
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37707

Parallel Computing in Genetic Algorithm (GA) with The Parallel Solution of

n Queen’s Problem Based on GA in Multicore Architecture

Sanjay Saxena

PhD Scholar, School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi
ssaxena.rs.bme11@itbhu.ac.in

Dr. Neeraj Sharma

Associate Professor, School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi

neeraj.bme@itbhu.ac.in

Dr. Shiru Sharma

Assistant Professor, School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi

shiru.bme@itbhu.ac.in

Abstract

Genetic algorithm (GA) is a commanding stochastic

optimization technique, which mimics the progression in the

living nature with the aim to solve practical problems. It has

been successfully applied to solve the several techniques like

problem of scheduling, optimization, feature extraction etc.

Effective execution of high performance computing or parallel

processing makes this technique more valuable. Parallel

implementation is very advantageous for the different time

consuming process steps of GA. Till now, there have been

proposed numerous approach of parallel implementation of

genetic algorithm and plenty of research is going on. Main
objective of this paper is to summarize existing techniques of

parallel accomplishment of GA with the brief introduction of

parallel computing and its tools and techniques and to

demonstrate significant contribution of parallel computing in

GA. This paper also proposed a parallel solution of n queen‟s

problem with significant speedup using GA on easily

available multi core architecture. Another main purpose of

this paper is to describe the application of parallel GA in

medical imaging.

Keywords: Parallel Computing, Genetic Algorithm (GA), n

Queen‟s Problem, Image Processing, Medical Imaging, High

Performance Computing.

I. Introduction

High speed computing plays a very essential role in today‟s

era. Parallel computing is a gifted approach to meet the

increased requirement for high speed computing [1-6] as it

provides concurrency and efficient exploitation of non local

resources. GA is very computationally expensive [7] and very

time consuming [1] so it is very advantageous to implement

parallel computing in this for fast and prominent results [1-5].
Parallel Implementation of GA is very valuable as GA is used

in several algorithms like pattern classification, feature

extraction [72] and optimization techniques etc. There have

been various algorithms developed of parallel implementation

of this technique using CPU and GPUs. Main motive of this

paper is to provide the efficient description of existing

techniques of GA & providing the brief concepts of parallel

computing and its applications in medical imaging. In this

paper we also tried to show the parallel implantation of n

queen‟s problem using GA on easily available multicore

architecture or environment with significant speed up.

Structure of the paper is as follows:

Next section II gives the brief introduction of genetic

algorithm, parallel computing and its concepts. Section III

consist broad classification of parallel GA and important

contribution given by different researcher in parallel GA.

Section IV describes n queen‟s problem based on GA and its

parallel implementation. Experimental set up and results are

given in section V. Relevance of parallel GA in the field of
medical imaging is described in section VI. Discussion and

Conclusion are discussed in section VII.

II. Brief Concepts

A. Genetic Algorithm(GA)

A genetic algorithm is a search technique used in computing

to find true or estimated solutions for mostly optimization and

search problems. It was introduced by John H. Holland in

1975. It is a stochastic optimization algorithm that is basically

builds on principles of natural selection and recombination.

GA initialize the initial population randomly and calculate the

fitness for each individual then select parent, do crossover

mutation operation, calculate fitness for each new individual,

finally select the next generation and repeat this process until

a termination criteria or up to predefined number of

generations [9]. It maximizes the fitness of individuals by

employing operations inspired by the theory of evolution.

In common terms, a GA consists of four parts [10].

1. Generate an initial population.

2. Select pair of individuals based on the fitness function.

3. Produce next generation from the selected pairs by
applying pre-selected genetic operators.

4. If the termination condition is satisfied stop, else go to

step

The termination condition can be either:

1. No improvement in the solution after a certain number of

generations.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37708

2. The solution converges to a pre-determined threshold.

Basic flow chart is given below [11 – 21][28].

Figure 1: Basic Structure of GA

A practical disadvantage of the genetic algorithm involves

longer running time on the computer to execute

[28,29,74,75,76]. So parallel computing plays a very vital role

in this. It can provide the efficient and fast possible solution of

this short come of GA. Now we are going to discuss about

parallel computing, key features, tools, techniques and its

important concepts.

B. Parallel Computing

It is a type of computing in which several calculations are

carried out concomitantly, it is having the principle that a

large problem or a composite problem can be separated into

smaller one [23]. It can be implemented in many ways of
parallel computing environment as a cluster of computers that

contains multiple PCs combined together with a elevated

speed network, a shared memory multiprocessor by

connecting multiple processors to a single memory system, a

Chip Multi-Processor (CMP) contains multiple processors

(called cores) on a single chip [23].

Very firstly Amdahl framed the concept of parallel computing

According to Amdahl‟s law “if r be the fraction of work done

sequentially, so (1-r) is fraction parallelizable” [21].

If number of processors are P

Speedup = Time (1)/Time(P)

 = 1/(r+ (1-r)/P)

 = 1/r (1)

Speed up is the important factor or measuring parameter of

parallel computing which measure how the fast is our parallel

implementation.

Key Concepts or Fundamentals of Parallel Computing:

Important fundamentals of parallel computing includes

Granularity:

We can define it as the numeral of basic units. It can be coarse

grained (Few Tasks of more powerful computing) and Fine

Grain (Large Number of Small parts and less powerful

computing). Apart from this we can defined parallel

processing as two type First is Explicit in which algorithms

includes instructions to specify which processes are built and

executed in parallel way and Second is Implicit in which

compiler has the task of inserting the necessary instructions to

run the program on a parallel computer. Synchronization is

also necessary for making an algorithm from sequential to

parallel as it prevents from the overlapping of two or more
processors. One more thing is Latency it is defined as the time

conversion of information from request to accept. If we talk

about scalability than It is defined as the capability of an

algorithm to preserve its effectiveness by escalating the

number of processors and the size of the problem in the same

percentage. Now a day, GPUs and CUDA are having

significant roles in high performance computing [21-27].

C. GPU (Graphical Processing Unit) [29-37][62][63][64]:

A GPU is an assorted chip multi-processor which is specially

tuned for graphics. It contains a large amount of dedicated

ALUs then CPUs. GPUs also contain extensive support of

Stream Processing paradigm. It is related to SIMD (Single

Instruction Multiple Data) processing. Each processing unit

on GPU contains local memory that improves data

manipulation and reduces fetch time.

D. CUDA (Computed Unified Device Architecture) [37 -

44]

It is a set of developing tools to create applications that will

perform execution on GPU (Graphics Processing Unit). It is

very necessary as it provides ability to use high-level

languages such as C with future support of C++ to develop
application that can take advantage of high level of

performance and scalability that GPUs architecture offer.

Compiled code will run directly on GPU. CUDA was

developed by NVidia and as such can only run on NVidia

GPUs of G8x series and up. Firstly it was released on

February 15, 2007 for PC and Beta version for MacOS X on

August 19, 2008.

It is having following tools

1. The nvcc C compiler.

2. CUDA FFT (Fast Fourier Transform) and BLAS (Basic

Linear Algebra Subprograms for linear algebra) libraries

for the GPU.

3. Profiler.

4. An alpha version of the gdb debugger for the GPU.

5. CUDA runtime driver.

6. CUDA programming manual.

It is having several applications in high performance

computing like Seismic Database - 66x to 100x speedup given

in [47], Molecular Dynamics - 21x to 100x speedup defined in

[48] MRI processing - 245x to 415x speedup in [49]

Atmospheric Cloud Simulation - 50x speedup given in

[50].Apart from this there are some more tools and techniques
are available for implementing parallel processing such as

Open CV, Open CL , Parallel Computing Toolbox of

Start

Initialization

Evaluation

Selection

Crossover

Mutation

Meet Stopping Criteria

End

No

Yes

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37709

MATLAB, Multithreading of Java and many more with their

benefits and limitations discussed in [77].

III. Broad Classification of Parallel GA and Existing

Literatures based on Parallel GA

There are different ways of exploiting parallelism in GAs

given by different researchers: master- slave models, fine-

grained models, island models, and hybrid models, Coarse-

grained Model, Dual Species Model. Brief description of this

implementation is given below.

A. Master Slave Models[1][51-53][59]

Basic model of the master slave modal is given in the

following figure. In this approach like simple GA, there is a

panmictic population, but the evaluation of fitness is

distributed among several worker processors. It is also known

as global parallel GA as in this type of parallel GA, selection

and crossover considers the entire population.

Figure 2: Master Slave Modal

B. Multiple-Deme Parallel Gas [54 - 56]

It is also known as multiple populations Genetic Algorithm. It

consists on several subpopulations (demes) which exchange

individuals occasionally. It is controlled by numerous

parameters. It is very famous but difficult to understand

because the effects of migration are not fully understood. It

introduces the basic changes in the operation of the GA and it

is having different behavior than simple GAs. Since the

computation to communication ratio is usually high, they are

occasionally called coarse-grained GAs [59].Basic

architecture is shown in the following figure.

Figure 3: Multiple-deme parallel GA [6]

C. Fine-Grained Models[57][59]

This type of approach is suited for massively parallel

computers and consists of one spatially-structured population.

In this model Selection and mating are restricted to a little

neighborhood, but neighborhoods overlap permitting some

interaction among all the individuals. The ideal case is to have

only one individual for every processing element available.

D. Island Models[58]

It is having several subpopulations that exchange individuals

occasionally this exchange is called migration and it is

controlled by numerous parameters like frequency of

migration, number and destination of migrants, and the

selection method for choosing the migrants.

E. Hybrid Model[51 - 60]

It consists of the combination of Parallel Genetic Algorithm

with other optimization technique.

F. Coarse-grained Model[1][59]

It divides the population into subpopulations which can be

computed on separate processors. The subpopulations then

have an amount of migration between them.

G. Dual Species Model[1][60]

As show in the following figure this modal generates a

population which is further divided in to two sections

Operations on the subpopulation 1(p1) and subpopulation

2(p2) are made with different parameters for the crossover and

mutation. In p1, an individual is crossed more frequently with
similar individuals, than with individual with fewer

similarities. p1 mutate with the general mutation operator. In

p2, individuals with fewer similarities are crossed at a higher

rate and mutate with a greater mutation operator, than in p1

[1].

Master

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37710

Figure 4: Flow chart of Dual species parallel GA[1][60]

H. Hierarchical Parallel GA

When two or more parallel GA is implemented concurrently

than it is said to be Hierarchical Parallel GA [59].

Now we are going to give some of the important contribution

by different researcher in the field of parallel genetic

algorithm. Apart from these there are so many other worked

has been done in this field.

1. Multiprocessor Scheduling Using Parallel Genetic

Algorithm [28]

In this research authors worked on the steps of Fitness

Evaluation of GA as it is the most time consuming GA

operation for the CPU time, which affect the GA performance.

The implemented synchronous master-slave algorithm

outperforms the sequential algorithm in case of complex and

high number of generations‟ problem.

Following is the flow chart of the proposed system [28].

Figure 5: Proposed approach Flow Diagram [28]

The proposed parallel genetic algorithm is based on the

sequential algorithm on [61] and uses synchronous master-

slave GAs parallelization. The master-slave GAs

parallelization never affects the behavior of the algorithm, so

there is no need for huge modifications and it has the full

advantage of searching the whole of search space. According
to the obtained results, the proposed parallel algorithm

outperforms the sequential algorithm in case of complex and

high number of generation problems. In smaller problems, it is

not preferred to use the parallel algorithms.

2. Parallel Genetic Algorithm on the CUDA Architecture

[29]

This paper describes the mapping of the parallel island based

GA with unidirectional ring migrations to NVidia CUDA

software model.

In this authors had chosen CUDA (Compute Unified Device

Architecture)framework to implement GA on GPU. Their

main aim concern during designing GA accelerated by GPU is

to create its efficient mapping to CUDA software model with

a special focus on massive parallelism, usage of shared

memory within multiprocessors and avoiding the system bus

bottleneck. They assumed an island based GA with the

migration along an unidirectional ring. Every individual is

controlled by a single CUDA thread. The local populations

are stored in shared on-chip memory on particular GPU

multiprocessors (CUDA blocks). This ensures both

computationally intensive execution and massive parallelism

needed for GPU to reach its full potential. Their

Start

Initialize Population

Evaluate Fitness

Selection

Crossover

 Evaluation Evaluation

Stoppin

g Crit..

End

Mutation

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37711

implementation also utilizes a uniform and Gaussian fast

random number generators described in [2]. The proposed

algorithm begins with the input population initialization on

the CPU side. Then, chromosomes and GA parameters are

transferred to the GPU main memory using the system bus.

Next, the CUDA kernel performing genetic algorithm on GPU

is launched. Depending on kernel parameters, the input

population is distributed to several blocks (islands) of threads

(individuals). All threads on each island read their

chromosomes from the main memory to the fast shared (on-

chip) memory within a multiprocessor. The process of

evolution then proceeds for a certain number of generations in
isolation, whereas, the islands as well as individuals are

evolved on the graphics card in parallel. Each generation

consists of fitness function evaluation and application of the

selection, crossover and mutation. In order to mix up suitable

genetic material from isolated islands, the migration is

employed.

As a result Speedups up to seven thousand times higher

clearly show that GPUs have proven their abilities for

acceleration of genetic algorithms during optimization of

simple numerical functions. The results also show that the

proposed GPU implementation of GA can provide better

results in the shorter time or produce better results in equal

time.

3. Dynamic task scheduling using parallel genetic

algorithms for heterogeneous distributed computing[75]

The proposed algorithm uses multiple processors with

centralized control for scheduling. Tasks are taken as batches

and are scheduled to minimize the execution time and balance

the loads of the processors. According to our experimental

results, the proposed parallel genetic algorithm (PPGA)

considerably decreases the scheduling time without adversely

affecting the maxspan of the resulting schedules.
The proposed parallel genetic algorithm involves a master

scheduler, which has the processor lists and the task queue.

The processors of the distributed system are heterogeneous.

The available network resources between processors in the

distributed system can vary over time.

A scheduling algorithm has been developed to schedule

heterogeneous tasks onto heterogeneous processors on a

distributed environment. It provides near-optimal schedules

and adapts to varying processing resources and

communication costs. The algorithm uses a dedicated master

scheduler for centralized scheduling. It uses slave processors

(which are not dedicated to scheduling) to parallelize the GA

and thereby speed up the result. Genetic Algorithms are

powerful but usually suffer from longer scheduling time

which is reduced in our algorithm due to

the parallelization of the fitness evaluation, the most

CPUintensive task. According to our simulation results, the

proposed algorithm not only obtains similar performance as

the original genetic algorithm, but also spends less time doing

the scheduling. This feature also makes the proposed

algorithm to be more scalable and extends its practicability.

The proposed algorithm uses a straightforward encoding

scheme and generates a randomized initial population. The
fitness function uses the maxspan, the balance of load among

the processors and the communication costs while evaluating

the schedules. Stochastic sampling with partial replacement

selection, an extension of the roulette wheel selection, is used

to increase the possibility of survival of the fitter solutions.

Cycle cross over preserves the characteristics of the parent

chromosomes in the children there by leading to exploration

of search space. Random swapping is done to prevent the GA

to get struck in a local maximum.

4. An Asynchronous Model of Global Parallel Genetic

Algorithms[76]

In this approach parallelization has been done through

Multithreading. Reducing inter process communication is a
key to getting high performance in parallel computing. That is

the reason why the asynchronous model is used in this paper.

In this there is the implementation of master-slave GA. The

master creates random initial population, evaluates created

individuals and starts the slaves. This is given in the following

pseudo code.

Master thread{

initialize population;

evaluate population;

for(i=1;i<NUMBER_OF_PROCESSORS;i++){

create new Slave thread;

}

}

Slave thread{

while(termination criterion is not

reached){

select three individuals;

eliminate the worst individual of three

selected;

child=crossover(survived individuals);

replace deleted individual with child;

perform mutation with probability pm;
evaluate new individual;

}

}

Each slave performs whole evolution process in contrast of

the traditional master-slave GA where the slaves only evaluate

the fitness. This is a model of global GA, because each

individual may compete and mate with any other.

The presented model of global parallel genetic algorithm in

this is suitable for implementation on a shared memory

computer with several processors. The difference between

traditional GPGA (master-slave GA) and the described GPGA

is in tasks which master and slaves perform. In the traditional

GPGA slaves only evaluate individuals, while the master

distributes individuals among slaves for evaluation and the

master performs all genetic operators. There are so many

advantages of this approach like this algorithm is simple for

implementation, the exclusivity is inherently implemented, all

genetic operators and evaluation is parallelized, there is no

need for any

communication mechanism, it works without any

synchronization, the execution time for a given number of

iterations does not depend on the population size N for a
constant number of iterations and speed-up factor is near the

number of processors.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37712

5. Parallel genetic algorithm optimization of die press[74]

This paper presents an optimization based GA computed in a

cluster of computers with application to problems in electrical

engineering. Some basic steps and technologies used for

implementing this approach, as well as its advantages and

disadvantages are discussed in this research. The main goal is

to show the merits of distributed optimization and to

determine its suitability in the area of numerical field analysis.

Parallel GA optimization successfully determines the global

optimum (as serial GA also does), but with at lower time cost

depending on the number of workers and the complexity of

the problem. An important issue is to balance the tasks
between the workers in a way that the efficiency does not

become undesirably low.

The dis-cussed approach for parallel GA optimization can also

be implemented and will be advantageous for more time-

consuming problems such as 3D models, or easily adapted to

other inherently parallel optimization methods – for example,

preparation of data sets for supervised neural networks

training or for design of experiment method. The DCT is

flexible and easy to use. Moreover, as it is directly connected

to MATLAB, one can use built-in or custom functions in a

distributed environment. In combi-nation with GAs it gives

the electrical engineer a powerful optimization tool that

implements the advantages of GAs for solving complex

problems in Electromagnetics.

IV. N Queen’s Problem

The n-queens problem is defined as placing of n nonattacking

queens on an n x n chess board. This is a simplification of the

problem of putting eight nonattacking queens on a board,

which was initially proposed in 1848 by M. Bezzel, who is a

German chess player, in the Berliner Schachzeitung [78][79]

We can show in the following figure

Figure 6: A solution of the 8-queens problem

Applications of N Queen’s Problem

There are several applications of N queen‟s problem such as

we can use it in memory storage scheme for conflict free

access for parallel memory systems [80], Deadlock Prevention

[81], parallel memory storage schemes, VLSI testing, traffic

control [82], neural networks and constraint satisfaction

problems [83], image processing [84] and many more

discussed in [78].

Implementtion of N Queen’s Problem

Till now there are several approached have been proposed for

n queen‟s problem discussed in [78]. As we are focused on
Genetic Algorithm so now we are going to describe n queen‟s

problem using GA.

Another thing is that we considered 8 Queen‟s problem for

practical implementation so here are we are going to describe

sequential algorithm for this such as given in [85]

1. Firstly generate a population „p‟ of strings with 'n' rows

positions, row position generated at random for every

column, representing a pattern of queens on the board.

Such as for a board of size 8 x 8, '1 6 2 5 7 4 8 3 ‟ is a string

of size '8' belonging to population 'P'. Create 'P' such strings.

2. Now, we are having an initial population pi.

3. Pick 2 strings x and y arbitrarily from pi and apply

crossover to them. While randomly picking x & y note

that the likely hood of x or y getting picked is directly

proportional to the value of it's fitness.

4. Now we apply crossover to x and y and produce one new

string S.

5. With a little probability apply mutation to string S

otherwise leave it as it is.

6. Apply steps 2 to 5 until a new population pn is generated

with 'p' strings. pn acts as pi for the next iteration through

steps 2 to 5.
7. Repeat steps 2 to 6 until a solution string i.e. the string

with maximum fitness value representing a correct board

configuration is obtained.

8. If a solution has not been found for a long time return a

string with maximum fitness value amongst the generated

strings.

Assessment of fitness, purpose of mutation, utilization of

single or multiple subpopulations (demes), method of

individuals exchange, local or global application of selection

are the several parameter needs to be considered at the time of

doing parallelization using GA.

In our parallel implementation for 8 queen‟s problem we have

divided population in subpopulation into different activated

cores as per choice. Genetic operations such as selection,

crossover and mutation are performed by subpopulation on

different cores or processors and best solutions are obtained

and send to master core. And finally finest solution is obtained

by master core.

Major advantage of our work is that we followed simplest

procedure for solving 8 queen‟s problem named as Master

Slave modal using most familiar tool MATLAB and found

significant speed up discussed in the next section. In our
approach we mainly focused on the fastest processing with

efficiently using of available compute resources.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37713

V. Experimental Setup and Results Obtained

This Section describes about the Experimental Setup

developed to implement the proposed intelligent method.

We have implemented 12 Experiments with three different

computing environment and obtained significant speed up.

Setup for First Experiment:

Hardware Configuration:

Processor: Intel(R) Core(TM) i7 -3770 CPU @340 GHz RAM

(Random Access Memory) : 4 GB

Hard Disk Drive: 320 GB

Software Environment:
System Type: 64 Bit operating System, x – 64- based

processor.

Development Tools: MATLAB, Intel Compiler 9.1, jdk – 6 –

windows – i586

Parallelization Scheme in MATLAB

Multithreaded Parallelism and Explicit Parallelism

Obtained Speed up(Average of four Experiments): 201%

Setup for Second Experiment:

Hardware Configuration:

Processor: Intel Core i3 – 2350M Processor 2.30 GHz
RAM (Random Access Memory) : 3 GB

Hard Disk Drive: 320 GB

Software Environment:

System Type: 32 Bit operating System.

Development Tools: MATLAB, Intel Compiler , jdk - 6 -

windows - i586

Parallelization Scheme in MATLAB [20]

Multithreaded Parallelism and Explicit Parallelism

Obtained Speed up (Average of four Experiments): 170%

Setup for Third Experiment:

Hardware Configuration:
Processor: Intel Core 2 duo T 6400 CPU @2.00 GHz

RAM (Random Access Memory) : 2 GB

Hard Disk Drive: 250 GB

Software Environment:

System Type: 32 Bit operating System, x 64 based processor.

Development Tools: MATLAB, Intel Compiler , jdk – 6 –

windows – i586

Parallelization Scheme in MATLAB [20]

Multithreaded Parallelism and Explicit Parallelism

Obtained Speed up(Average of four Experiments): 145%

VI. Applications of Parallel Genetic Algorithm (PGA) in

Medical Imaging [63-71]

There has been several advantage of implementing Genetic

Algorithm parallelly in Medical Imaging like Medical Image

Registration, Segmentation of Medical Images and etc.

Registration of Medical Images is having an important role in

medical image analysis. There have been numerous voxel

based approaches have been proposed till now and these are

mathematically almost all of them are connected with

optimization problems that are extremely non-linear and non-

convex. Parallel GA implementing in Mutual Information
based image registration shows robust registration with high

speedup. This technique is readily applicable for other voxel-

based registration methods. PGA is also used for performance

improvement and refining the result to segment the lateral

ventricles from MR brain images. It overcome the numerical

instability and is capable of generating an accurate and robust

anatomic descriptor for complex objects in the human brain,

such as the lateral ventricles.

VII. Discussion and Conclusion

This paper presented some important research work done on

parallel genetic algorithm. This research shows significant

contribution of parallel computing in Genetic Algorithm.
Firstly this paper gave the brief introduction and fundamentals

of Genetic Algorithm, Parallel computing, GPU and CUDA.

After that, In this paper there is the classification of the

different techniques of parallel genetic algorithm like master-

slave modal, fine-grained model, multiple-deme model, island

model , hybrid coarse grained model, dual species model

defined by different researchers. We reviewed numerous

research papers implementing parallel genetic algorithm.

Some of them are analyzed in this work with those important

steps. We also developed a parallel approach to solve n

queen‟s problem based on master slave modal, which

produced significant result. Then, we presented its

applications in medical imaging. We found that there has been

done lots of research on parallel genetic algorithm till now

and many more is going on. And lots of work has to be done

in the area of medical imaging. As a point of view of its future

scope, it is having a great scope in the field of medical

imaging to analyze medical data sets and to optimize different

important techniques.

References

[1] A. Hassani and J. Treijis “Overview of standard and

parallel genetic algorithms”, in Proc. IDT Workshop

on Interesting Results in Computer Science and

Engineering (IRCSE '09) , Mälardalen University,

Sweden, October 30, 2009.

[2] E. Alba, J.M. Troya, A survey of parallel distributed

genetic algorithms, Complexity 4 (4) pp. 31–52,

1999.

[3] Qizhi Yu, Chongcheng Chen, and Zhigeng Pan,

“Parallel Genetic Algorithms on Programmable

Graphics Hardware”, John Willey & Sons. vol. 4,
1999.

[4] S. Kajan, I. Sekaj and M. Oravec , “The Use of

MATLAB Parallel Computing Toolbox For Genetic

Algorithm-Based Mimo Controller Design” , 17th

International Conference on Process Control , June

9–12, 2009.

[5] Edwin S . H . Hou, Ninvan Ansari, , and Hong Ren,

“A Genetic Algorithm for Multiprocessor

Scheduling” , in IEEE Transactions on Parallel and

Distributed Systems. vol. 5, no. 2, Feb 1994.

[6] Nourah Al-Angari, Abdullatif Abdullatif,

“Multiprocessor Scheduling Using Parallel Genetic

Algorithm” , Fuzzy Sets, Information and Control,

pp. 338-353, 1965.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37714

[7] John P. Cartlidge, “An Analysis of Evolutionary

Computation used in Image Processing Techniques ”

BSc Artificial Intelligence and Mathematics 1999-

2000.

[8] Mariusz Nowostawski, and Riccardo Poli, “Parallel

Genetic Algorithm Taxonomy”, KES, MAY 13,

1999.

[9] C.B. Pettey, M.R. Leuze and J.J. Grefenstette; “A

parallel genetic algorithm”, in Proceedings of the

second International Conference on Genetic

Algorithms and their application (ICGA), John J.

Greffenstette (Ed.), Lawrence Erlbaum Associates
Publishers, 1987.

[10] Zdenˇek, Konfrˇst, “Parallel Genetic Algorithms:

Advances, Computing Trends, Applications and

Perspectives”, 18th International Parallel and

Distributed Processing, 2004.

[11] M.S.Shyu, and J.J.Leou,“A genetic algorithm

approach to color image enhancement”, Volume 31,

Issue 7, pp. 871–880, July 1998.

[12] Dr. R.K Bhattacharjya, “Introduction To Genetic

Algorithms”, IIT Guwahati, pp.12, 2012.

[13] S.K. Pal, and D. Bhandari, and M. K. Kundu ,

“Genetic algorithms for optimal image enhancement”

, Pattern Recognition Letters , pp.261-271, March

1994.

[14] Chun-Hung, L., and Ja-Ling, W., “Automatic Facial

Feature Extraction by Genetic Algorithms” in IEEE

Transactions on Image Processing, Vol. 8, No. 6,

June 1999, pp. 834-845, June 1999.

[15] De Jong, K.A. , “Genetic algorithms: A 10 year

perspective”. In Grefenstette , pp. 169-177, 1985.

[16] Filippidis, A., Jain, L.C., and Martin, N.M. , “Using

Genetic Algorithms and Neural Networks for

Surface Land Mine Detection” in IEEE Transactions
on Signal Processing, Vol. 47, No. 1, pp. 176-186,

January 1999.

[17] Fogel, D.B., and Atmar, W., “Comparing genetic

operators with Gaussian mutations in simulated

evolutionary processes using linear systems”.

Biological Cybernetics, vol. 63, pp. 111- 114, 1990.

[18] Goldberg, D.E , “Genetic Algorithms in Search,

optimization and Machine Learning” Reading, Mass.

Wokingham: Addison-Wesley.

[19] Haataja, J. , “Using Genetic Algorithms for

Optimization: technology transfer in action” In

Miettinen et al. pp. 3-22, 1999.

[20] R.K. Mohanta, and B. Sethi, “A Review of Genetic

Algorithm application for Image Segmentation”,

J.Computer Technology & Applications, vol 3 (2),

pp.720-723.

[21] Sanjay Saxena, Shiru Sharma, Neeraj Sharma,

“Parallel Computation of Mutual Information in

Multicore Environment and Its Applications in

Medical Imaging ” IEEE International Conference on

Medical Imaging, m Health & Emerging

Communications System, Noida, India 2014.
[22] Qizhi Yu, Chongcheng Chen, and Zhigeng Pan,

“Parallel Genetic Algorithms on Programmable

Graphics Hardware” LNCS 3612, pp. 1051–1059,

2005.

[23] R. T. Rasúa, “Algoritmos paralelos para la solución

deproblemas de optimización discretos aplicados a

ladecodificación de señales,” Ph.D. dissertation,

Departamento de Sistemas Informáticos y

Computación. Universidad Politécnica de Valencia,

Valencia, España, 2009.

[24] Sanjay Saxena, Shiru Sharma, Neeraj Sharma ,

“Image Registration Techniques Using Parallel

Computing in Multicore Environment and Its

Applications in Medical Imaging” IEEE International
Conference on Computer and Communication

Technology, ICCCT MNNIT (Moti Lal Nehru

National Institute of Technology), Allahabad, 2014.

[25] Sanjay Saxena, Neeraj Sharma, Shiru Sharma,

“Image Processing Tasks Using Parallel Computing

in Multicore Architecture & its application in

medical imaging” in International Journal of

Advanced Research in Computer and

Communication Engineering(IJARCCE), Vol. 2,

Issue 4, April 2013.

[26] Sanjay Saxena, Neeraj Sharma, Shiru Sharma,

“Region wise processing of an image using

multithreading in multi core environment & its

application in medical imaging” in International

Journal of Computer Engineering and Technology

(IJCET), Volume 4, Issue 4, July - August 2013.

[27] Sanjay Saxena, Neeraj Sharma, Shiru Sharma, “An

Intelligent System for Segmenting an Abdominal

Image in Multicore Architecture ”, in IEEE,

International Conference and Expo on Emerging

Technologies for a smarter world at New York,

USA, Held in New York, United States of America,

2013.
[28] Nourah Al-Angari, Abdullatif Abdullatif,

“Multiprocessor Scheduling Using Parallel Genetic

Algorithm”.

[29] Petr Pospichal, Jiri Jaros, and Josef Schwarz,

“Parallel Genetic Algorithm on the CUDA

Architecture” Evo Applications , Part I, LNCS 6024,

pp. 442–451, 2010

[30] „„NVIDIA‟s Next Generation CUDA Compute

Architecture: Fermi,‟‟ Nvidia, 2009.

[31] V.W. Lee et al., „„Debunking the 100x GPU vs. CPU

Myth: An Evaluation of Throughput Computing on

CPU and GPU ‟‟ Proc. 37th Ann. Int‟l Symp.

Computer Architecture , ACM, pp. 451-460, 2010.

[32] R. Kumar, D.M. Tullsen, and N.P. Jouppi, „„Core

Architecture Optimization for Heterogeneous Chip

Multiprocessor,‟‟ Proc. 15th Int‟l Conf. Parallel

Architecture and Compilation Techniques , ACM,

pp. 23-32, 2006.

[33] J.D. Owens et al., „„A Survey of General Purpose

Computation on Graphics Hardware‟‟ Computer

Graphics Forum, vol. 26, no. 1, pp. 80-113, 2007.

[34] C. Kolb and M. Pharr, „„Options Pricing on the GPU

‟‟ GPU Gems 2, M. Pharr and R. Fernando, eds.,
Addison-Wesley, chapter 45, 2005.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37715

[35] G. Wang et al., „„Program Optimization of Array-

Intensive SPEC2K Benchmarks on Multithreaded

GPU Using CUDA and Brook+‟‟ Proc. 15th Int‟l

Conf. Parallel and Distributed Systems, IEEE CS, pp.

292-299, 2009.

[36] G. Shi, S. Gottlieb, and V. Kindratenko, “MILC on

GPUs”, tech. report, NCSA, Univ. Illinois, Jan. 2010.

[37] J. Walters et al., „„Evaluating the Useof GPUs in

Liver Image Segmentation and HMMER Database

Searches‟‟ Proc. IEEE Int‟l Symp. Parallel &

Distributed Processing, IEEE CS, 2009.

[38] G. Ruetsch and M. Fatica, „„A CUDA Fortran
Implementation of BWAVES‟‟ http://www.

pgroup.com/lit/articles/nvidia_paper_ bwaves.pdf.

[39] W.M. Hwu et al., „„Performance Insights on

Executing Nongraphics Applications on CUDA on

the NVIDIA GeForce 8800 GTX ‟‟ Hot Chips 19,

2007. http://www.hotchips. org/archives/hc19.

[40] NVIDIA: NVIDIA CUDA Programming Guide,

http://developer.download.nvidia.com/

compute/cuda/2_0/docs/.

[41] “CUDA, Supercomputing for the Masses” by Rob

Farber. http://www.ddj.com/architect/207200659

[42] “CUDA, Wikipedia”.

http://en.wikipedia.org/wiki/CUDA

[43] “Cuda for developers, Nvidia.

http://www.nvidia.com/object/cuda_home.html#.

[44] “Download CUDA manual and binaries”

http://www.nvidia.com/object/cuda_get.html

[45] “NVIDIA, C.: Compute Unified Device Architecture

Programming Guide. NVIDIA” Santa Clara, CA

2007.

[46] Rob Farber, "CUDA, Supercomputing for the

Masses: Part 4", Dr.Dobbs,

http:http://www.ddj.com/architect/208401741?pgno=
3//www.ddj.com/hpc-high-performance-

computing/207402986.

[47] Article from http://www.headwave.com

[48] Article from http://www.ks.uiuc.edu/Research/vmd

[49] Article from http://bic-test.beckman.uiuc.edu

[50] Article from

http://www.cs.clemson.edu/~jesteel/clouds.html

[51] ABRAMSON D., ABELA J., “ A parallel genetic

algorithm for solving the school timetabling

problem” , In Proceedings of the Fifteenth Australian

Computer Science Conference , ACSC 15, vol. 14, p.

1–11, 1992.

[52] HAUSER R., MÄNNER R., “Implementation of

standard genetic algorithm on MIMD machines” . In

DAVIDOR Y., SCHWEFEL H.-P., MÄNNER R.,

Eds., Parallel Problem Solving fron Nature, PPSN

III, p. 504–513, Springer-Verlag (Berlin), 1994.

[53] FOGARTY T. C., HUANG R., “Implementing the

genetic Algorithm on Transputer Based Parallel

Processing Systems” . Parallel Problem Solving from

Nature, p. 145–149, 1991.

[54] GROSSO P. B., “Computer simulations of genetic

adaptation : Parallel subcomponent interaction in a
multilocus model”. Unpublished doctoral

dissertation, The University of Michigan, 1985.

[55] PETTEY C. B., LEUZE M. R., GREFENSTETTE J.

J., “A parallel genetic algorithm” . In

GREFENSTETTE J. J., Ed., Proceedings of the

Second International Conference on Genetic

Algorithms, p. 155–161, Lawrence Erlbaum

Associates (Hillsdale, NJ), 1987.

[56] TANESE R., “Parallel genetic algorithm for a

hypercube”. In GREFENSTETTE J. J., Ed.,

Proceedings of the Second International Conference

on Genetic Algorithms, p. 177–183, Lawrence

Erlbaum Associates (Hillsdale, NJ), 1987.

[57] E. Cant_u-Paz. “A survey of parallel genetic
algorithms”. Calculateurs Paralleles, Reseaux Et

Systems Repartis, 10, 1998.

[58] Riccardo Gismondi, “Parallel Genetic Algorithm for

the Calibration of Financial Modals” in HPCFal.

[59] Erick Cantú-Paz, “A Survey of Parallel Genetic

Algorithms”. Om

[60] Li and M. Li. “Genetic algorithm with dual species”.

In International Conference on Automation and

Logistics Qingdao, China September 2008, 2008.

[61] Melanie Mitchell, “Genetic Algorithms: An

Overview”, An Introduction to Genetic Algorithms,

Chapter 1. MIT Press, forthcoming. 1995.

[62] Cant-Paz, E., “Efficient and Accurate Parallel

Genetic Algorithms”. Kluwer Academic Publishers,

Dordrecht, 2000.

[63] W.M. Wells, III, P. Viola, H. Atsumi, S. Nakajima,

and R. Kikinis, “Multi-modal Volume Registration

by Maximization of Mutual Information”,Medical

Image Analysis, Vol. 1, pp. 35–51, 1996.

[64] F. Maes, D. Vandermeulen, P. Suetens,

“Comparative evaluation of multiresolution

optimization strategies for multimodality image

registration by maximization of mutural
information”, Medical Image Analysis, Vol. 3, No. 4,

pp. 373–386, 1999.

[65] J.B.A. Maintz and M. A. Viergever, “ A Survey of

Medical Image Registration”, Medical Image

Analysis, Vol. 2, No. 1, pp. 1–36, 1998.

[66] Neil A. Thacker, Alan Jackson, David Moriarty,

Elizabeth Vokurka, “Improved quality of re-sliced

MR images using re-normalized sinc

interpolation”, Journal of Magnetic Resonance

Imaging, Vol. 10, No. 4, pp. 582–588, 1999.

[67] Albert Y. H. Zomaya, Parallel and Distributed

Computing Handbook, McGraw-Hill, New York,

1996.

[68] A. Amini, T. Weymouth, and R. Jain, “Using

Dynamic Programming for Solving Variational

Problems in Vision,”IEEE Transaction on Pattern

Analysis and Machine Intelligence, Vol.12, pp. 855-

867, 1990.

[69] Yong Fan, Tianzi Jiang, and David J. Evans ,

“Volumetric segmentation of Brain Images using

Parallel Genetic Algorithm”.

[70] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G.

Sled, N. J. Kabani, C. J. Holmes, and A. C. Evans,
“Design and Construction of a Realistic Digital Brain

http://www/
http://www.hotchips/
http://www.ddj.com/architect/207200659
http://en.wikipedia.org/wiki/CUDA
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_get.html
http://www.headwave.com/
http://www.ks.uiuc.edu/Research/vmd
http://bic-test.beckman.uiuc.edu/
http://www.cs.clemson.edu/~jesteel/clouds.html

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37707-37716

© Research India Publications. http://www.ripublication.com

37716

Phantom”, IEEE Transactions on Medical Imaging,

Vol.17, pp. 463-468, 1998.

[71] B. Wilkinson and M. Allen, “Parallel Programming:

Techniques and Applications using networked

workstations and Parallel Computers”, Prentice Hall,

New Jersey, 1999.

[72] Steven P. Brumby , James Theiler , Simon J. Perkins

, Neal Harvey, John J. Szymanski, Jeffrey J. Bloch ,

and Melanie Mitchell, “Investigation of Image

Feature Extraction by a Genetic Algorithm”.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10

.1.1.12.8210.
[73] Peter Zalutski, “CUDA: Supercomputing for the

Masses”. http://www.drdobbs.com/parallel/cuda-

supercomputing-for-the-masses-part/207200659.

[74] Pavlina Mihaylova, Kostadin Brandisky, “Parallel

Genetic Algorithm Optimization of Die Press”.

http://phd.etfbl.net/files/Works_PDF/Mihaylova%20

Pavlina.pdf.

[75] R.Nedunchelian, K.Koushik, N.Meiyappan,

V.Raghu, “Dynamic Task Scheduling using Parallel

Genetic Algorithms for Heterogeneous Distributed

Computing”.

http://ww1.ucmss.com/books/LFS/CSREA2006/GC

A4489.pdf.

[76] Marin Golub, Leo Budin, “An Asynchronous Model

of Global Parallel Genetic Algorithms”.

http://www.zemris.fer.hr/~golub/clanci/eis2k.pdf.

[77] Sanjay Saxena, Neeraj Sharma and Shiru Sharma,

“Parallel Image Processing Techniques, Benefits and

Limitations” in Press.

[78] Jordan Bell, Brett Stevens, “A survey of known

results and research areas for n -queens” in Discrete

Mathematics, Elsevier, vol. 309, pp. 1-31, 2009.

[79] M. Bezzel, Proposal of 8-queens problem, Berliner
Schachzeitung 3 (1848) 363. Submitted under the

author name “Schachfreund”

[80] C. Erbas, M.M. Tanik, V.S.S. Nair, “A circulant

matrix based approach to storage schemes for

parallel memory systems” in Proceedings of the Fifth

IEEE Symposium on Parallel and Distributed

Processing (Dallas, Texas, Dec. 1–4, 1993), IEEE,

1993, pp. 92–99.

[81] M.M. Tanik, “A graph model for deadlock

prevention”, Ph.D. Thesis, Texas A & M University,

1978.

[82] C. Erbas, M.M. Tanik, Z. Aliyazicioglu, “Linear

congruence equations for the solutions of the N-

queens problem”, Inform. Process. Lett. Vol. 41 (6)

pp. 301–306, 1992.

[83] C. Erbas, S. Sarkeshik, M.M. Tanik, “Different

perspectives of the n-queens problem”, in

Proceedings of the 1992 ACM Annual Conference

on Communications, ACM Press, pp. 99–108, 1992

[84] S.-W. Yang, C.-N. Wang, C.-M. Liu, T.-H. Chiang,

in: H.-Y. Shum (Ed.), “Fast motion estimation using

N-queen pixel decimation”, in Lecture Notes in

Computer Science, vol. 2195, Spring-Verlag, Berlin,
2001.

[85] Article “How is genetic algorithm used to solve the N-

Queens problem” http://www.quora.com/How-is-

genetic-algorithm-used-to-solve-the-N-Queens-

problem

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.8210
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.8210
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://phd.etfbl.net/files/Works_PDF/Mihaylova%20Pavlina.pdf
http://phd.etfbl.net/files/Works_PDF/Mihaylova%20Pavlina.pdf
http://ww1.ucmss.com/books/LFS/CSREA2006/GCA4489.pdf
http://ww1.ucmss.com/books/LFS/CSREA2006/GCA4489.pdf
http://www.zemris.fer.hr/~golub/clanci/eis2k.pdf
http://www.sciencedirect.com/science/article/pii/S0012365X07010394
http://www.sciencedirect.com/science/article/pii/S0012365X07010394

