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Abstract 

Genetic algorithm (GA) is a commanding stochastic 

optimization technique, which mimics the progression in the 

living nature with the aim to solve practical problems. It has 

been successfully applied to solve the several techniques like 

problem of scheduling, optimization, feature extraction etc. 

Effective execution of high performance computing or parallel 

processing makes this technique more valuable. Parallel 

implementation is very advantageous for the different time 

consuming process steps of GA. Till now, there have been 

proposed numerous approach of parallel implementation of 

genetic algorithm and plenty of research is going on. Main 
objective of this paper is to summarize existing techniques of 

parallel accomplishment of GA with the brief introduction of 

parallel computing and its tools and techniques and to 

demonstrate significant contribution of parallel computing in 

GA. This paper also proposed a parallel solution of n queen‟s 

problem with significant speedup using GA on easily 

available multi core architecture. Another main purpose of 

this paper is to describe the application of parallel GA in 

medical imaging. 

 

Keywords: Parallel Computing, Genetic Algorithm (GA), n 

Queen‟s Problem, Image Processing, Medical Imaging, High 

Performance Computing. 

 

 

I. Introduction 

High speed computing plays a very essential role in today‟s 

era. Parallel computing is a gifted approach to meet the 

increased requirement for high speed computing [1-6] as it 

provides concurrency and efficient exploitation of non local 

resources. GA is very computationally expensive [7] and very 

time consuming [1] so it is very advantageous to implement 

parallel computing in this for fast and prominent results [1-5]. 
Parallel Implementation of GA is very valuable as GA is used 

in several algorithms like pattern classification, feature 

extraction [72] and optimization techniques etc. There have 

been various algorithms developed of parallel implementation 

of this technique using CPU and GPUs. Main motive of this 

paper is to provide the efficient description of existing 

techniques of GA & providing the brief concepts of parallel 

computing and its applications in medical imaging. In this 

paper we also tried to show the parallel implantation of n 

queen‟s problem using GA on easily available multicore 

architecture or environment with significant speed up. 

Structure of the paper is as follows: 

Next section II gives the brief introduction of genetic 

algorithm, parallel computing and its concepts. Section III 

consist broad classification of parallel GA and important 

contribution given by different researcher in parallel GA. 

Section IV describes n queen‟s problem based on GA and its 

parallel implementation. Experimental set up and results are 

given in section V.  Relevance of parallel GA in the field of 
medical imaging is described in section VI. Discussion and 

Conclusion are discussed in section VII. 

 

 

II. Brief Concepts 

A. Genetic Algorithm(GA) 

A genetic algorithm is a search technique used in computing 

to find true or estimated solutions for mostly optimization and 

search problems. It was introduced by John H. Holland in 

1975. It is a stochastic optimization algorithm that is basically 

builds on principles of natural selection and recombination. 

GA initialize the initial population randomly and calculate the 

fitness for each individual then select parent, do crossover 

mutation operation, calculate fitness for each new individual, 

finally select the next generation and repeat this process until 

a termination criteria or up to predefined number of 

generations [9]. It maximizes the fitness of individuals by 

employing operations inspired by the theory of evolution. 

 

In common terms, a GA consists of four parts [10]. 

1.  Generate an initial population. 

2.  Select pair of individuals based on the fitness function. 

3.  Produce next generation from the selected pairs by 
applying pre-selected genetic operators. 

4.  If the termination condition is satisfied stop, else go to 

step 

 

The termination condition can be either: 

1.  No improvement in the solution after a certain number of 

generations. 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716 

© Research India Publications.  http://www.ripublication.com 

37708 

2.  The solution converges to a pre-determined threshold. 

 

Basic flow chart is given below [11 – 21][28]. 

 

 
 

Figure 1: Basic Structure of GA 

 

 

A practical disadvantage of the genetic algorithm involves 

longer running time on the computer to execute 

[28,29,74,75,76]. So parallel computing plays a very vital role 

in this. It can provide the efficient and fast possible solution of 

this short come of GA. Now we are going to discuss about 

parallel computing, key features, tools, techniques and its 

important concepts. 

 

B. Parallel Computing 

It is a type of computing in which several calculations are 

carried out concomitantly, it is having the principle that a 

large problem or a composite problem can be separated into 

smaller one [23]. It can be implemented in many ways of 
parallel computing environment as a cluster of computers that 

contains multiple PCs combined together with a elevated 

speed network, a shared memory multiprocessor by 

connecting multiple processors to a single memory system, a 

Chip Multi-Processor (CMP) contains multiple processors 

(called cores) on a single chip [23]. 

Very firstly Amdahl framed the concept of parallel computing 

According to Amdahl‟s law “if r be the fraction of work done 

sequentially, so (1-r) is fraction parallelizable” [21]. 

If number of processors are P 

Speedup  = Time (1)/Time(P) 

  = 1/(r+ (1-r)/P) 

  = 1/r (1) 

 

Speed up is the important factor or measuring parameter of 

parallel computing which measure how the fast is our parallel 

implementation. 

 

Key Concepts or Fundamentals of Parallel Computing:  

Important fundamentals of parallel computing includes 

 

 

Granularity:  

We can define it as the numeral of basic units. It can be coarse 

grained (Few Tasks of more powerful computing) and Fine 

Grain (Large Number of Small parts and less powerful 

computing). Apart from this we can defined parallel 

processing as two type First is Explicit in which algorithms 

includes instructions to specify which processes are built and 

executed in parallel way and Second is Implicit in which 

compiler has the task of inserting the necessary instructions to 

run the program on a parallel computer. Synchronization is 

also necessary for making an algorithm from sequential to 

parallel as it prevents from the overlapping of two or more 
processors. One more thing is Latency it is defined as the time 

conversion of information from request to accept. If we talk 

about scalability than It is defined as the capability of an 

algorithm to preserve its effectiveness by escalating the 

number of processors and the size of the problem in the same 

percentage. Now a day, GPUs and CUDA are having 

significant roles in high performance computing [21-27]. 

 

C. GPU (Graphical Processing Unit) [29-37][62][63][64]: 

A GPU is an assorted chip multi-processor which is specially 

tuned for graphics. It contains a large amount of dedicated 

ALUs then CPUs.  GPUs also contain extensive support of 

Stream Processing paradigm. It is related to SIMD (Single 

Instruction Multiple Data) processing.  Each processing unit 

on GPU contains local memory that improves data 

manipulation and reduces fetch time. 

 

D. CUDA (Computed Unified Device Architecture) [37 - 

44] 

It is a set of developing tools to create applications that will 

perform execution on GPU (Graphics Processing Unit). It is 

very necessary as it provides ability to use high-level 

languages such as C with future support of C++ to develop 
application that can take advantage of high level of 

performance and scalability that GPUs architecture offer.  

Compiled code will run directly on GPU. CUDA was 

developed by NVidia and as such can only run on NVidia 

GPUs of G8x series and up.  Firstly it was released on 

February 15, 2007 for PC and Beta version for MacOS X on 

August 19, 2008. 

It is having following tools 

1. The nvcc C compiler. 

2. CUDA FFT (Fast Fourier Transform) and BLAS (Basic 

Linear Algebra Subprograms for linear algebra) libraries 

for the GPU. 

3. Profiler. 

4. An alpha version of the gdb debugger for the GPU. 

5. CUDA runtime driver. 

6. CUDA programming manual. 

 

It is having several applications in high performance 

computing like Seismic Database - 66x to 100x speedup given 

in [47], Molecular Dynamics - 21x to 100x speedup defined in 

[48] MRI processing - 245x to 415x speedup in [49] 

Atmospheric Cloud Simulation - 50x speedup given in 

[50].Apart from this there are some more tools and techniques 
are available for implementing parallel processing such as 

Open CV, Open CL , Parallel Computing Toolbox of 
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MATLAB, Multithreading of Java and many more with their 

benefits and limitations discussed in [77]. 

 

 

III. Broad Classification of Parallel GA and Existing 

Literatures based on Parallel GA 

There are different ways of exploiting parallelism in GAs 

given by different researchers: master- slave models, fine-

grained models, island models, and hybrid models, Coarse-

grained Model, Dual Species Model. Brief description of this 

implementation is given below. 

 
A. Master Slave Models[1][51-53][59] 

Basic model of the master slave modal is given in the 

following figure. In this approach like simple GA, there is a 

panmictic population, but the evaluation of fitness is 

distributed among several worker processors. It is also known 

as global parallel GA as in this type of parallel GA, selection 

and crossover considers the entire population. 

 

 
Figure 2: Master Slave Modal 

 

B. Multiple-Deme Parallel Gas [54 - 56] 

It is also known as multiple populations Genetic Algorithm. It 

consists on several subpopulations (demes) which exchange 

individuals occasionally. It is controlled by numerous 

parameters. It is very famous but difficult to understand 

because the effects of migration are not fully understood. It 

introduces the basic changes in the operation of the GA and it 

is having different behavior than simple GAs. Since the 

computation to communication ratio is usually high, they are 

occasionally called coarse-grained GAs [59].Basic 

architecture is shown in the following figure. 
 

 
 

Figure 3: Multiple-deme parallel GA [6] 

 

 

C. Fine-Grained Models[57][59] 

This type of approach is suited for massively parallel 

computers and consists of one spatially-structured population. 

In this model Selection and mating are restricted to a little 

neighborhood, but neighborhoods overlap permitting some 

interaction among all the individuals. The ideal case is to have 

only one individual for every processing element available. 
 

D. Island Models[58] 

It is having several subpopulations that exchange individuals 

occasionally this exchange is called migration and it is 

controlled by numerous parameters like frequency of 

migration, number and destination of migrants, and the 

selection method for choosing the migrants. 

 

E. Hybrid Model[51 - 60] 

It consists of the combination of Parallel Genetic Algorithm 

with other optimization technique. 

 

F. Coarse-grained Model[1][59] 

It divides the population into subpopulations which can be 

computed on separate processors. The subpopulations then 

have an amount of migration between them. 

 

G. Dual Species Model[1][60] 

As show in the following figure this modal generates a 

population which is further divided in to two sections 

Operations on the subpopulation 1(p1) and subpopulation 

2(p2) are made with different parameters for the crossover and 

mutation. In p1, an individual is crossed more frequently with 
similar individuals, than with individual with fewer 

similarities. p1 mutate with the general mutation operator. In 

p2, individuals with fewer similarities are crossed at a higher 

rate and mutate with a greater mutation operator, than in p1 

[1]. 

 

Master 
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Figure 4: Flow chart of Dual species parallel GA[1][60] 

 

 

H. Hierarchical Parallel GA 

When two or more parallel GA is implemented concurrently 

than it is said to be Hierarchical Parallel GA [59]. 

Now we are going to give some of the important contribution 

by different researcher in the field of parallel genetic 

algorithm. Apart from these there are so many other worked 

has been done in this field. 

 

1. Multiprocessor Scheduling Using Parallel Genetic 

Algorithm [28] 

In this research authors worked on the steps of Fitness 

Evaluation of GA as it is the most time consuming GA 

operation for the CPU time, which affect the GA performance. 

The implemented synchronous master-slave algorithm 

outperforms the sequential algorithm in case of complex and 

high number of generations‟ problem. 

Following is the flow chart of the proposed system [28]. 

 

 
 

Figure 5: Proposed approach Flow Diagram [28] 

 

 

The proposed parallel genetic algorithm is based on the 

sequential algorithm on [61] and uses synchronous master-

slave GAs parallelization. The master-slave GAs 

parallelization never affects the behavior of the algorithm, so 

there is no need for huge modifications and it has the full 

advantage of searching the whole of search space. According 
to the obtained results, the proposed parallel algorithm 

outperforms the sequential algorithm in case of complex and 

high number of generation problems. In smaller problems, it is 

not preferred to use the parallel algorithms. 

 

2. Parallel Genetic Algorithm on the CUDA Architecture 

[29] 

This paper describes the mapping of the parallel island based 

GA with unidirectional ring migrations to NVidia CUDA 

software model. 

In this authors had chosen CUDA (Compute Unified Device 

Architecture)framework to implement GA on GPU. Their 

main aim concern during designing GA accelerated by GPU is 

to create its efficient mapping to CUDA software model with 

a special focus on massive parallelism, usage of shared 

memory within multiprocessors and avoiding the system bus 

bottleneck. They assumed an island based GA with the 

migration along an unidirectional ring. Every individual is 

controlled by a single CUDA thread. The local populations 

are stored in shared on-chip memory on particular GPU 

multiprocessors (CUDA blocks). This ensures both 

computationally intensive execution and massive parallelism 

needed for GPU to reach its full potential. Their 
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implementation also utilizes a uniform and Gaussian fast 

random number generators described in [2]. The proposed 

algorithm begins with the input population initialization on 

the CPU side. Then, chromosomes and GA parameters are 

transferred to the GPU main memory using the system bus. 

Next, the CUDA kernel performing genetic algorithm on GPU 

is launched. Depending on kernel parameters, the input 

population is distributed to several blocks (islands) of threads 

(individuals). All threads on each island read their 

chromosomes from the main memory to the fast shared (on-

chip) memory within a multiprocessor. The process of 

evolution then proceeds for a certain number of generations in 
isolation, whereas, the islands as well as individuals are 

evolved on the graphics card in parallel. Each generation 

consists of fitness function evaluation and application of the 

selection, crossover and mutation. In order to mix up suitable 

genetic material from isolated islands, the migration is 

employed. 

As a result Speedups up to seven thousand times higher 

clearly show that GPUs have proven their abilities for 

acceleration of genetic algorithms during optimization of 

simple numerical functions. The results also show that the 

proposed GPU implementation of GA can provide better 

results in the shorter time or produce better results in equal 

time. 

 

3. Dynamic task scheduling using parallel genetic 

algorithms for heterogeneous distributed computing[75] 

The proposed algorithm uses multiple processors with 

centralized control for scheduling. Tasks are taken as batches 

and are scheduled to minimize the execution time and balance 

the loads of the processors. According to our experimental 

results, the proposed parallel genetic algorithm (PPGA) 

considerably decreases the scheduling time without adversely 

affecting the maxspan of the resulting schedules. 
The proposed parallel genetic algorithm involves a master 

scheduler, which has the processor lists and the task queue. 

The processors of the distributed system are heterogeneous. 

The available network resources between processors in the 

distributed system can vary over time. 

A scheduling algorithm has been developed to schedule 

heterogeneous tasks onto heterogeneous processors on a 

distributed environment. It provides near-optimal schedules 

and adapts to varying processing resources and 

communication costs. The algorithm uses a dedicated master 

scheduler for centralized scheduling. It uses slave processors 

(which are not dedicated to scheduling) to parallelize the GA 

and thereby speed up the result. Genetic Algorithms are 

powerful but usually suffer from longer scheduling time 

which is reduced in our algorithm due to 

the parallelization of the fitness evaluation, the most 

CPUintensive task. According to our simulation results, the 

proposed algorithm not only obtains similar performance as 

the original genetic algorithm, but also spends less time doing 

the scheduling. This feature also makes the proposed 

algorithm to be more scalable and extends its practicability. 

The proposed algorithm uses a straightforward encoding 

scheme and generates a randomized initial population. The 
fitness function uses the maxspan, the balance of load among 

the processors and the communication costs while evaluating 

the schedules. Stochastic sampling with partial replacement 

selection, an extension of the roulette wheel selection, is used 

to increase the possibility of survival of the fitter solutions. 

Cycle cross over preserves the characteristics of the parent 

chromosomes in the children there by leading to exploration 

of search space. Random swapping is done to prevent the GA 

to get struck in a local maximum. 

 

4. An Asynchronous Model of Global Parallel Genetic 

Algorithms[76] 

In this approach parallelization has been done through 

Multithreading. Reducing inter process communication is a 
key to getting high performance in parallel computing. That is 

the reason why the asynchronous model is used in this paper. 

In this there is the implementation of master-slave GA. The 

master creates random initial population, evaluates created 

individuals and starts the slaves. This is given in the following 

pseudo code. 

 

Master thread{ 

initialize population; 

evaluate population; 

for(i=1;i<NUMBER_OF_PROCESSORS;i++){ 

create new Slave thread; 

} 

} 

Slave thread{ 

while(termination criterion is not 

reached){ 

select three individuals; 

eliminate the worst individual of three 

selected; 

child=crossover(survived individuals); 

replace deleted individual with child; 

perform mutation with probability pm; 
evaluate new individual; 

} 

} 

 

Each slave performs whole evolution process in contrast of 

the traditional master-slave GA where the slaves only evaluate 

the fitness. This is a model of global GA, because each 

individual may compete and mate with any other. 

The presented model of global parallel genetic algorithm in 

this is suitable for implementation on a shared memory 

computer with several processors. The difference between 

traditional GPGA (master-slave GA) and the described GPGA 

is in tasks which master and slaves perform. In the traditional 

GPGA slaves only evaluate individuals, while the master 

distributes individuals among slaves for evaluation and the 

master performs all genetic operators. There are so many 

advantages of this approach like this algorithm is simple for 

implementation, the exclusivity is inherently implemented, all 

genetic operators and evaluation is parallelized, there is no 

need for any 

communication mechanism, it works without any 

synchronization, the execution time for a given number of 

iterations does not depend on the population size N for a 
constant number of iterations and speed-up factor is near the 

number of processors. 
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5. Parallel genetic algorithm optimization of die press[74] 

This paper presents an optimization based GA computed in a 

cluster of computers with application to problems in electrical 

engineering. Some basic steps and technologies used for 

implementing this approach, as well as its advantages and 

disadvantages are discussed in this research. The main goal is 

to show the merits of distributed  optimization and to 

determine its suitability in the area of numerical field analysis. 

Parallel GA optimization successfully determines the global 

optimum (as serial GA also does), but with at lower time cost 

depending on the number of workers and the complexity of 

the problem. An important issue is to balance the tasks 
between the workers in a way that the efficiency does not 

become undesirably low. 

The dis-cussed approach for parallel GA optimization can also 

be implemented and will be advantageous for more time-

consuming problems such as 3D models, or easily adapted to 

other inherently parallel optimization methods – for example, 

preparation of data sets for supervised neural networks 

training or for design of experiment method.  The DCT is 

flexible and easy to use. Moreover, as it is directly connected 

to MATLAB, one can use built-in or custom functions in a 

distributed environment. In combi-nation with GAs it gives 

the electrical engineer a powerful optimization tool that 

implements the advantages of GAs for solving complex 

problems in Electromagnetics. 

 

 

IV. N Queen’s Problem 

The n-queens problem is defined as placing of n nonattacking 

queens on an n x n chess board. This is a simplification of the 

problem of putting eight nonattacking queens on a board, 

which was initially proposed in 1848 by M. Bezzel, who is a 

German chess player, in the Berliner Schachzeitung [78][79] 

We can show in the following figure 
 

 
 

Figure 6: A solution of the 8-queens problem 

 

Applications of N Queen’s Problem 

There are several applications of N queen‟s problem such as 

we can use it in memory storage scheme for conflict free 

access for parallel memory systems [80], Deadlock Prevention 

[81], parallel memory storage schemes, VLSI testing, traffic 

control [82], neural networks and constraint satisfaction 

problems [83], image processing [84] and many more 

discussed in [78]. 

 

Implementtion of N Queen’s Problem 

Till now there are several approached have been proposed for 

n queen‟s problem discussed in [78]. As we are focused on 
Genetic Algorithm so now we are going to describe n queen‟s 

problem using GA. 

Another thing is that we considered 8 Queen‟s problem for 

practical implementation so here are we are going to describe 

sequential algorithm for this such as given in [85] 

1. Firstly generate a population „p‟ of strings with 'n' rows 

positions, row position generated at random for every 

column, representing a pattern of queens on the board. 

 

Such as for a board of size 8 x 8, '1 6  2 5 7 4 8 3 ‟ is a string 

of size '8' belonging to population 'P'. Create 'P' such strings. 

2. Now, we are having an initial population pi. 

3. Pick 2 strings x and y arbitrarily from pi and apply 

crossover to them. While randomly picking x & y note 

that the likely hood of x or y getting picked is directly 

proportional to the value of it's fitness. 

4. Now we apply crossover to x and y and produce one new 

string S. 

5. With a little probability apply mutation to string S 

otherwise leave it as it is. 

6. Apply steps 2 to 5 until a new population pn is generated 

with 'p' strings. pn acts as pi for the next iteration through 

steps 2 to 5. 
7. Repeat steps 2 to 6 until a solution string i.e. the string 

with maximum fitness value representing a correct board 

configuration is obtained. 

8. If a solution has not been found for a long time return a 

string with maximum fitness value amongst the generated 

strings. 

 

Assessment of fitness, purpose of mutation, utilization of 

single or multiple subpopulations (demes), method of 

individuals exchange, local or global application of selection 

are the several parameter needs to be considered at the time of 

doing parallelization using GA. 

In our parallel implementation for 8 queen‟s problem we have 

divided population in subpopulation into different activated 

cores as per choice. Genetic operations such as selection, 

crossover and mutation are performed by subpopulation on 

different cores or processors and best solutions are obtained 

and send to master core. And finally finest solution is obtained 

by master core. 

Major advantage of our work is that we followed simplest 

procedure for solving 8 queen‟s problem named as Master 

Slave modal using most familiar tool MATLAB and found 

significant speed up discussed in the next section. In our 
approach we mainly focused on the fastest processing with 

efficiently using of available compute resources. 
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V. Experimental Setup and Results Obtained 

This Section describes about the Experimental Setup 

developed to implement the proposed intelligent method. 

We have implemented 12 Experiments with three different 

computing environment and obtained significant speed up. 

 

Setup for First Experiment: 

Hardware Configuration: 

Processor: Intel(R) Core(TM) i7 -3770 CPU @340 GHz RAM 

(Random Access Memory) : 4 GB 

Hard Disk Drive: 320 GB 

Software Environment: 
System Type: 64 Bit operating System, x – 64- based 

processor. 

Development Tools: MATLAB, Intel Compiler 9.1, jdk – 6 – 

windows – i586 

Parallelization Scheme in MATLAB 

Multithreaded Parallelism and Explicit Parallelism 

Obtained Speed up(Average of four Experiments): 201% 

 

Setup for Second Experiment: 

Hardware Configuration: 

Processor: Intel Core i3 – 2350M Processor 2.30 GHz 
RAM (Random Access Memory) : 3 GB 

Hard Disk Drive: 320 GB 

Software Environment: 

System Type: 32 Bit operating System. 

Development Tools: MATLAB, Intel Compiler ,  jdk  - 6 -  

windows -  i586 

Parallelization Scheme in MATLAB [20] 

Multithreaded Parallelism and Explicit Parallelism 

Obtained Speed up (Average of four Experiments): 170% 

 

Setup for Third Experiment: 

Hardware Configuration: 
Processor: Intel Core 2 duo T 6400 CPU @2.00 GHz 

RAM (Random Access Memory) : 2 GB 

Hard Disk Drive: 250 GB 

Software Environment: 

System Type: 32 Bit operating System, x 64 based processor. 

Development Tools: MATLAB, Intel Compiler , jdk – 6 – 

windows – i586 

Parallelization Scheme in MATLAB [20] 

Multithreaded Parallelism and Explicit Parallelism 

Obtained Speed up(Average of four Experiments): 145% 

 

 

VI. Applications of Parallel Genetic Algorithm (PGA) in 

Medical Imaging [63-71] 

There has been several advantage of implementing Genetic 

Algorithm parallelly in Medical Imaging like Medical Image 

Registration, Segmentation of Medical Images and etc.  

Registration of Medical Images is having an important role in 

medical image analysis. There have been numerous voxel 

based approaches have been proposed till now and these are 

mathematically almost all of them are connected with 

optimization problems that are extremely non-linear and non-

convex. Parallel GA implementing in Mutual Information 
based image registration shows robust registration with high 

speedup. This technique is readily applicable for other voxel-

based registration methods. PGA is also used for performance 

improvement and refining the result to segment the lateral 

ventricles from MR brain images. It overcome the numerical 

instability and is capable of generating an accurate and robust 

anatomic descriptor for complex objects in the human brain, 

such as the lateral ventricles. 

 

 

VII. Discussion and Conclusion 

This paper presented some important research work done on 

parallel genetic algorithm. This research shows significant 

contribution of parallel computing in Genetic Algorithm. 
Firstly this paper gave the brief introduction and fundamentals 

of Genetic Algorithm, Parallel computing, GPU and CUDA. 

After that, In this paper there is the classification of the 

different techniques of parallel genetic algorithm like master-

slave modal, fine-grained model, multiple-deme model, island 

model , hybrid coarse grained model, dual species model 

defined by different researchers. We reviewed numerous 

research papers implementing parallel genetic algorithm. 

Some of them are analyzed in this work with those important 

steps. We also developed a parallel approach to solve n 

queen‟s problem based on master slave modal, which 

produced significant result. Then, we presented its 

applications in medical imaging. We found that there has been 

done lots of research on parallel genetic algorithm till now 

and many more is going on. And lots of work has to be done 

in the area of medical imaging. As a point of view of its future 

scope, it is having a great scope in the field of medical 

imaging to analyze medical data sets and to optimize different 

important techniques. 
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