from NASA projects regarding a singular

measure and normalized expected cost of misclassification.

Results suggest that threshold-moving is best choice to build

cost-sensitive SDP models with boosted NN among the 3

algorithms studied, specially for datasets from projects

developed by object-oriented language.
Hu et al., [9] proposed a robust recurrent NN modelling for

software fault detection and correction prediction in which the

author suggested the following approach. First, recurrent NN

was applied to model the processes. A systematic network

configuration approach was developed in the framework, with

GA according to prediction performance. An extra factor

characterizing dispersion of prediction repetitions was

incorporated into performance function to ensure robust

predictions. Comparison with feed forward and NN analytical

models was developed regarding a real data set.

An improved NN dynamic prediction model for software

reliability evaluation was proposed by Ma et al., [10]. The

new model has a selective model framework, using selected

models to build a combination model. To evaluate the

proposed model’s performance experiments on real failure

data was conducted. Results showed that the new model

improved prediction capability due to well-selected data

models. It was seen that the improved structure adopted well

selected data models from data models to build a combination

model.

A software reliability prediction model using feed-forward

NN for better reliability prediction through back-propagation

algorithm was described by Singh and Kumar [11] who
discuss issues of network architecture and data representation

methods. Comparative analysis between the new approach

and 3 popular software reliability growth prediction models

using 7 different failure datasets from standard software

projects testing the proposed method’s validity was presented.

A numerical example was cited to illustrate results that

revealed major improvement using artificial neural network

over conventional statistical models based on non-

homogeneous Poisson process.

Bayesian networks to model the relationships among metrics

and defect proneness on multiple data sets were proposed by

Okutan and Yildiz [12]. Bayesian networks determine

probabilistic influential relationships among software metrics

and detect defect proneness. Also, in addition to metrics used
in Promise data repository, two more metrics, i.e. NOD for the

number of developers and LOCQ for the source code quality

are defined.

The advantages and disadvantages in the existing system

obtained from the literature survey are tabulated.

Author Technique

proposed

Disadvantage Improvement

direction

Su and

Huang

Neural

Network

Parameter

optimization not

done

Heuristic methods

can be used to solve

the NP problem

Zheng Neural

Network

Thresh holding

value is

ambiguous

Optimization

techniques to be

investigated

Hu et al., Recurrent

Neural

Network with

GA

Training

optimization not

done

Move away from

traditional training

technique

Singh

and

Kumar

Artificial

Neural

Network

Number of

hidden layer is

large

Reduce and

optimize

From literature survey it can be seen that Neural Networks

perform better than Bayesian network based classifiers.

However solutions in Neural Networks can be suboptimal due

to the non-deterministic polynomial characteristics of its

parameters. Most work concentrated on the Neural Network

with back propagation algorithm which is shown to give sub
optimal solution. In this work it is proposed to optimize the

training parameters of

In this work we propose a new activation function based on

the spline algorithm and improve the training algorithm by

proposing a glow swarm optimization technique. This work

assumes significance as even a small improvement in

classification accuracy has a direct impact in cost savings for

the software industry.

Materials and Methods

In this work a novel MLPNN activation function based on the

principles of cubic spline is proposed to replace the popular

sigmoidal or tanh activation function. Since back propagation

algorithms have high training error a Glow-worm Swarm

Optimization (GSO) algorithm to train MLPNN is proposed.

The improved classifier is tested on the KC1 dataset and its

performance measured.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37813-37823

© Research India Publications. http://www.ripublication.com

37819

KC1 dataset, a public, NASA Metrics Data Program [18]

verifies and improves predictive software engineering models.

KC1 is a C++ system implementing storage management for

ground data receipt and processing. Dataset includes McCabe

and Halstead features code extractors. Measures are module

based. KC1 dataset has 2109 instances, 22 different attributes

including 5 different LOC, 12 Halstead metrics, 3 McCabe

metrics, a branch count and 1 goal-field. Dataset attribute

information is McCabe's line count of code, design

complexity, effort, program length, cyclomatic complexity,

Halstead, total operands, class, and others.

Back propagation is a popular supervised learning algorithm
with multi-layered feed-forward networks [19, 20]. Inputs are

fed to input layer and propagated through layers to get an

output. The output signal is computed with weights, bias, and

an activation function. Propagation rule trains a network by

back propagating errors and changing nodes weights. The

difference between output obtained and desired output is the

error.

The input to the first hidden layer is given by

The output of neuron is given by

The process is extended to all hidden units. The net input to

 to output layer is computed by

The output is given by

Each output unit whose target is, error
correction is given by

Based on the error obtained, weights and bias are updated

such that

is sent to all the hidden layers

Each hidden unit nij sums its delta inputs from output units so

that

1

()
m

j j ij

i

in  




The term
() jin

is multiplied with derivative of
(())jf n in

to calculate error term:

() '(())j j jin f n in 

Bias and weights are propagated and updated in every hidden

layer. Bias and weights of each output unit is updated as

follows:

Each hidden unit updates its bias and weights:

The above is continued for a specified number of epochs or

when actual output equals target output. The learning rate,α,

affects BPN convergence. A larger value of α may speed up

convergence but result in overshooting. A smaller value ofα

has the reverse effect. The range used is from 0.001 to 10. So,

a higher learning rate results in rapid learning but there is

weights oscillation, while lower learning rate leads to slower

learning. Gradient descent is very slow if learning rate αis
small and oscillates widely if α is very large. One efficient and

common method that allows bigger learning rate without

oscillations is through adding a momentum factor to normal

gradient descent method.

The momentum factor is denoted by  0,1
 and value of 0.9

is used for momentum factor. This approach is also useful

when training data are different from majority of data. A

momentum factor is used by either pattern by pattern updating

or batch-mode updating. In batch mode, it effects a complete

averaging over patterns. Even though averaging is only partial

in pattern-by-pattern mode, it leaves useful information for

weight updating.
Weight updating formulas used here are,

and

Momentum factor helps faster convergence.

where n is number of input neurons (equal to problem

dimension), K number of hidden layer nodes, and function f is

an activation function. A feed-forward MLPNN’s structure is

seen in Figure 1. W and θ are unknown weights to be learned.

A common activation function is logistic function, with form:

 
1

1 cx
f x

e




k

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37813-37823

© Research India Publications. http://www.ripublication.com

37820

Fig.1. Feed Forward MLPNN Network Model

A. Proposed Activation

In this work an improved cubic spline based activation

function is proposed. The new spline activation function

reproduces whole cubic spline shape with directions specified

by weight wj, j=1,..,n and written as:

 
3

1

N

j i j ij

i

w x c w x 




New activation function is written as:

   
1

n

j j j

j

f x w x 




 and wj j
 are found using back propagation, thereby

locating optimal set of parameters and coordinates.

Spline tracts are described through a coefficients combination.

Activation function is represented by local spline basis

functions controlled by 4 coefficients. Catmull-Rom cubic

spline is used, and its ith tract expressed as:

 
 
 

, 3 2

,

1
1

2

x i

i

y i

F u
F u u u u

F u

 
     

 
When using evolutionary algorithms to train MLPNN, it is

done through minimizing an error function. The latter function

used is Mean Squared Error (MSE), which is calculated

   
2

1 1

1 p m

ij ij ij

i j

MSE w T F
pm  

 

where p denotes number of training patterns, m number of

MLPNN outputs, Tij target, Fij actual value, both for output j

and i input pattern. In nature inspired algorithms, the idea is

that a solution in a population represents a connection weights

vector of a MLPNN. Appropriate operators change weights,

and the error by MLPNNs is used as fitness measure to guide

selection.
The enhanced version of Glow-worm Swarm Optimization

(GSO) algorithm is used to train MLPNN. GSO is based on a

luciferin induced glow in a glow-worm which attracts mates

or prey [21]. In GSO optimizing multi-modal functions,

physical agents i(i=1,..,n) are randomly deployed in objective

function space. An agent in a swarm decides movement

direction by the strength of signal picked up from neighbours.

The brighter the glow, the more is the attraction. GSO

algorithm has 5 major steps to optimize a multi-modal

function:

1) Each glow-worm i encodes objective function value

J (xi(t)) at its current location xi(t) into a luciferin value li(t)

Where li(t) represents luciferin level associated with glow-

worm i at time t, ρ is luciferin decay constant (0 <ρ< 1), γ is

luciferin enhancement constant, and J (xi(t)) represents value

of objective function at agent i’s location at time t.

An initial random solution for a 3-2-1 Network is shown

0.314 0.872 0.545 0.76 0.213 0.302

0.498 0.231 0.169 0.609 0.683 0.184

0.881 0.564 0.085 0.5 0.093 0.271

0.314 0.924 0.678 0.111 0.838 0.422

0.032 0.589 0.166 0.912 0.899 0.158

0.817 0.168 0.429 0.622 0.07 0.744

The fitness computed using MSE as the parameter can be

given by

0.736

0.359

0.717
0.763

0.138

0.741

2) Constructing neighborhood set Ni(t)

3) Each glow-worm i calculates move to j probability

pij(t)

where j ∈ Ni(t), Ni(t) = {j : dij(t) <rid (t); li(t) <lj (t)} is the set
of neighbors of glow-worm i at time t, dij (t) represents

Euclidean distance between glow-worms i and j at time t, and

rid (t) represent variable neighbourhood range associated with

glow-worm i at time t.

4) Select moving objects j* and calculate new location

xi(t+1), s is a moving step

where xi(t) ∈ Rm is location of glow-worm i, at time t, in m-

dimensional real space Rm, ||•|| represents Euclidean norm
operator, and s (> 0) is step size.

The new solution based on the above is given by

0.893 0.914 0.449 0.049 0.734 0.459

0.109 0.021 0.453 0.903 0.161 0.425

0.816 0.654 0.049 0.057 0.167 0.672

0.337 0.055 0.27 0.874 0.208 0.013

0.125 0.669 0.339 0.696 0.493 0.504

0.893 0.179 0.39 0.552 0.095 0.592

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37813-37823

© Research India Publications. http://www.ripublication.com

37821

5) Update radius of dynamic decision domain.

where β is a constant parameter and nt a parameter to control

neighbours. The choice of parameters influences the
algorithm’s performance. Parameter values used are tabulated

in table 1.

TABLE 1. The GSO parameters used

Parameter Value

ρ 0.4
 0.6

β 0.08

nt 5

s 0.03

l0 5

Results and Discussion

The KC1 Dataset is used for the performance evaluation of

the proposed technique; 2107 samples was used of which

1391 samples are used as training set and 716 samples are

used for testing. The software complexity measures Base

Halstead measures, LOC measure, Cyclomatic complexity,

and Derived Halstead measures are used to classify the

software modules. The proposed spline activation function

reproduces the shape of whole cubic spline along the

directions specified by weight wj, j=1,..,n. The MLPNN is

made up of 20 input neurons and two hidden layers. Table 2

shows the results obtained from our experiments.

TABLE 2. Results obtained from our experiments

 MLP

(Zheng

et al.,)

MLP
with

proposed
activation

MLP
with

proposed
GSO

training

MLP with
proposed

activation
& GSO

training

Classification
accuracy

0.925 0.9335 0.9364 0.9497

Precision
for defect

0.835 0.8619 0.8692 0.9043

Precision for

no defect

0.9344 0.9415 0.944 0.9552

Recall

for defect

0.5719 0.6199 0.637 0.7123

Recall for

no defect

0.9818 0.984 0.9846 0.9879

F measure

for defect

0.9575 0.9623 0.9639 0.9713

F measure
for no defect

0.6788 0.7211 0.7352 0.7969

 
 

 

 
 

 
 

 

 

 %

Pr %

Re %

 tan

TN TP
Classification Accuracy

TN FN FP TP

TP
ecision

FP TP

TP
call

FN TP

where TP True Positive Number of correct predictions that an ins ce is valid

TN True Negative Number of




  











 

 

 tan

 tan

 tan

correct predictions that an ins ce is invalid

FP False Positive Number of incorrect predictions that an ins ce is valid

FN False Negative Number of incorrect predictions that an ins ce is inva



 lid

All the proposed techniques improves significantly over

existing techniques in literature using Neural Network (Zheng

et al.,). An improvement of over one percent in the

classification accuracy reduces maintenance cost in software

industry which is a recurring cost.

Fig.2. Classification accuracy

From figure 2, it is observed that the proposed MLP with

proposed activation with GSO training increased classification

accuracy by1.72% when compared with MLP with proposed

activation.

Fig.3. Precision

From figure 3, it is observed that the proposed MLP with

proposed activation with GSO training increased precision by

4.80% and 1.44% with defect and no defect respectively when

compared with MLP with proposed activation.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37813-37823

© Research India Publications. http://www.ripublication.com

37822

Fig.4. Recall

From figure 4, it is observed that the proposed MLP with

proposed activation with GSO training increased recall by

13.87% and 0.39% with defect and no defect respectively

when compared with MLP with proposed activation.

Fig.5. F measure

From figure 5, it is observed that the proposed MLP with

proposed activation with GSO training increased f

measureby0.93% and 9.98% with defect and no defect

respectively when compared with MLP with proposed

activation. From the results it can be seen that the proposed

technique not only improves the classification accuracy but

also improves both precision and recall.

Conclusion

Software defect prediction aims to improve software quality

and testing efficiency by constructing predictive classification

models from code attributes to ensure timely identification of

fault-prone modules. SDP techniques assess systems

dependability using defect metrics. Various techniques have

been proposed in literature to improve the classification rate

with Neural Network showing good performance. Since most

work in literature used sigmoidal or tanh activation function,

this work investigated a new activation function based on

cubic splines. Neural Network suffer from parameter

optimization problems which has not been addressed for the
Software Defect Prediction Problem. To overcome the poor

convergence of Genetic Algorithm, an improved Glow Swarm

Optimization (GSO) algorithm to train the Neural Network

parameter was proposed. The new MLPNN with cubic spline

activation function and GSO training achieves classification

accuracy of 94.97%. Further investigations can be carried out

in the direction of hybridizing GSO algorithm with local

search algorithms to improve the convergence characteristics.

References

[1] Koru, A., Liu, H., 2005. Building effective defect-

prediction models in practice. IEEE Software, 23–29.

[2] Koru, A., Tian, J., 2003. An empirical comparison

and characterization of high defect and high

complexity modules. Journal of Systems and

Software 67, 153–163.

[3] Emam, K., Benlarbi, S., Goel, N., Rai, S., 2001.

Comparing case-based reasoning classifiers for

predicting high risk software components. Journal of

Systems and Software 55 (3), 301–310

[4] Catal, C., &Diri, B. (2009). A systematic review of
software fault prediction studies. Expert systems with

applications, 36(4), 7346-7354.

[5] Kkoshgotaar, T. M., &Seliya, N. (2004).

Comparative assessment of software quality

classification techniques: An empirical case study.

Empirical Software Engineering, 9, 229–257.

[6] Thwin, M.M.T., Quah, T.S., Application of neural

networks for software quality prediction using

object-oriented metrics. Journal of Systems and

Software, vol.76, no.2, pp. 147–156, 2005.

[7] Su, Y. S., & Huang, C. Y. (2007). Neural-network-

based approaches for software reliability estimation

using dynamic weighted combinational

models.Journal of Systems and Software, 80(4), 606-

615.

[8] Zheng, J. (2010). Cost-sensitive boosting neural

networks for software defect prediction. Expert

Systems with Applications, 37(6), 4537-4543.

[9] Hu, Q. P., Xie, M., Ng, S. H., &Levitin, G. (2007).

Robust recurrent neural network modeling for

software fault detection and correction prediction.

Reliability Engineering & System Safety, 92(3), 332-

340.
[10] Ma, C., Gu, G., & Zhao, J. (2011). Improved Neural

Network based on Dynamic Predication Model of

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37813-37823

© Research India Publications. http://www.ripublication.com

37823

Software Reliability. JCIT: Journal of Convergence

Information Technology, 6(7), 349-357.

[11] Singh, Y., & Kumar, P. (2010). Application of feed-

forward neural networks for software reliability

prediction. ACM SIGSOFT Software Engineering

Notes,35(5), 1-6.

[12] Okutan, A., &Yıldız, O. T. (2014). Software defect

prediction using Bayesian networks. Empirical

Software Engineering, 19(1), 154-181.

[13] K. Mehrotra, C.K. Mohan and S. Ranka, “Elements

of Artificial Neural Networks”, Penram International

Publishing, 1997
[14] Rumelhart, D.E., Williams, R.J., Hinton, G.E.,

Learning internal representations by error

propagation, Parallel Distributed Processing:

Explorations in the Microstructure of Cognition,

Volume 1, 1986, pp. 318–362

[15] Tsai, J.T., Chou, J.H., Liu, T.K.: Tuning the

Structure and Parameters of a Neural Network by

Using Hybrid Taguchi-Genetic Algorithm. IEEE

Transactions on Neural Networks, Volume 17, Issue

1, 2006, pp.69-80

[16] Mendes, R., Cortez, P., Rocha, M., Neves, J., Particle

swarm for feedforward neural network training. In:

Proceedings of the International Joint Conference on

Neural Networks, Vol. 2, 2002, pp. 1895–1899

[17] Karaboga D., Akay B., Ozturk C., Artificial Bee

Colony (ABC) Optimization Algorithm for Training

Feed-Forward Neural Networks, LNCS: Modeling

Decisions for Artificial Intelligence, Volume 4617,

2007, pp.318-329

[18] Jayaraj, V., & Raman, N. S. (2013). Software Defect

Prediction using Boosting Techniques. International

Journal of Computer Applications, 65(13)

[19] Riedmiller, M., & Braun, H. (1993). A direct
adaptive method for faster backpropagation learning:

The RPROP algorithm. In Neural Networks, 1993.,

IEEE International Conference on (pp. 586-591).

IEEE.

[20] Tamboli, Z. J., &Nikam, P. B. (2013). Study of

Multilayer Perceptron Neural Network for Antenna

Characteristics Analysis. International Journal, 3(8)

[21] Krishnanand, K. N., &Ghose, D. (2009). Glowworm

swarm optimization for simultaneous capture of

multiple local optima of multimodal functions.

Swarm intelligence, 3(2), 87-124

