
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38557-38561

© Research India Publications. http://www.ripublication.com

38557

Basics of QtQuick technology and its application in the development of

mobile multi-function hardware-software of long-term cardiomonitoring

and ergonometry

Ivan Alexandrovich Grinko

Scientific and Technical Center "Technocentеr" Southern Federal University,

347900, 81 Petrovskaya street

Abstract- The article discusses the use of the latest

technology QtQuick, allowing to create cross-platform

applications using declarative language QML, and it`s

application during development of multi-functional mobile
hardware-software complex and long-term cardiomonitoring

and ergonometry. QtQuick was first introduced in Qt 4.7 and

allowed to develop programs for the operating systems

Windows, Linux, Mac OS, Android, iOS and WindowsRT.

This technology has made possible the creation of

multifunctional dynamically changing graphical user

interface with visual effects and animation. Focused on the

use of mobile devices, touch input. Includes QML language,

based on JavaScript, it`s interpreter and a collection of ready

components. QML program is a set of files, containing QML

elements, organized in trees, representing a set of graphic and

behavioral units, such as states, transitions and animation.

Items can be combined into complex components with spread

input output interface. QML objects functionality can be

extended with JavaScript, and added to project as standard .js

files. To provide even greater flexibility and transparency

when creating applications, you can use C ++ through the Qt

framework. QtQuick has mechanisms for two-way

integration with C ++ objects, including supporting of Qt

signals and slots mechanism. Thanks to its capabilities,

QtQuick technology was chosen to implement the application

for debugging hardware modules of multifunctional mobile

hardware-software complex of long-term cardiomonitoring
and ergonometry. The program was ported from Windows to

Android without any effort.

Keywords: Qt, QtQuck, QML, JavaScript, C ++, GUI.

Introduction
Qt is a cross-platform framework for the creation of

applications and the user interface [1]. During the existence

from 1996 year Qt has changed several owners, has got a

huge community of developers and has noted using in

software products of such firms, as Adobe, AT&T, Cannon,

HP, Bosch, IBM, Motorola, NASA, NEC, Pioneer, Sharp,

Siemens, Sony, Xerox and others [2].

The application written by the use of Qt can be

started in the majority of modern operating systems by simple

compilation of a program without changing a primary code

[2]. From other libraries Qt differs by existence of the special
metaobject compiler (MOC) allowing to expand opportunities

of C ++, to provide a convenient system of the interobject

connection through the mechanism of signals and slots to

developers and to organize an association of objects in

hierarchy for obtaining the expanded information about their

nature during the implementation of a program and the
automatic control of memory [2].

Qt is divided into modules consisting of a set of

classes which functionality covers a great part of

opportunities of modern operating systems significantly

making the development oа applications easier. Qt is easy

expanded and supports a technology of component

programming [2].

Originally Qt was aimed at providing developers of

the desktop software with simple and powerful tools for fast

creation of cross-platform applications [3]. However, a

tendency of replacement of classical personal computers by

portable laptops and mobile devices [4] is now observed. In

this regard methodologies of the development of the user

interface also change.

The main parte
To satisfy the created requirement a new QtQuick

technology allowing creating difficult components of the

interface with support of sensor input [5] was presented in the

Qt 4.7 version. It allowed applications on Qt to change

desktop operating systems to mobile ones having provided a

convenient way of the work with programs for both worlds.

Qt 5 became a full revision of the architecture,

which was earlier and concentrated on the following

opportunities [6]:

- The use of graphics based on OpenGL (ES) with

support of a scene graph for creation of visual effects;

- The injection of the QML and JavaScript use for

the user interface. Thus, the development of the application

can be divided into the front-end (QML + by JavaScript) and

the back-end part (C++) which on one hand will allow to

create modern and attractive programs without the loss of

productivity;

- The expansion of support of mobile systems

includes not only a possibility of Qt on Android, iOS and
Windows applications launch, but also the simplified

mechanism of porting of programs on other operating

systems.

QtQuick is based on several technologies, among

which are [6]:

- QML - the declarative markup language for

creation of the user interface;

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38557-38561

© Research India Publications. http://www.ripublication.com

38558

- JavaScript – the scripting language for description

of the operation logic of the interface;

- Qt C ++ is a set of libraries on C ++ for the back-

end part of the application.

Parts of the application on QtQuick are transmitted

and placed in memory as standard for Qt C ++ objects. Thus,

the loss in productivity is observed only on the start of a

program and can be leveled by preliminary compilation of

QML objects [7].

Like HTML, QML is also the markup language and

consists of a set of special tags. Such decision allowed

applying a declarative approach to creation of the user
interface, to make it easier and more evident [8]. The

functional opportunities of QML objects extend at the

expense of JavaScript. C ++ [6] is used for realization of

parts of the application which are beyond QML/JavaScript.

QML elements completely support the mechanism

of signals and slots of Qt for the interobject connection and

supplement its binding of properties. The QtQuick platform

automatically traces the connected sizes and causes the

following changes with properties of objects [9].

All QML elements can be united in groups

according to carried out functions by them. Into a basic group

of elements enter [6]:

- Item – is a basic element for all visual components.

It does not contain drawing functions but provides properties,

which each visual component [10] must possess.

- Rectangle - is the Item expansion that allows to fill

the area by a continuous color or a gradient and to outline its

borders. It is possible to draw not only rectangles, but also

circles, manipulating by “height”, “width” and “radius” [11]

properties.

- Text – is a submission of the text. The sizes of an

element are calculated from the text containing in it. All

aspects of a display are changed.
- Image - the image. All available formats of

pictures in Qt are supported.

- MouseArea - realizes support of the user input

using a mouse or gestures on sensor devices.

All visual QML components are constructed from

the described ones above. In addition, they can process

various user commands.

With these objects, it is possible to make various

manipulations including scaling, rotation, and movement.

Elements can be grouped in lines (Row) and columns

(Column). Relatively to each other, the objects can be

positioned with the use of “anchors” properties [6].

The following group includes more complex

elements for user input processing [6]:

- TextInput – is used for the text input. It is possible

to operate the input using standard validators or own based on

regular expressions.

- FocusScope – controls over the input focus

transfer.

- TextEdit – is a multirowed text input with

additional opportunities of the text decoration.

- Keys – is processing of events of the input from

the keyboard.
Further, the elements, visualizing a change of the

property from a primary value to the final one, which is

animation, will be considered. It is possible to define nature

of a change of sizes by special functions. The main group of

available animations contains [12]:

- PropertyAnimation – the animation of a change of

properties;

- NumberAnimation – the animation of a change of

sizes;

- ColorAnimation – the animation of color;

- RotationAnimation – the rotation animation.

The complete list of animation objects is much

wider and this article will not consider it.

EasingCurves - will define the mathematical law
according to which the animation will be applied. There are

10 basic laws; the linear one is used by default. Animations

can be united into consecutive and parallel groups, stopped

and started at any moment of playing [6].

It is often convenient to describe the user interface

in the form of a set of states - a set of properties, which can

be changed by any event. Transitions between properties can

be animated. It is also possible that states themselves react to

events with the use of signals and slots [6].

In QML the state is defined with the help of the

“State” element containing a corpus of properties and values,

conditions of transition to other states and handlers of certain

events. A special machine unites the states and controls over

their change [6].

QML supports Model-View-Delegate template -

assuming that data are stored separately from their

representations. The model defines what data will be

displayed and how they can be changed [6]. During

application programming it is very important to understand a

need of the separate data storage and the way of their

representation. It does the system flexible and expanded.

The model (Model) in Qt ideologies presents a set of

data; representation (View) is their visual display. The
delegate (Delegate) provides a connection of the model and

representation, operating the model visualization. The basic

representations in QML are [6]:

- ListView – is the representation in the form of a

list;

- GridView – is the representation in the form of a

grid.

Representations may contain headings, various

displays of active and inactive elements, can process the

pressing of keys and gestures for the organization of

navigation [13].

If the representation points a general concept of

visualization of data, than the delegate points a direct display

of data. The delegate, having a direct access to the model of

data and representation, can operate a visual display and

editing data [14].

Representations can animate an addition and a

removal of data from the model with the use of definition

slots onAdd and onRemove [6].

QML can use the standard models of Qt data or

created by the user.

Though initially QtQuick does not contain elements

of management, the type of a button, combobox, checkbox,
they can be realized independently without any difficulties. In

addition, the company Digia that now owns [15] Qt, created a

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38557-38561

© Research India Publications. http://www.ripublication.com

38559

set of QtQuick Controls widgets for filling this gap. The use

of these elements guarantees the interface components under

control of various operating systems [1].

If there are not enough opportunities of QML for

realization of necessary functions, Qt C ++ steps on the stage.

The first task in this field is a connection of QML and C ++

objects. The further matter will be about it [16]. It should be

noted now that the ways given below are not only right.

Because all QML types are successors of a QObject

class, the QtQuick platform can use the metaobject Qt system

for the bilateral interaction between objects.

QML components form hierarchical trees, an access
to concrete object can be got using QObject:: objectName

property and QObject:: find() function. Then for reading and

writing down the properties the QObject functions

QObject::setProperty() и QObject::property() can be used

[17].

Any QML method can be executed from C++ using

the QMetaObject::invokeMethod() function. The signature of

this function demands that input parameters and output values

are the QVariant type because exactly it is used for transfer of

data between QML and C++ [17].

All QML signals are automatically available from

C++ through the mechanism of a standard QObject::

connect() connection. Similar to any С++ the signal can be

accepted by QML object. As usual, signals can transmit data

as its arguments [17].

QML can directly work with the C ++object. The

following requirements must be done for this purpose [18]:

- С++ class must be the successor of QObject and

contain Q_OBJECT macro;

- Available for QML methods must take place in the

section “public slots” or have the Q_INVOKABLE modifier;

- The properties must be made out as

Q_PROPERTY;
- The entrance and output data must be the following

[19] (table 1);

Table 1. The entrance and output data

Qt type Coordinated QML type

bool bool

unsignedint, int int

double double

float, qreal real

QString string

QUrl url

QColor color

QFont font

QDate date

QPoint, QPointF point

QSize, QSizeF size

QRect, QRectF rect

QMatrix4x4 matrix4x4

QQuaternion quaternion

QVector2D, QVector3D,

QVector4D

vector2d, vector3d, vector4d

Enumerated, formalized as

Q_ENUMS()

enumeration

QVariantList and QVariantMap will automatically

be transformed by QML cursor into the JavaScript array or

the object. The same also refers to QDateTime. Without

problems the following Qt containers will be transformed:

List <int>, QList <qreal>, QList <bool>, QList <QString>,

QStringList, QList <QUrl> [19].

- C++ class must be registered in the QML system

with the use of the qmlRegisterType() function [20].

A set of the taken measures allows C ++ objects to

look and behave themselves as usual QML elements.

Even from such familiarity with QtQuick and QML

it is possible to make a conclusion that this technology
contains a big set of techniques and opportunities for creation

of a wide range of the cross-platform software. Exactly for

this reason, it was chosen for implementation of the

application for debugging of modules of a mobile

multipurpose hardware-software complex of long

cardiomonitoring and ergonometry.

The development of the application for testing of

hardware modules taking into account a possibility of

installation and start of a program not only under Windows,

but also under Android entered a task. A connection with

modules is carried out on Bluetooth.

It was decided to give a chance for QtQuick to prove

itself, the creation of Cardiobugger application, which is used

by developers for debugging of hardware modules, was the

result, and it is possible to do it with Windows or Android

devices. The results shows that QtQuick and QML are really

powerful tools of the creation of modern applications. Figure

1 gives the screenshot of the program work. However, there

were some difficulties about which the further matter will be.

QtQuick in Community version does not contain

widgets for drawing graphs [21]. The problem is solved by

the creation of own element based on QMLCanvas - a

component for drawing simple and difficult figures and
images displaying. An addition, text, shadows, gradients and

low-level operations with pixels are also available.

Programming is conducted on JavaScript on available QML

Canvas functions corresponds HTTP5 Canvas [22]. The code

of drawing needs to be placed in the onPaint method for

copying of a context to cause the Canvas::requestPaint()

function.

Fig. 1. The work of Cardiobugger on Android

http://doc.qt.io/qt-5/qml-bool.html
http://doc.qt.io/qt-5/qml-int.html
http://doc.qt.io/qt-5/qml-double.html
http://doc.qt.io/qt-5/qml-real.html
http://doc.qt.io/qt-5/qstring.html
http://doc.qt.io/qt-5/qml-string.html
http://doc.qt.io/qt-5/qurl.html
http://doc.qt.io/qt-5/qml-url.html
http://doc.qt.io/qt-5/qcolor.html
http://doc.qt.io/qt-5/qml-color.html
http://doc.qt.io/qt-5/qfont.html
http://doc.qt.io/qt-5/qml-font.html
http://doc.qt.io/qt-5/qdate.html
http://doc.qt.io/qt-5/qml-date.html
http://doc.qt.io/qt-5/qpoint.html
http://doc.qt.io/qt-5/qpointf.html
http://doc.qt.io/qt-5/qml-point.html
http://doc.qt.io/qt-5/qsize.html
http://doc.qt.io/qt-5/qsizef.html
http://doc.qt.io/qt-5/qml-size.html
http://doc.qt.io/qt-5/qrect.html
http://doc.qt.io/qt-5/qrectf.html
http://doc.qt.io/qt-5/qml-rect.html
http://doc.qt.io/qt-5/qmatrix4x4.html
http://doc.qt.io/qt-5/qml-matrix4x4.html
http://doc.qt.io/qt-5/qquaternion.html
http://doc.qt.io/qt-5/qml-quaternion.html
http://doc.qt.io/qt-5/qvector2d.html
http://doc.qt.io/qt-5/qvector3d.html
http://doc.qt.io/qt-5/qvector4d.html
http://doc.qt.io/qt-5/qml-vector2d.html
http://doc.qt.io/qt-5/qml-vector3d.html
http://doc.qt.io/qt-5/qml-vector4d.html
http://doc.qt.io/qt-5/qobject.html#Q_ENUMS
http://doc.qt.io/qt-5/qml-enumeration.html

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38557-38561

© Research India Publications. http://www.ripublication.com

38560

The following problem was the lack of Bluetooth

support at Qt on Windows (in 5.4 version) [23]. To resolve

the issue for a start the abstract IBluetoothProvider class for

granting the unified interface of the interaction with other

objects was created. A class for the work with Bluetooth on

Android - AndroidSppProvider was inherited from

IBluetoothProvider and uses internal Qt Bluetooth methods.

A class on Windows - WindowsSppProvider which is also

inherited from IBluetoothProvider used WindowsAPI for the

work with Bluetooth. During the registration of a class in

QML system, the type of the operating system was defined,

and the necessary one was changed. Figure 2 gives the
example.

#ifdef Q_OS_ANDROID

qmlRegisterType<AndroidSppProvider>(“com.ivware16.components”
, 1, 0, “BluetoothProvider”);
#else
qmlRegisterType<WindowsSppProvider>(“com.ivware16.
components”, 1, 0, “BluetoothProvider”);
#endif

Fig. 2. Registration of a class for the work with Bluetooth

Thus, depending on the compiler under the

BluetoothProvider name either WindowsSppProvider, or

AndroidSppProvider was registered. No additional

manipulations were required.

By similar way the switching of elements

representations depending on the operating system was

realized (fig. 3).

#ifdef Q_OS_ANDROID

qmlRegisterType(QUrl(“qrc:/MobileLayout.qml”),

“com.ivware16.components”, 1, 0, “ElementsLayout”);

#else

qmlRegisterType(Qurl(“qrc:/DesctopLayout.qml”),

“com.ivware16.components”, 1, 0, “ElementsLayout”);

#endif

Fig. 3. Registration of the apportion of elements

It was a necessary step because the desktop layout

contained widgets which representation is inconvenient and

inexpedient on mobile devices. Therefore, it was decided to

make two configurations with the unified interface of input-

output, but different elements. A necessary class was chosen

at a compilation stage depending on the used compiler.

The following problem consisted in particular works
of Bluetooth on Android devices. On Android 4.2 version, it

was revealed that if the application is kept in a cache, but the

connection with Bluetooth module was not broken off, there

was a risk of impossibility of the further work with Bluetooth

without a reset of Android device [24]. Thus, it was necessary

to control the condition of a program, and at its preservation

in a cache and the further closing, to break Bluetooth

connection off. It cannot be done with the use of QML, but it

is possible in C++.

QGuiApplication contains the signal informing

about the change of the application status - QguiApplication::

applicationStateChanged(), it is only necessary to transfer

these data to root QML object. Not to encumber a code with

the excess designs it was decided to use the new syntax of Qt

signals and slots working without additional metainformation

(fig. 4) [25].

Qlist<Qobject *>qmlObjects = engine.rootObjects();

Qobject *mainObject = qmlObjects.first();

QvariantreturnedValue;

Qobject::connect(&app,

&QguiApplication::applicationStateChanged,

 [&](Qt::ApplicationState state){

QmetaObject::invokeMethod(mainObject,

“applicationStateChandges”,
 Q_RETURN_ARG(Qvariant,

returnedValue),

Q_ARG(Qvariant, state));});

Fig. 4. Sending the signal of the status change of the

application to QML

Thus, the root QML element began to receive

notices about the status of the application and closed

independently Bluetooth connection if it will be necessary.

Conclusion
Despite so short look at QtQuick and QML, it is possible to

safely recommend this technology for the development of big

software products with the difficult user interface. Of course,

there are problems which are specific for each platform, but

one is clearly absolute - Qt applications can be now already

compiled under the majority of modern operating systems
and provide to their users the equivalent and convenient tools

for solution of their tasks.

The results of researches, which this paper has presented,

where got with the financial support of the Ministry of

Education and Science of the Russian Federation within

realization of the "Creation of Advanced technology

production on fabrication of a mobile multipurpose hardware-

software complex of long cardiomonitoring and

ergonometry" project according to the governmental

resolution № 218 (9 April, 2010). Researches were conducted

in FSAEI of HE of the SFU.

References

[1] Digia. Qt Project [Электронный ресурс] // Qt

Project: [сайт]. [2015]. URL: http://qt-project.org/

(accessed date: 29.03.2015).

[2] Shlee М. Qt 4.5 Professionalnoe programmirivanie

na С++. Saint-Petersburg: BKHV-Petersburg, 2010.

[3] Blanchette, J. & Summerfield M. 2006, C++ GUI

Programming with Qt 4. Prentice Hall. pp. 560.

[4] Freeman, J. 2013, Who nailed the principles of great

UI design? Microsoft, that’s who // InfoWorld.

2013. URL:

http://www.infoworld.com/article/2614315/applicati

on-development/who-nailed-the-principles-of-great-

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38557-38561

© Research India Publications. http://www.ripublication.com

38561

ui-design--microsoft--that-s-who.html?page=3

(accessed date: 29.03.2015).

[5] Qt Project. Vvedenie v Qt Quick // Qt Project. 2011.

URL: https://qt-

project.org/wiki/IntroductionQtQuick_Russian

(accessed date: 29.03.2015).

[6] Johan, T.J. Juergen Bocklage-Ryannel & Johan

Thelin. 2014.

[7] The Qt Company Ltd. Qt Quick Compiler // Qt IO.

2015. URL: http://doc.qt.io/QtQuickCompiler/

(accessed date: 29.03.2015).

[8] Zharko, Miyailovich D., 2013, Tehnologii razrabotki
polzovatelskih interfeisov // Otkrytye sistemy. URL:

http://www.osp.ru/os/2013/10/13039072/ (accessed

date: 29.03.2015).

[9] The Qt Company Ltd. Property Binding // Qt IO.

2015. URL: http://doc.qt.io/qt-5/qtqml-syntax-

propertybinding.html (accessed date: 29.03.2015).

[10] The Qt Company Ltd. Item QML Type // Qt

Documentation. 2015. URL: http://doc.qt.io/qt-

5/qml-qtquick-item.html (accessed date:

29.03.2015).

[11] The Qt Company Ltd. Rectangle QML Type // Qt

Documentation. 2015. URL: http://doc.qt.io/qt-

5/qml-qtquick-rectangle.html (accessed date:

29.03.2015).

[12] The Qt Company Ltd. Usecase - Animations In

QML // Qt Documentation. 2015. URL:

http://doc.qt.io/qt-5/qtquick-usecase-

animations.html (accessed date: 29.03.2015).

[13] The Qt Company Ltd. ListView QML Type // Qt

Documentation. 2015. URL: http://doc.qt.io/qt-

5/qml-qtquick-listview.html (accessed date:

29.03.2015).

[14] The Qt Company Ltd. Model/View Programming //
Qt Documentation. 2015. URL: http://doc.qt.io/qt-

5/model-view-programming.html (accessed date:

29.03.2015).

[15] The Qt Company Ltd. Qt Quick Controls // Qt

Documentation. 2015. URL: http://doc.qt.io/qt-

5/qtquickcontrols-index.html (accessed date:

29.03.2015).

[16] The Qt Company Ltd. Qt QML // Qt Official Site.

2015. URL: http://doc.qt.io/qt-5/qtqml-index.html

(accessed date: 29.03.2015).

[17] The Qt Company Ltd. Interacting with QML Objects

from C++ // Qt Official Site. 2015. URL:

http://doc.qt.io/qt-5/qtqml-cppintegration-

interactqmlfromcpp.html (accessed date:

29.03.2015).

[18] The Qt Company Ltd. Integrating QML and C++ //

Qt Official Site. 2015. URL: http://doc.qt.io/qt-

5/qtqml-cppintegration-topic.html (accessed date:

29.03.2015).

[19] The Qt Company Ltd. Data Type Conversion

Between QML and C++ // Qt Official Site. 2015.

URL: http://doc.qt.io/qt-5/qtqml-cppintegration-

data.html (accessed date: 29.03.2015).
[20] The Qt Company Ltd. Defining QML Types from

C++ // Qt Official Site. 2015. URL:

http://doc.qt.io/qt-5/qtqml-cppintegration-

definetypes.html (accessed date: 29.03.2015).

[21] Digia. Download Qt // Official Qt Site. 2015. URL:

http://www.qt.io/download/ (accessed date:

29.03.2015).

[22] The Qt Company Ltd. Canvas QML Type // Qt

Documentation. 2015. URL: http://doc.qt.io/qt-

5/qml-qtquick-canvas.html (accessed date:

29.03.2015).

[23] The Qt Company Ltd. Qt Bluetooth // Qt Official

Site. 2015. URL: http://doc.qt.io/qt-5/qtbluetooth-

index.html (accessed date: 29.03.2015).
[24] Young D.G. A Solution for Android Bluetooth

Crashes // Radius Networks. 2014. URL:

http://developer.radiusnetworks.com/2014/04/02/a-

solution-for-android-bluetooth-crashes.html

(accessed date: 29.03.2015).

[25] The Qt Company Ltd. Signals & Slots // Qt

Documentation. 2015. URL: http://doc.qt.io/qt-

5/signalsandslots.html (accessed date: 29.03.2015).

