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Abstract 

In this paper we present new modeling and analysis technique 

for characterizing some initial results stochastic difference 

equation, where we seek a variation Bayesian treatment of the 

dynamic data assimilation problem which builds upon our 

variation Bayesian Gaussian process treatment of the static 

data assimilation problem. In particular we focus on the issue 

of defining a Gaussian process approximation to the temporal 

evolution of the solution of a general stochastic difference 

equation with positive values. 

 

Keywords: stochastic difference equation, new approach 

model, Gaussian process approximation. 

 

 

Introduction 

In this paper, we discuss the prior distribution is approximated 

as a space only Gaussian process, the observations are often 
given Gaussian likelihoods, and thus inference of the posterior 

proceeds using well known Gaussian process methods. It is 

possible to view almost all data assimilation methods as 

approximations to the Kalman filter new approach[2]. Much 

early work in data assimilation focused on the static case 

where the prior distribution was assumed to have a 

climatological covariance structure whose form was dictated 

in many cases from the model dynamics, and a mean given by 

a deterministic forecast from the previous data assimilation 

cycles posterior mean[3]. At each time step, the covariance of 

the state was thus ignored and only the mean was propagated 

forward in time. 

 

 

Approximations of Stochastic Difference Equations with 

Gaussian Process Method 

We assume that the variables divide into two groups 

 
such that the positive level is  on the  variables assumed 

to be k of the n, while for the remainder it is  

Assuming the positive to be equal variance and uncorrelated 

we have 

 

 

Where   ( ) is a vector of dimension k (n − k) drawn from 

a multivariate Gaussian with identity covariance. Hence, the 

true probability of a sequence {xi}  is given by 

 

exp  

We will approximate this distribution by a distribution Q 

which we assume has the following form 

 

exp  

where the matrices ,   and vectors ,  are parameters 

that will be adjusted to minimise the KL divergence KL(Q||P ) 

between the two distributions. 

We present here an approximation of the exact optimization of 

the KL divergence that extends the Kalman filter new 

approach. The detailed derivations are given we summarize 

the results here. 

If we define 

 
where averages are over the Gaussian approximation at stage  

with mean and covariance . Taking limits as the interval 

tends to zero we obtain differential equations for these 

quantities which are now all functions of t: 

 
and 

 

 

These equations define the evolution of our approximation of 

the Q process. 

 

 

Kalman Filter New Approach 

A standard approach for modeling dynamical systems with 

additive Gaussian measurement noise is the Kalman Filter 

New Approach (KFNA)[1]. When the system is nonlinear, 

one of its variants, for example the extended Kalman Filter 

New Approach (EKFNA), can be used. KFNA and EKFNA 
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are concerned with propagating the two first moments of the 

filtering distribution , which are given by 

 

 
where  ≡ { , . . . , } are the observations up to time 

. In order to propagate these quantities, they proceed in 

two steps. In the prediction step, the two moments are 

estimated given the observations up to time : 

 
This allows computing the predicted state  { } and 

the predicted state covariance        

{( )( | }. Next, the correction step 

consists in updating these estimates based on the new 

observation : 

 
which leads to the desired conditional moments (1) and (2). 

KFNA is particularly attractive for online learning as it is not 

required to keep trace of the previous conditional 

expectations. Unfortunately, the integral in (3) is in general 

intractable when the system is nonlinear or when the state 

transition probability p( ) is non-Gaussian. Therefore, 

approximations are required. 

A common approach is to linearize the system, which 

corresponds to EKFNA. This leads to a Gaussian 

approximation of the transition probability [6]. Moreover, if 

the likelihood  is assumed to be Gaussian, then 

the filtering density is a Gaussian one at each ti+1. An 

alternative approach is to resume the past information by the 

marginal Q( ) and make predictions as follows 

 
Where 

 

 
This approximation is expected to be better than EKFNA, as 

the parameters A and b of the linear approximation are 

adjusted at each iteration. If we further assume that the 

likelihood  is of the form , then 

the correction step (4) is given by 

 

With 

 
 

Note that in this approach, only the filtering density (and its 

associated moments) are propagated through time. In contrast, 

GP framework allows us to define a distribution over the 

entire function space (i.e., over time). It is expected that this 

will have a smoothing effect and will lead to a better tracking 

of the state transitions. 

 

 

Approximations to KF New Approach 

If we use the variable X to denote the complete sequence 

{ , we can compute this as 
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Where the last equality follows from using the equality 

2 2 2

( , ) ( ) ( )X N x a a  

for the k components of the first vector and n − k components 

of the second. 

In order to minimize the NA divergence, we must take the 

derivative with respect to the parameters, set to zero and 

solve. We obtain 

2 ` 2 2 `

2 2 2

1 ` 1 1 `

1 1 1

2 2 ( ) 0

2 ( ) 0

2 2 ( ) 0

2 ( ) 0

i i i i i i

i i i i

i i i i i i

i i i i

A X X b f X X

A X b f X

A X X b f X X

A X b f X

 

where the angle brackets indicate expectations with respect to 

the marginal distribution Q( ), which is Gaussian with mean 

and covariance mi and respectively (note that these are 

over the full variable set). We obtain the equations for the 

parameters as 
1

` `( ) ( , )

( ( ) ( ) ( , )

i i i i i i i i

i i i i i i

A b f X X X X A m

and b f X A X b m

 

where the matrix  is formed by concatenating and  and 

similarly . The expressions for A(m, Σ) and b(m, Σ) can be 

given as 
| | |( , ) ( ) ( ( ) )

( , ) ( ( )) .

iA m mm f X X bm

b m f X Am
 

Substituting b from the second equation in the first gives 
| | | |

| |

( , ) ( ) ( ( ) ) ( ( )

( , ) ( ( )( ))

( )
(11)

iA m mm f X X f X m Amm

A m f X X m

f X

X
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with the last equality following from an integration by parts.  

Writing expressions for the generation of  we have 

 

 
where u is an n-dimensional vector of independent zero mean 

Gaussian variables with unit variance. We can combine these 
into the single equation 

 
where diag(σ) denotes the diagonal matrix whose first k 

entries are σl and remaining entries We also know that 

 is generated by a Gaussian with mean mi and covariance 

, so that 

 
where v is a vector of zero mean unit variance Gaussian 

variables. Hence, we obtain the following expression for  

 
Hence, we can compute 

 
Taking the difference between means, dividing by ∆t and 

taking limits gives 

 
Next consider 

 

 
Taking the difference between means, dividing by ∆t and 

taking limits gives 

 

 
where we have made use of equation (11). The result of this 

computation hold for all values of  and , so that we can 

consider the case where we let  tend to zero. This allows us 

to encode quite general noise models and covariances as the 

examples in Appendix C illustrate. 

 

 

Examples of different Positive Models 

General covariance  

If we wish to introduce noise with a known fixed covariance 

 as for example given by spatial relations between the 

locations of a climate grid model, we can double the number 

of variables to n = 2k to obtain 

 

 
where z is k dimensional zero mean unit variance Gaussian 

random variables and f ( ) is the system being studied. 

 

 

 

Ornstein-Uhlenbeck process 

We have seen that for a wiener process {X(t)}, the 

displacement  in a small interval of the  is also small, 

being of [O( ].  The velocity which is of O(  

tends to infinity as Thus the wiener process does not 

provide a satisfactory model for Brownian motion for small 

values of t, although for moderate and large values of it 

does so[6].  An alternative model which holds for small was 

proposed by Ornstein and Uhlenbeck in 1930.  Here instead of 

the displacement X (t), the velocity U(t)=X`(t) at time is 

considered. 

The equation of motion of a Brownian particle can be written 

as 

 
Where –  represents the systematic part due to the 

resistance of the medium and  represents the random 

component. 

 

 

Conclusion 

In this paper we have developed a new model for the final 

version of the results for a Gaussian process with the 

covariance function determined by the approximation of the 

process Q. A discussion of how the kernel can be obtained 

from the above computations is included. 
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