
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38562-38566

© Research India Publications. http://www.ripublication.com

38562

«Dependency injection» on Android and its application in the development

of a mobile multifunction hardware-software complex of long

cardiomonitoring and ergonometry

Denis NikolaevichAkolzin

Scientific and Technical Center "Technocentеr" Southern

Federal University,

347900, 81 Petrovskaya street

Ivan AlexandrovichGrinko

Scientific and Technical Center "Technocentеr" Southern

Federal University,

347900, 81 Petrovskaya street

Abstract- The article discusses the use of the mechanism of
"Dependency Injection" allowing you to dynamically

describe dependencies in a code, separating the business logic

into smaller blocks. This is useful primarily to the fact that

you can later replace these small blocks with the tested ones,

and reduce the test zone. Dependency injection is the process

of adding external dependence to a software component. Is a

specific form of "Inversion of Control", where a change in

the order of communication is carried out by obtaining the

necessary dependencies. Dependency Injection is more

flexible because it easier allows to create alternative

implementations of service, and then specify what kind of

implementation should be used, for example, the

configuration file, without any changes in the objects that use

this service. This is especially useful in unit testing because

the implementation of insert "stub" service in the object

under test is very simple. On the other hand, excessive use

may make implementation dependencies applications more

complex and difficult accompanied: to understand the

behavior of the application, developer should look not only at

the source code, but also in the configuration, which

generally invisible for IDE, that supports analysis of

references and refactoring, unless explicitly configured to

support dependency injection frameworks. This mechanism
has allowed the testing of the application and conduct a

parallel application development without the portable unit

complex. In many cases, the introduction of the designer is

much easier and more reliable, but there are situations where

the introduction of a property is the right choice.

Keywords: Java, Android, Bluetooth.

Introduction
The mechanism of dependences injection

(Dependency Injection or DI) belongs to the list of the most

incorrectly perceived concepts of object-oriented

programming. This confusion is widespread and concerns the

terminology, purposes and mechanics.

This paper will discuss about the use of the

mechanism of dependences injection on Android platform

within the work on the project of a mobile multipurpose
hardware-software complex of long cardiomonitoring and

ergonometry.

First it is necessary to explain what dependence
injection is. The mechanism of dependence injection is a set

of the principles and templates of the design of software

which allow developing a code in which it is possible to

modify components easily, or to replace the whole

component with its analog almost without touching other part

of the project [1 - 3].

The development of such code in this project is

necessary for several reasons:

- The transfer and data acquisition in the application

from the module must depend on the chosen Bluetooth

protocol as little as possible. Because the transition should

support not only Bluetooth Serial Port, but also Bluetooth

Low Energy, which in difference in connection realization,

transfer and data acquisition. Dependency injection will allow

using at once two protocols of data transmission in the

application depending on the protocol of the module of the

system;

- When testing this appendix, it is useful to simulate

the module of the system creating a fictitious service for the

work with it. In strong dependence of components of the

application it is impossible, or is too complicated;

- For the development of the application without the

module of the system it is also useful to emulate its work. For
example, if it will be necessary to check the display work

when processing the wrong data, the emulation of the module

on the device, without change of an initial code, will be

made.

The use of dependences injection provides some

advantages including the showed below:

- Weakening of connection between classes.

Dependences are accurately defined in each class. Data on the

configuration and comparisons between interfaces or basic

classes and actual concrete types are stored in the container

used by the mechanism of dependences injection. If it will be

necessary they can be updated without making any changes

into a code during the performance;

- Creation of a code, which undergoes a check

better. From types of constructors, properties or methods of

the user classes it is possible easy to know what objects they

use and what dependences are between them. While creation

of copies with the use of a code in classes it is much more

difficult to trace dependences. It is recommended to allow

dependences in the field of a class by the indication of types

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38562-38566

© Research India Publications. http://www.ripublication.com

38563

or interfaces which it demands and to use the advantage of

dependences injection;

- Testing simplification. If a user allows or gets

objects with the use of a code in classes, it is necessary to

specify in a right way the adjusted container for the use

during the modular testing of these classes. If to take

advantage of dependences injection, it is possible to create

simple models of test objects for classes which are applied by

a user.

The mechanism of dependency injection allows

distributing responsibility between classes. As soon as

responsibility of each class becomes obviously certain and
limited, the process of support of the whole application

becomes easier. This advantage of the principle of the only

responsibility, which claims that each class must have just

one responsibility, is well-known. The process of adding new

opportunities in the application becomes simpler because it is

clear where it is necessary to make changes [4]. Usually it is

not even necessary to change an existing code, instead of it,

new classes should be added and it is unnecessary to compile

the application all over again. Here the principle of one

responsibility is entered the game. The search of

malfunctions also becomes less tiresome because the area of

possible culprits for malfunctions is narrowed. Thanks to

obviously certain responsibilities there is an accurate

understanding of that wherefrom it is necessary to begin the

search of a root reason of problem formation [5 - 7].

With the use of dependency injection it is possible to

realize the concept of the separate development. The concept

of division makes the development of a code by parallel

commands possible. When the project reaches a certain size,

it becomes necessary to divide the developer’s team into

some teams of a manageable size. Each team has the

responsibility over any area of the application. To

differentiate the responsibility, each team will develop one or
more than one module which will be embedded into the

finished application [8]. Only when spheres of the activity of

each team will obviously depend from each other, the

consistent development will be necessary.

For dependences injection the following patterns are

used:

- Injection into the constructor (Constructor

Injection);

- Injection into the property (Property Injection).

Injection into the constructor works in the following

way: the class, which demands the object, must provide the

open constructor which accepts realization of the necessary

object as an argument of the constructor. In most cases, it

must be only the available constructor. If more than one

object is necessary, additional arguments of the constructor

can be used. A good practice is to note the field containing

the object as “readonly” - it guarantees that as soon as the

initialization logic of the constructor will be done, the field

cannot be changed. It is not obligatory from the point of view

of dependences injection, but it will protect you from a casual

change of the field (for example, its installation on “null”)

somewhere in other place of a code dependent on a class.

Choice by default for dependences injection
This approach has to be a choice by default for dependences

injection. He allows saying to a class with confidence that

injection exactly is, and it is simple for realization.

In the approach of injection into the property the

class which uses dependence, must provide the property of

the object type which is open, available to write down. This
approach is very easy in use. But representation can be

deceptive, and injection into the property is interfaced to

difficulties. It is difficult to realize it in a right way. Clients

can forget (or not want) to provide realization of the object,

or by mistake to appropriate “null” as a value. Besides, what

must happen if a client will try to change the object in the

middle of life cycle of a class? It can lead to inconsistent or

unexpected behavior therefore you can want to protect

yourself from this event [10 - 14].

With injection into the constructor it is possible to

protect a class against such incidents using a keyword

“readonly” to the field, but it is impossible when the object is

opened as the written-down property. In many cases injection

into the constructor is much easier and more reliable, but

there are situations when injection into the property is a right

choice [15 - 17]. It is in that case when providing the object

realization is optional because there is a good localization of

this class. Injection into the property also ties to a library

which is used for realization of the mechanism of

dependences injection. Injection into the constructor allows to

disconnect these libraries during the testing and to transfer

obviously test objects in constructors.

For understanding of this mechanism and problems
solved by it is necessary to consider an example below. The

example is the initial approach for the Android application

work with the module of the system on Bluetooth. Figure 1

presents the interrelation between classes and the main

components for interaction with the module of the system

with the use of Bluetooth. In effect, “application” processes

events of user actions. For data transmission it uses the

BluetoothService object which encapsulates the work with

data transmission on the Bluetooth protocol using

BluetotohSocket for direct sending of data.

Fig. 1. The scheme of classes for data transmission

Figure 2 shows how it looks in a code. For
descriptive reasons and explanations of the work of

dependences injection, there is only one EnableModule

method, which sends a command of inclusion to the module

of the system. In this code programming is conducted

concerning a class abstraction. Many guides on the object-

oriented design are focused on interfaces as on the main

mechanism of abstractions while the guides on the design on

the JAVA basis support a superiority of abstract classes over

interfaces. Is it necessary to use interfaces or abstract classes?

Concerning the mechanism of dependences injection the

consolatory answer to this question is that it does not matter

what to use. It is only important that programming is

conducted concerning any sort of abstraction. The choice

Application BluetoothService BluetothSocket

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38562-38566

© Research India Publications. http://www.ripublication.com

38564

between interfaces and abstract classes is important in other

contexts but not in this.

Fig. 2. The example of realization

Figure 3 shows the use of this code. It is necessary

to create the class Application and to cause in it a method of

sending an inclusion command.

Fig. 3.The use of the Application class.

In this code everything works well and also a code is

quite simple. But if it is necessary to test this code, there is at

once a need to replace BluetoothSocket on test one which

will generate messages. In this case we need to relieve

responsibility from the BluetoothService class, to create

BluetoothSocket and to transfer it to the higher classes. At

introduction of these completions the Aplication class starts

changing. Figure 4 shows the received code. Transfer of the

BluetothSocket object is done through constructors of classes.

Fig. 4. Realization for testing

Now in order to use the Application class during the

creation of this object it is necessary to transfer to it

BlueoothSocket. There is an opportunity to transfer the test

object instead of it.

Fig. 5.The use of a code with the injection of the Bluetooth

Socket class through the constructor.

It is not difficult. Actually the pattern dependency

injection is by hand organized. But if there is a need for the

use of Bluetooth Service in other place, it is also necessary to

create BluetoothSocket and to transfer it by the underlying

class [18]. Thereby to carry out the duplication of a code and

also to connect the application classes by the unified

constructor. Of course, it is possible to add constructors by

default which will create a real BluetoothSocket and to use

the second constructor only when testing, but after all it does

not solve the problem but only masks it. It is possible to

improve this problem having realized the library for

"Dependences injection".

With company resources it was possible to realize

the own library for this purpose [19]. But such approach also

has disadvantages, this is quite expensive in comparison with

costs for the project, and also the testing of this library is
necessary. That is why it was decided to use a ready library

Dagger 2.

Dagger 2 is the library with an open source code

from the developersokhttp, retrofit, picasso and many other

remarkable libraries known to many Android developers.

The main advantages of Dagger 2:

- The static analysis of all dependences;

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38562-38566

© Research India Publications. http://www.ripublication.com

38565

- The definition of errors of the configuration at a

compilation stage (not only in “runtime”);

- The lack of “reflection” that considerably

accelerates the process of the configuration;

- A quite small load on the memory.

For the configuration of a library it is necessary to

create modules which will provide essences on demand. For

this system the figure 6 shows the realization of such module.

The module provides two essence- BluetoothSocket and

BluetoothService. When granting BluetoothService it

automatically will provide the realization of BluetoothSocket

for it [20 - 22]. For this purpose in the constructor of
BluetoothService essence the @Inject attribute is specified.

Fig. 6. The module of granting essences

Further it is necessary to create the interface to

which the external application will address. Figure 8 presents

its initial code. It gives a chance not to provide the

BluetoothSocket essence owing to its local use in the module.

Fig. 7. The interface of granting essences to external

components

Now, to receive the BluetothService essence the

external component needs to execute a code presented in the

figure 7. In this code with the use of the interface which the

figure 8 has earlier shown, there is a receiving of the

necessary essence.

Fig. 8. Receiving of the essence of BluetotohService

An impression may be arise that the use of Dagger 2

has only complicated a primary code. But this representation
is false. The small by the size bases of a code which are

similar to the given above example, are in essence supported

thanks to the size; that is why the mechanism of dependences

injection is perceived in simple examples as the excess

development [23]. Than more by the size there is a base of a

code, especially visible are advantages of the mechanism of

dependences injection.

The mechanism of dependences injection by its

nature is means of the result achievement, but not the

purpose. It is the best way of dependences reduction of

components from each other which is an important

component of a supported code. The advantages which are

provided by the use of this mechanism, are not always

immediately obvious, but become noticeable eventually when

the complexity of a code increases. The primary code, where

components are strongly dependent from each other

eventually will become difficult for understanding,

meanwhile at rather weak dependence of components it can

remain supported [24]. To reach the real "flexible design", it

is necessary not only to carry out easy dependences between

components, but programming on the basis of the interface
that is a necessary condition of the "flexible design".

The DI mechanism is more than just a set of the

principles and patterns. It is more likely a way of inventing

and designing of a code than means and receptions – an

important point of weak binding, it is also the mechanism of

dependences injection, and for efficiency it must be used in

all components of the developed applications.

Conclusion
The results of researches, which this paper has presented,

were got with the financial support of the Ministry of

Education and Science of the Russian Federation within

realization of the "Creation of Advanced technology

production on fabrication of a mobile multipurpose hardware-

software complex of long cardiomonitoring and

ergonometry" project according to the governmental

resolution № 218 (9 April, 2010). Researches were conducted
in FSAEI of HE of the SFU.

References

[1] Dependency Injection, Annotations, and why Java is

Better Than you Think it is // Hetzer. 2013.

URL:http://www.objc.io/issue-11/dependency-

injection-in-java.html(accessed date: 29.03.2015).

[2] Mark Seemann Dependency Injection in .NET.

Manning Publications. 2011.

[3] Dominic Betts, Grigori Melnik Dependency

Injection with Unity. Microsoft. 2014.

[4] Freeman, J. 2013. Who nailed the principles of great

UI design? Microsoft, that's who // InfoWorld. URL:

http://www.infoworld.com/article/2614315/applicati

on-development/who-nailed-the-principles-of-great-

ui-design--microsoft--that-s-who.html?page=3
(accessed date: 29.03.2015).

[5] Dependency injection on Android: Dagger (Part 1) //

Antonio Leiva.2015. URL:

http://antonioleiva.com/dependency-injection-

android-dagger-part-1/ (accessed date: 29.03.2015).

[6] Johan, T.J. JuergenBocklage-Ryannel and Johan

Thelin. 2014.

[7] Dependency injection on Android: Dagger (Part 2) //

Antonio Leiva.2015. URL:

http://antonioleiva.com/dependency-injection-

android-dagger-part-2/ (accessed date: 29.03.2015).

http://www.objc.io/issue-11/dependency-injection-in-java.html
http://www.objc.io/issue-11/dependency-injection-in-java.html

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38562-38566

© Research India Publications. http://www.ripublication.com

38566

[8] Zharko,Miyailovich D.M.

2013,Tehnologiirazrabotkipolzovatelskihinterfeisov

// Otkrytyesistemy. URL:

http://www.osp.ru/os/2013/10/13039072/ (accessed

date: 29.03.2015).

[9] Dependency injection on Android: Dagger (Part 3) //

Antonio Leiva.2015. URL:

http://antonioleiva.com/dependency-injection-

android-dagger-part-3/ (accessed date: 29.03.2015).

[10] Android: Inversion of Control, Dependency

Injection, Dagger - Part 1 // Leftshift.io. 2015. URL:

http://leftshift.io/android-inversion-of-control-
dependency-injection-dagger-part-1 (accessed date:

29.03.2015).

[11] Android: Inversion of Control, Dependency

Injection, Dagger - Part 2 // Leftshift.io. 2015. URL:

http://leftshift.io/android-inversion-of-control-

dependency-injection-dagger-part-2 (accessed date:

29.03.2015).

[12] Dependency Injection Options for Java // Java Code

Geeks. 2015. URL:

http://www.javacodegeeks.com/2015/02/dependency

-injection-options-for-java.html (accessed date:

29.03.2015).

[13] Dependency Injection on Android // DroidCon NL.

2013. URL:

http://www.slideshare.net/JoanPuigSanz/dependency

-injection-on-android (accessed date: 29.03.2015).

[14] Dependency Injection: anti-patterns // Habrahabr.

2013. URL: http://habrahabr.ru/post/166287/

(accessed date: 29.03.2015).

[15] Design pattern – Inversion of control and

Dependency injection // Code project. 2015. URL:

http://www.codeproject.com/Articles/29271/Design-

pattern-Inversion-of-control-and-Dependency
(accessed date: 29.03.2015).

[16] Dependency injection в Java EE 6 // Habrahabr.

2015. URL: http://doc.qt.io/qt-5/qtqml-

cppintegration-interactqmlfromcpp.html (accessed

date: 29.03.2015).

[17] Patternyproektirovaniya // Qt Official Site. 2015.

URL: http://doc.qt.io/qt-5/qtqml-cppintegration-

topic.html (accessed date: 29.03.2015).

[18] Goloshchapov,А. 2010, Google Android:

programmirovaniedlyamobilnykhustroistv. Spb.:

BKHV-Petersburg.pp. 448.

[19] Molen, Brad (2012-01-14). "Samsung Gear 2

smartwatches coming in April with Tizen OS".

Engadget.com. Retrieved 2014-07-22.

[20] Komatineni, S.,Maklin D. &Kheschimi S. 2011,

Google Android:

programmirovaniedlyamobilnykhustroistv = Pro

Android 2. 1-st edition. Spb.: Saint-Petersburg,

2011. pp. 736.

[21] The Qt Company Ltd. Qt Bluetooth // Qt Official

Site. 2015. URL: http:// doc.qt.io/qt-5/qtbluetooth-

index.html (accessed date: 29.03.2015).

[22] Young, D.G. 2014, A Solution for Android
Bluetooth Crashes // Radius Networks. URL:

http://developer.radiusnetworks.com/2014/04/02/a-

solution-for-android-bluetooth-crashes.html

(accessed date: 29.03.2015).

[23] Satiya,Komatineni&DeivMaklin. Android 4

dlyaprofessionalov.

Sozdanieprilozhenydlyaplanshetnykhkompyuterov I

smartfonov = Pro Android 4. М.: Vilyams. pp.880.

[24] Erik,Frimen, Elizabeth Frimen, Kate S’erra, Bert

Beits, Patternyproektirovaniya, 2011. 1-st edition.

Spb.: Saint-Petersburg.pp. 736.

