
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37651-37657

© Research India Publications. http://www.ripublication.com

37651

A Significant Approach for Implementing Parallel Image Processing using

MATLAB with Java Threads and Its Implementation in Segmentation

using Otsu’s Method in Multi Core Environment

Sanjay Saxena

PhD Scholar, School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi

ssaxena.rs.bme11@itbhu.ac.in

Dr. Shiru Sharma

Assistant Professor, School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi

shiru.bme@itbhu.ac.in

Dr.Neeraj Sharma

Associate Professor, School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi

neeraj.bme@itbhu.ac.in

Abstract

This paper present a considerable approach for implementing

parallel image processing using MATLAB with Java.

Parallel Computing has become an essential pillar for

implementing numerous applications of image processing.

As its computation is repeatedly done on matrix of pixels so

it needs several resources and processing execution time. For

efficient implementation of parallel image processing there

have been developed several tools and techniques till now

such as CUDA (Computed Unified Devise Architecture),

GPU (Graphics Processing Unit) , MATLAB, Hadoop,

OpenCV, OpenCL, Java and many more. Main purpose of
this paper is to show application of merging of MATLAB

with java for implementing image processing techniques

parallely. In this paper implementation of Otsu’s

segmentation of the several images including Dicom images

using parallel computing toolbox of MATLAB with the

concept multithreading in java has been done and got

significant results in terms of speedup which can be the good

alternative and efficient approach for implementing parallel

image processing. Main purpose of implementing MATLAB

with java as MATLAB plays a very significant role in image

processing techniques since it is having a toolbox containing

variety of image processing functions which expand the

ability of its numeric computing environment. It also

consists of parallel computing toolbox for implementing

explicit multithreading and supportable environment of GPU

and CUDA. However, Programming Environment of
MATLAB relies on Java for several jobs or tasks. Java

Virtual Machine (JVM) permits an application to have

several threads which runs concurrently.

Keywords: Image Processing, Parallel Computing, Java,

MATLAB, Multithreading, Parallel Image Processing.

I. Introduction

Now days, High performance computing is the need of

several image processing problems for fast and efficient

results [1-13]. There are several tools; techniques and

libraries are available for solving the same problem like

GPU, CUDA, MATLAB, OpenCL, OpenCV, Java, Hadoop

[14]. MATLAB plays a very vital role for developing

algorithms of image processing as it consists of Image

Processing Toolbox containing numerous image processing

functions. It also consist the system for implementing

parallel computing explicitly which is called as Parallel

Computing Toolbox (PCT) and Implicit multithreading

which is based on built-in multithreading in functions of

MATLAB. PCT of MATLAB generally uses heavyweight

processes instead of using light weight threads.

Multithreading using java can be the significant solution for
implementing parallel computing using light weight threads

[15]. Threads are used for implementing parallel computing

that exploit the capabilities of easily available multi-core

technology. It also provides a method to perform jobs which

are autonomous from each other. Basically this paper

presents the role of implementing parallel image processing

using concepts of parallelization of MATLAB with the

multithreading concepts of Java by implementing Otsu’s

method for image segmentation.

Parallel image processing provides an efficient way to solve

compute problem of image processing that requires large

time to execute or processing of the huge amount of

information, in reasonable time [16]. It founds to be only the

effective solution to gain the required processing rate for

handling high-speed image processing applications. Till now,

there have been developed several researches based on image

processing based on parallel computing. They presented the

requirement of parallel computing in image processing, its

implementation techniques and results [1-25]. In [14] we
effectively explained the significance of parallel image

processing with several benefits and limitations. That paper

also describes the different tools and techniques of

implementation of parallel image processing.

This paper is prepared as follows: In the next section we

present a brief overview of the concepts of Multithreading in

Java. Third part of this paper is having concise introduction

of the parallel computing in MATLAB with its applications

in image processing. Then we present a significant technique

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37651-37657

© Research India Publications. http://www.ripublication.com

37652

for implementing parallel image processing using java

threads with MATLAB in the next section. Section V discuss

about Otsu’s method for Thresholding for image

segmentation. Approach of this method i.e. implementation

part is discussed in section VI. Experimental set up and

results are given in section VII. As a final point, we

discussed and conclude the paper in section VIII.

II. Multithreading in Java with its Applications in

Image Processing

Java is the object oriented, platform independent and

multithreaded programming environment. A multithreaded

program is that program which contains several sections that

can run parallelly and each section can handle diverse task at

the same time making most favorable use of the accessible

resources especially when our computer has numerous

CPUs. Multithreading enables us to write a program in a way

where several actions can proceed concurrently in the

identical program [16]. A thread is a smallest unit of work.

These are light-weight processes within a process. A process

is a collection of one or more threads and associated system

resources. Java supports thread-based multitasking. Life

cycles of threads are given in the following figure given in

[16].

Figure 1: Life Cycle of Thread [16]

Above mentioned stages are briefly described as below:
New: In this stage a new thread starts its living cycle in the

new state. It remains in the same state till the program starts

the thread. We can also refer it as a born thread.

Runnable: After the first stage i.e. when newly born thread is

in progress, the thread becomes runnable. A thread in this

state is considered to be executing its job.

Waiting: Occasionally, a thread transitions to the waiting

situation while the thread waits for an additional thread to

perform a task. A thread transitions back to the runnable state

only when one more thread signals the waiting thread to

persist executing.

Timed waiting: A runnable thread can go through the timed

waiting state for a particular interval of time. A thread in this

situation transition reverses to the runnable state while that

time interval expires or once the event it is waiting for

occurs.

Terminated: A runnable thread enters the terminated state

while it executes its job or otherwise terminates.

We can also set the priority of java threads as per

requirement which helps operating system to decide the

order in which that will execute.

Threads can be created by two ways by implementing

runnable interface or by extending thread class [16]. Main

advantage of implementing multithreading using java is that
Threads share the similar address space. It doesn't block the

user because threads are independent and we can perform

multiple operations at same time. Another important thing is

that communication between threads is normally

inexpensive. Threads are independent so it doesn't affect

other threads if exception occurs in a single thread [15].

There are several studies based on parallel image processing

using java threads have been implemented like Devrim

Akgün proposed Parallel Image Filter on Multi - Core

Computer using Java Threads and got significant results[25],

Alda Kika et al. describes applications of multithreaded

image processing in solitary core and multi core CPU via

Java [26] and many more.

III. Parallel Computing in MATLAB with its

Applications in Image Processing

MATLAB provides a very important toolbox i.e. Parallel

Computing Toolbox (PCT) which provides us to resolve
computationally and data concentrated tasks/jobs/problems

using multicore processors, GPUs, and computer clusters

[27]. It also provides us high level programming constructs

like parallel for-loops, special array types, and parallelized

numerical algorithms by which we can parallelize several

MATLAB applications without CUDA or MPI

programming.

Key Features of PCT of MATLAB are given below [27-28]

1. It provides us parallel for loops i.e. parfor to execute

parallel algorithms on several processors.

2. It support for CUDA enabled NVIDIA GPUs.

3. It provides complete utilization of multicore processors

on the desktop through workers that execute locally.

4. Grid support and Computer cluster (with MATLAB

Distributed Computing Server) are supported by PCT.

5. We can develop interactive and batch execution of

parallel applications.

6. Distributed arrays and single program multiple data

(spmd) can use for huge dataset handling and data
parallel algorithms.

We can efficiently use PCT to execute applications on a

multicore computer with local workers available in the

toolbox as we have already discussed above, which obtain

benefits of GPUs and can be scale up to a cluster (with

MATLAB Distributed Computing Server) [27-28]. Basic

structure of PCT is given below [27-28]

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37651-37657

© Research India Publications. http://www.ripublication.com

37653

Figure 2: Basic Structure of PCT

In our previous research works we have implemented several

image processing application using PCT of MATLAB and

got tremendous results[4][12][13][14][29-33] like Complex

noise reduction, region wise processing of an image,

segmentation of abdominal image and many more. It

provides efficient ways to solve big problem in easiest way.

IV. A New Approach: MATLAB with Java For

Implementing Parallel Image Processing Applications
In 2014 Yair altman has given his tremendous contribution in

“Undocumented secret of MATLAB java programming” and

in “Accelerating MATLAB performance”. He described that

MATLAB does not give the users straight access to threads

exclusive of the PCT (Parallel Computing Toolbox). He

explained it by giving some expensive computations or I/O

to be run in the background without freezing the main

application. Instead, in MATLAB there is either implicit

multiprocessing which relies on built-in threading support in

some MATLAB functions, or explicit multiprocessing using

PCT (note: PCT workers use heavyweight processes, not

lightweight threads). So the solitary and important way to

achieve really multi-threading in MATLAB is through Java,

MEX, or .Net, or by spawning peripheral standalone

processes. Note that we do not hoard any CPU cycles by

running jobs/tasks in parallel. In general balance, we really

enlarge the amount of CPU processing, because of the multi-

threading overhead. However, in the enormous majority of

cases we are extra concerned in the responsivity of

MATLAB’s chief processing thread (it is known as the Main

Thread, MATLAB Thread, or simply MT) than in dropping

the computer’s whole energy utilization. In that cases,

offloading effort to asynchronous Java, C++ or .Net threads
could eradicate bottlenecks from MATLAB’s main thread,

by achieving considerable speedup. Java (.Net/C++) threads

are extremely valuable when they can run exclusively

autonomously from MATLAB’s main thread. MATLAB

uses Java for plentiful tasks, including data-processing

algorithms, networking, and graphical user-interface (GUI).

Actuality, under the cover, even MATLAB timers utilizes

Java threads for their internal triggering system. To employ

Java, MATLAB launches its individual devoted JVM (Java

Virtual Machine) once it starts (except it’s started through

the -nojvm startup option). Once in progress, Java can be

straightforwardly used within MATLAB as a accepted

extension of the MATLAB. So there are several potential

benefits of Java multithreading for MATLAB users. For this

implementation researchers are assumed to be familiar with

how to program Java code and one thing is more how to

compile Java classes.

So what we see that if we use efficiently and fully utilize all

the resources of MATLAB with java than we can get
significant result. In this paper we have tested this technique

for implementing segmentation based using Thresholding

with the variety of Images.

V. Image Segmentation based on Otsu’s Method

Image Segmentation is one of the most important and

fundamental tasks for efficient image analysis and

understanding [34-38]. There are several techniques are

available for image segmentation such as different types of

thresholding, region growing, region split and merging, edge

based segmentation, feature based segmentation and many

more[39-40]. Though, there are so many researches are still

going on. One of the most important method of image

segmentation is Otsu’s Thresholding method [41-42].

Basically it works directly on the gray level of histogram and

it selects the threshold to minimize the intraclass variance of

the thresholded black and white pixels.

There are some assumptions of Otsu Thresholding method

given as below

 It considers Histogram (and the image) are bimodal.

 There is no use of spatial coherence, nor any other
notion of object structure.

 It assumes stationary statistics, but can be changed to be

locally adaptive.

 It also assumes identical illumination, so the bimodal
brightness performance arises from object appearance

differences only.

It is based on a very simple idea: Determine the threshold

that minimizes the weighted within-class variance which

turns out to be the same as maximizing the between-class

variance. Detailed description of Otsu’s based image

segmentation is given in [41].

VI. Implementation

To show the efficient working of MATLAB with java

threads in image processing we have chosen Otsu

segmentation in environment of MATLAB and java. Flow

chart of the implemented method is shown in the following

flow chart.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37651-37657

© Research India Publications. http://www.ripublication.com

37654

Flowchart of parallel image segmentation using

MATLAB by creating threads in Java:

As we know that Java classes can be easily import into the

MATLAB workspace [43] by adding the path statically or

dynamically. Basic approach of our implementation is given

below

1. Firstly created a java class with different threads for

implementing Otsu’s segmentation.

2. Initiate MATLAB work space.

3. After that initialized workers of MATLAB using PCT.

4. Equally divide set of images present in image datasets

and load images on different workers for fast executions.

5. Then called existing multithreaded java class.

6. Thresholds calculated and send back to MATLAB
workspace where the segmented images are obtained.

We measured the performance of the work in terms of speed

up. In general speedup is the ratio of time consumed in

parallel execution and time consumed in sequential execution

[4][12][13][14].

VII. Experimental Setup And Results

We have performed total nine experiments with three image

data set on three distinguished multicore environment given

below and found significant speedup. First image data set

consist 12 grayscale of size 256 X 256, Second image dataset

consists 12 RGB images of size 512 X 512 and Third data set

12 Dicom images of size 512 X 512. .

Experimental Setup 1

Hardware Con`uration:

Processor: Intel Core i7 -3770 CPU @340 GHz

RAM (Random Access Memory): 4 GB

Hard Disk Drive: 320 GB

Software Environment:

System Type: 64 Bit operating System, x – 64 - based

processor.

Development Tools: MATLAB, Intel Compiler 9.1, jdk (java

development kit) version 1.6.0_21

Parallelization Scheme in MATLAB:

Multithreaded Parallelism and Explicit Parallelism

Images:

12 gray scale, 12 RGB and 12 Dicom images

Results: Speed up is the average of all images present in

the data set

Obtained Speed up (For Gray Scale Images): 245%

Obtained Speed up (For Indexed Images): 223.5%

Obtained Speed up (For Dicom Images): 189%

Experimental Setup 2

Hardware Configuration:

Processor: Intel Core i3 – 2350M Processor 2.30 GHz

RAM (Random Access Memory) : 3 GB

Hard Disk Drive: 320 GB

Software Environment:

System Type: 32 Bit operating System.
Development Tools: MATLAB, Intel Compiler , jdk(java

development kit) version 1.6.0_21

Parallelization Scheme in MATLAB:

Multithreaded Parallelism and Explicit Parallelism

Images:

12 gray scale, 12 RGB and 12 Dicom images

Results: Speed up is the average of all images present in

the data set

Obtained Speed up (For Gray Scale Images): 225.5%

Obtained Speed up (For Indexed Images): 197%

Obtained Speed up (For Dicom Images): 191.06%

Experimental Setup 3

Hardware Configuration:

Processor: Intel Core 2 duo T 6400 CPU @2.00 GHz

RAM (Random Access Memory) : 2 GB

Hard Disk Drive: 250 GB

Software Environment:

System Type: 32 Bit operating System, x 64 based processor.

Development Tools: MATLAB, Intel Compiler , jdk (java

development kit) version 1.6.0_21

Parallelization Scheme in MATLAB:

Multithreaded Parallelism and Explicit Parallelism

Images:

12 gray scale, 12 RGB and 12 Dicom images

Results: Speed up is the average of all images present in

the data set

Obtained Speed up (For Gray Scale Images): 228.2%

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37651-37657

© Research India Publications. http://www.ripublication.com

37655

Obtained Speed up (For Indexed Images): 190.05%

Obtained Speed up (For Dicom Images): 186%

Following are the some random examples of gray scale,

indexed and Dicom images with their segmented region

using Otsu’s Thresholding method by this proposed method.

Figure 3: Segmentation on Gray Scale Image

Figure 4: Segmentation on Indexed Image

Figure 5: Segmentation on Dicom Image

VIII. Discussion & Conclusion

This paper proposed a considerable approach using

MATLAB with java threads for implementing image

segmentation parallely. MATLAB is required for

implementing different kind of simulation and processing. It
also consists of very effective PCT (parallel computing

toolbox) for implementing explicit parallelism. Though, it is

also having some kind of execution problem as it use heavy

weight processes instead of light weight threads. This work

provides the efficient way by creating multiple threads in

java and call them appropriately to solve existing problem.

We have chosen Otsu’s method for image segmentation for

its effectiveness, constancy and its ease of computation. It is

well performed threshold process and time consumption is

very lesser as compare to other thresholding techniques. We

have implemented total nine experiments with three image

data set on three distinguished multicore environment and

found significant speedup. Each image data set consists 12

gray scale, 12 RGB and 12 Dicom images. Main purpose of

this paper is to reduce the execution time of the techniques of

image processing which take larger time to execute and this

results shows this implementation as significant approach
with efficiently using all available compute resources. As

per future work it can be implemented more effectively by

using GPUs and we can also execute different kind of other

image processing algorithms used for image analysis and

image understanding. This technique can also be used

effectively in the field of medical imaging to give fast and

promising results which will be useful for radiologists for

faultless treatment planning.

References

[1] Thomas Bräunl, “Tutorial in Data Parallel Image

Processing” in Australian Journal of Intelligent

Information Processing Systems (AJIIPS), vol. 6,

no. 3, pp. 164–174, 2001.
[2] Eric Olmedo, Jorge de la Calleja, Antonio Benitez,

and Ma. Auxilio Medina, “Point to point processing

of digital images using parallel computing”

International Journal of Computer Science Issues,

Vol. 9, Issue 3, pp. 1-10, May 2012.

[3] Preeti kaur, “Implementation of image processing

algorithms on the parallel platform using

MATLAB” International Journal of Computer

Science & Engineering Technology, Vol. 4, No. 06,

pp. 696-706, Jun 2013.

[4] Sanjay Saxena, Neeraj Sharma and Shiru Sharma,

“Image Processing Tasks using Parallel Computing

in Multi core Architecture and its Applications in

Medical Imaging” International Journal of

Advanced Research in Computer and

Communication Engineering, Vol. 2, Issue 4, pp.
1896-1900, April 2013.

[5] J. Fung and S. Mann, “Using graphics devices in

reverse: GPU – based image processing and

computer vision”, IEEE International Conference on

Multimedia and Expo. IEEE, pp. 9-12, June 2008.

[6] Teng-Yi Huang, Yu-Wei Tang, Shiun-Ying Ju ,

“Accelerating image registration of MRI by GPU-

based parallel computation” in Magnetic Resonance

Imaging , pp. 712–716, 2011.

[7] JeffreyM. Squyres, Andrew Lumsdaine and Robert

L. Stevenson, “A cluster-based parallel image

processing toolkit” in IS&T Conference on Image

and Video Processing, San Jose, CA, pp. 5–10, Feb

1995.

[8] Chouchene Marwa, Bahri Haythem, Sayadi Fatma

Ezahra & Atri Mohamed, “Image Processing
Application on Graphics processors”, International

Journal of Image Processing (IJIP), Volume 8, Issue

3, pp. 66-72, 2014.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37651-37657

© Research India Publications. http://www.ripublication.com

37656

[9] K.Manjunathachari and Dr.K.Satyaprasad

“Modeling and Simulation of Parallel Processing

Architecture for Image Processing” Journal of

Theoretical and Applied Information Technology,

pp 1 -11, 2005.

[10] Fahim Ahmed M., “Parallel Implementation of K-

Means on Multi-Core Processors” in Computer

Science and Telecommunications No.1, 2014.
[11] Zhiyi Yang, Yating Zhu, Yong Pu, “Parallel Image

Processing Based on CUDA” in International

Conference on Computer Science and Software

Engineering, 2008.

[12] Sanjay Saxena, Neeraj Sharma, Shiru Sharma,

“Region wise processing of an image using

multithreading in multicore environment & Its

application in medical imaging ” in International

Journal of computer Engineering & Technology,

Vol 4, Issue 4, pp 20 -30, 2013.

[13] Sanjay Saxena, Neeraj Sharma and Shiru Sharma.

“Multithreaded Approach for Registration of

Medical Images using Mutual Information in

Multicore Environment and its Applications in

Medical Imaging” International Journal of

Computer Applications vol. 113(3), pp. 23-32,
March 2015.

[14] Sanjay Saxena, Neeraj Sharma and Shiru Sharma,

“Parallel Image Processing Techniques, Benefits

and Limitations” in Press. om

[15] Yair Altman, “Explicit Mutithreading in

MATLAB”, Undocumented MATLAB, 2014.

http://undocumentedmatlab.com/blog/explicit-

multi-threading-in-matlab-part1.

[16] “Concepts of Java Multithreading” Tutorial Points,

Simply Java Learning.

http://www.tutorialspoint.com/java/java_multithrea

ding.htm.

[17] In Kyu Park, Nitin Singhal, Man Hee Lee, ,

Sungdae Cho, and Chris W. Kim, “Design and

Performance Evaluation of Image Processing

Algorithms on GPUs”, IEEE Transactions On
Parallel And Distributed Systems, VOL. 22, NO. 1,

January 2011.

[18] Cristina Nicolescu and Pieter Jonker, “A data and

task parallel image processing environment” in

Parallel Computing Vol. 2, pp. 945–965, 2002.

[19] Roberto R. Osorio, Cesar Daz-Resco and Javier D.

Bruguera, “Highly Parallel Image Processing on a

Massively Parallel Processor Array”.

www.ac.usc.es/system/files/Jornadas09.pdf.

[20] Piotr Wendykier, “High Performance Java Software

for Image Processing” PhD Thesis, 2003.

[21] Jan Lemeire, Yan Zhao, Peter Schelkens, “Towards

Fully User Transparent Task and Data Parallel

Image Processing”.

[22] Dr. Christos Bouganis, “An introductory lecture to

the project – Parallel Image Processing”.
[23] Muneto Yamamoto and Kunihiko Kaneko, “Parallel

Image Database Processing With Mapreduce And

Performance Evaluation in Pseudo Distributed

Mode” in International Journal of Electronic

Commerce Studies, Vol.3, No.2, pp.211-228, 2012.

[24] Emerson C Pedrino and Marcio M Fernandes,

“Automatic Generation of Custom Parallel

Processors for Morphological Image Processing” in

International Seminar on Computer Architecture

and High Performance Computing, 2014.

[25] Devrim Akgün, “Performance Evaluations for
Parallel Image Filter on Multi - Core Computer

using Java Threads” in International Journal of

Computer Applications, Volume 74– No.11, pp. 13-

19, July 2013.

[26] Alda kika, Silvana Greca, “Multithreading Image

Processing in Single-core and Multi-core CPU using

Java” , International Journal of Advanced Computer

Science and Applications, Vol. 4, No. 9, pp. 165-

169, 2013.

[27] “Perform Parallel Computations on multicore

computers, GPUs, and computer clusters”,

Mathworks,

http://in.mathworks.com/products/parallel-

computing/?s_tid=hp_fp_list.

[28] “Parallel Computing Toolbox, User’s Guide” by

Mathworks.
[29] Sanjay Saxena, Shiru Sharma, Neeraj Sharma,

“Parallel Computation of Mutual Information in

Multicore Environment and Its Applications in

Medical Imaging” IEEE database in MEDCOM,

International Conference on Medical Imaging, m

Health & Emerging Communications System,

Noida, India, 2014.

[30] Sanjay Saxena, Shiru Sharma, Neeraj Sharma ,

“Image Registration Techniques Using Parallel

Computing in Multicore Environment and Its

Applications in Medical Imaging” IEEE

International Conference on Computer and

Communication Technology, ICCCT 2014, MNNIT

(Moti Lal Nehru, National Institute of Technology),

Allahabad, September 2014.

[31] Sanjay Saxena, Shiru Sharma, Neeraj Sharma,
“Parallel Approaches of Image Processing

Techniques and Its implementation in Abdominal

Image Segmentation” in Conference on Present

Scenario and Future Trends in Biomedical

Engineering and HealthCare Technology, School of

Biomedical Engineering, Indian Institute of

Technology (Banaras Hindu University), Varanasi,

India, October 2014.

[32] Sanjay Saxena, Neeraj Sharma, L. M. Aggarawal,

Shiru Sharma, “Parallel Processing of Images in

Multi Core Environment: It’s Applications in

Medical Imaging” in Annual Conference of

Association of Medical Physicists of India,

AMPINC – CON, KGMC Lucknow 2014.

[33] Sanjay Saxena, Neeraj Sharma, Shiru Sharma, “An

Intelligent System for Segmenting an Abdominal
Image in Multicore Architecture ”, in IEEE

International Conference and Expo on Emerging

Technologies for a smarter world at New York,

http://undocumentedmatlab.com/blog/explicit-multi-threading-in-matlab-part1
http://undocumentedmatlab.com/blog/explicit-multi-threading-in-matlab-part1
http://www.tutorialspoint.com/java/java_multithreading.htm
http://www.tutorialspoint.com/java/java_multithreading.htm
http://in.mathworks.com/products/parallel-computing/?s_tid=hp_fp_list
http://in.mathworks.com/products/parallel-computing/?s_tid=hp_fp_list

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37651-37657

© Research India Publications. http://www.ripublication.com

37657

USA, Held in New York, United States of America,

2013.

[34] Yu-Hsiang Wang, “Tutorial: Image Segmentation”,

Graduate Institute of Communication Engineering

National Taiwan University, Taipei, Taiwan.

Available:

http://disp.ee.ntu.edu.tw/meeting/%E6%98%B1%E

7%B F%94/Segmentation%20tutorial.pdf
[35] Prabhjot Kaur, A.K. Soni, Anjana Gosain, “Image

segmentation of noisy digital images using extended

fuzzy C–means clustering algorithm” in

International Journal of Computer Applications in

Technology, Inderscience Publishers, vol. 47, issue

2-3, 2013.

[36] Ricardo Pérez-Aguila, “Automatic Segmentation

and Classification of Computed Tomography Brain

Images: An Approach Using One-Dimensional

Kohonen Networks” in IAENG International

Journal of Computer Science, vol. 37, 2010.

[37] Jian-de Zhang, Jin-gui Lu, Hong-liang Li, “Hybrid

particle swarm optimisation algorithm for image

segmentation” in International Journal of

Modelling, Identification and Control , Inderscience

Publishers , Volume 14, Issue 4, 2011.
[38] Siddhartha Bhattacharyya, Ujjwal Maulik ,

Paramartha Dutta, “A Pruning Algorithm for

Efficient Image Segmentation with Neighborhood

Neural Networks” in IAENG International Journal

of Computer Science, vol. 35:2, 2008.

[39] Rohan Kandwal, Ashok Kumar and Sanjay

Bhargava, “Review: Existing Image Segmentation

Techniques” in International Journal of Advanced

Research in Computer Science and Software

Engineering, Volume 4, Issue 4, pp. 153-156, April

2014.

[40] V.Vijaya Kumar, A. Nagaraja Rao, U.S.N.Raju, and

B.Eswara Reddy, “Pipeline Implementation of New

Segmentation Based on Cognate Neighborhood

Approach” in IAENG International Journal of

Computer Science, 35:1, Feb 2008.
[41] “Notes of Automatic Thresholding” in

http://www.math.tau.ac.il/~turkel/notes/otsu.pdf.

[42] Miss Hetal J. Vala, Prof. Astha Baxi, “A Review on

Otsu Image Segmentation Algorithm” in

International Journal of Advanced Research in

Computer Engineering & Technology (IJARCET)

Volume 2, Issue 2, pp. 387-389, February 2013.

[43] “Bringing Java Classes into MATLAB Workspace”

by Mathworks.

http://in.mathworks.com/help/matlab/matlab_extern

al/bringing-java-classes-and-methods-into-matlab-

workspace.html.

http://www.inderscienceonline.com/action/doSearch?ContribStored=Kaur%2C+P
http://www.inderscienceonline.com/action/doSearch?ContribStored=Soni%2C+A
http://www.inderscienceonline.com/action/doSearch?ContribStored=Gosain%2C+A
http://www.inderscienceonline.com/loi/ijcat
http://www.inderscienceonline.com/loi/ijcat
http://www.inderscienceonline.com/action/doSearch?ContribStored=Zhang%2C+J
http://www.inderscienceonline.com/action/doSearch?ContribStored=Lu%2C+J
http://www.inderscienceonline.com/action/doSearch?ContribStored=Li%2C+H
http://www.inderscienceonline.com/loi/ijmic
http://www.inderscienceonline.com/loi/ijmic
http://www.inderscienceonline.com/toc/ijmic/14/4
http://www.math.tau.ac.il/~turkel/notes/otsu.pdf
http://in.mathworks.com/help/matlab/matlab_external/bringing-java-classes-and-methods-into-matlab-workspace.html
http://in.mathworks.com/help/matlab/matlab_external/bringing-java-classes-and-methods-into-matlab-workspace.html
http://in.mathworks.com/help/matlab/matlab_external/bringing-java-classes-and-methods-into-matlab-workspace.html

