
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38445-38452 

© Research India Publications.  http://www.ripublication.com 

38445 

A Single Scan Prefix-Tree Construction Approach For Maximal Pattern 

Mining 
 

 

R .Vishnu Priya 

 
School Computing Science and Engineering 

VIT University Chennai Campus 

{vissaru@yahoo.co.in} 

 

 

ABSTRACT 
Mining maximal patterns from databases is useful for 

knowledge discovery. In this paper, we propose a novel tree 

structure called Single Scan FP-tree (SFP-tree), which scan 

entire transactions only once and the tree is constructed along 

with its corresponding item list. The items in the item list are 

sorted by respective items frequency. Then, constructed tree is 

dynamically reorganized for those items satisfy the minimum 

support based on the sorted items in the item list. FPmax 

approach is used for constructing Maximal Single Scan FP-

tree from SFP-tree. We have evaluated the performance of the 

MSFP-tree on benchmark databases such as CHESS, 

MUSHROOM CONNECT_4, PUMSB_STAR, T10I4D100K 

and T40I0D100K. It is observed that the time taken for 

extracting maximal patterns from the MSFP-tree is 

encouraging compared to the conventional MFI-tree. 

 

Keywords: Maximal Pattern Mining; Association Rule 
Mining; SFP-tree; MSFP-tree; MFI-tree 

 
 
INTRODUCTION 
The frequent item sets present in the database have been used 

for finding and extracting interesting patterns for knowledge 

discovery. Among various data mining techniques, the 

association rule mining is considered as one of the popular 

problems. One of the primary steps in association rule mining 

is to identify the frequent patterns. Agrawal et. al. have 

introduced the frequent item set problem and later the field 

has received attention from researchers both in academia and 

industries. In Apriori algorithm, mining frequent item set 

requires a large memory space that scans the database 

multiple times. Han et al. (2004), proposed the FP-tree, which 

avoid the multiple scans by constructing  highly compact 

frequent descending tree structure and it is built with two 

scans. It is observed that the number of times for scanning the 

database increases the mining time considerably. Meanwhile, 

mining subsets for a large frequent item set of length „l‟, then 

almost „2l „item sets are generated and leads to increase in 

mining time. This can be avoided from the facts that “any 

subset of the frequent item set must be frequent” and it is 
sufficient to find only the maximal frequent item. In this 

paper, we modify the MFI-tree and proposed a novel tree 

structure, which scans the transactional database only once. 

The proposed tree is constructed only for those items satisfies 

minimum support by reorganizing the nodes in each branch 

from already constructed tree based on item sorted list. The 

maximal item sets are mined from the proposed tree using 

FPmax technique. By this approach, modified tree takes less 

time for maximal pattern mining compared to the 

conventional MFI-tree. 

We organize the rest of the paper as follows. We discuss the 

related work in the next section. In Section 3, the procedure 

for construction and reorganizing of the SFP-tree is presented. 

We summarize the maximal pattern mining with suitable 

example in Section 4. We present the experimental result in 

Section 5 and conclude the paper in the last section of the 

paper. 

 
 
RELATED WORKS 
Various algorithms have been proposed for improving the 

performance of Apriori-based algorithms such as hashing 

technique proposed by Park et al. (1995), partitioning 

technique presented by Savasere et al. (1995), Toivonen 

(1996) given a sampling approach, dynamic itemset counting 
by Brin et al. (1997), Cheung et al. (1996) designed the 

incremental. The performances of these approaches are found 

to be better compared to Apriori based to mine the frequent 

patterns. The issues of apriori based algorithms have been 

handled using tree based approaches and the prefix tree 

structure algorithms, namely, FP-tree, Light Partial Support-

FP-Forest (Chen et al., 2008) algorithms mines the frequent 

pattern with two scans using pattern growth approach without 

generating the candidate sets. In case of LPS-FP-Trees 

algorithm, it uses two data structures, namely LPS-tree and 

LPS-forest for mining frequent patterns and in the second 

scan, the LPS-FP-Forest is built. Since, LPS-FP-Forest is 

unidirectional, the pointer of the each node in the LPS-FP-

Forest is linked to its parent. Even though, these algorithms 

mines frequent patterns with two scans from larger size 

database, efficiency of mining is not encouraging. This is due 

to the fact that, the number of scan increases the time to mine 

patterns. To improve the efficiency, Yong Qiu et al. (2006) 

have designed the Quick FP-tree Constructing algorithm, and 

the tree is built with single scan. The given transactional 

database is divided into ‘n’ parts. During the first scan, the 

transactions in each part is scanned to find local item lists, that 

consists of items arranged in descending order based on its 
local frequency of occurrence. For each part, the local FP-tree 

is built based on the corresponding local item list. The support 

of each item is count from all the local FP-tree and items are 

arranged in descending order based on its frequency. Each 

branch of the local FP-tree is removed and sorted based on 

descending order of items. The sorted items are inserted as a 

branch into the new tree. This process continues till entire 
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local FP-trees are merged. This algorithm uses pattern growth 

approach to mine the patterns. Even though, the tree is build 

with single scan, this algorithm requires space to hold local 

FP-trees and consumes time for merging the trees. The 

frequent patterns can also be retrieved using different data 

structure and Pei et al. (2001) has proposed H-mine (Hyper-

Structure Mining) algorithm, which is the combination of 

array and hyper links. To mine the frequent patterns, the new 

conditional databases such as link adjustment are constructed 

and the construction cost is low compared to FP-tree. 

However, H-mine algorithm has a constraint such that the 

items can be ordered only by a fixed order, since the hyper 
structure will not change except the hyper link. In addition, 

the hyper structure is not found to be efficient for dense 

database and the transaction cost is additional for unfiltered 

items.  In some cases, it is also necessary to process and mine 

the data format. Zake et al. (1997) has proposed the 

Equivalent Class Transformation algorithm, which use 

vertical data format for mining. This is in contrast to the 

working principle of both Apriori based and FP-tree based 

algorithm. Both of these algorithms mine the frequent patterns 

from the horizontal formatted data. It uses lattice theory to 

represent the database items. However, it requires an 

additional conversion step. In addition, it also uses a Boolean 

power set lattice, which uses large space to store the labels 

and lists of tid. While this algorithm is found to be competent 

for large item sets, the performance is not encouraging for 

small item set. 

It is noticed from the above discussion that most of the 

algorithms require larger time for mining the frequent patterns 

from transactional database and to decrease the mining time, it 

is enough to find the maximal patterns. Thus, it is imperative 

that an algorithm is required for mining maximal patterns 

swiftly. In this paper, we proposed a tree, which scan the 

transactional database only once and the time for maximal 
pattern mining is found to be low compared to some of the 

proposed algorithms. 

 
 
THE SINGLE SCAN FREQUENT PATTERN – TREE 
In our approach, the tree is constructed in three stages such as 

construction phase, finding local sorted item list phase and 

reorganizing phase. We explain each phase in following sub-

sections. 

 

Construction Phase 

The transactions are inserted as a branch into the construction 

tree one by one based on the order of the items in each 

transaction and its corresponding item list is generated. This is 

being done to mine maximal patterns by performing only one 

scan of the database. Since, the numbers of scans decrease, the 

time to mine maximal patterns are also decreases. In Table 1, 

we have presented the sample transactions considered for 

mining the maximal pattern. The TID is the transaction id and 

Ii is the item in a particular transaction. 

 

 

 
 

 

Table 1. Sample Transactions 

 

TID Transactions 

1 I2   I1  I6   I7   I8 

2 I4  I5  I1 

3 I2   I1   I6    I7    I4 

4 I1   I2   I3 

5 I1  I4   I7 

6 I2   I4   I7   I3   I9 

 

 

The constructed tree will have the item list along with its 

occurrence. The items with lower count value than the support 

threshold are pruned. The remaining items are sorted in 

descending order of their frequency of occurence and stored in 

the list called Item sorted list (Isort). Then, we dynamically 

reorganize the constructed tree based on Isort. Below, we 

illustrate the process of tree construction with a suitable 

example. Initially, an empty node is created with null as the 

label. The first transaction in Table 1, which is <I2 I1 I6 I7 I8>, 

scanned once. Each item with its frequency of occurrence are 

inserted as a branch into the tree. Let the inserted branch in 

the tree is <I2:1 I1:1 I6:1 I7:1 I8:1>. After inserting the first 

transaction, the next transaction < I4 I5 I1> is scan once. The 

first item in this transaction is checked with children of the 

root node. In this case, the first item of transaction is I4 and 

child of root node is I2. While, if both the items are equal, the 
count of the node is incremented in that branch by one and the 

current item is not inserted as a node and the process 

continued to check the next item. Otherwise, the items in the 

transaction are inserted as a branch or path with its support 

value as 1. In this case I4 ≠I2, hence it is inserted as a new 

branch. Let the second inserted branch in the tree is <I4:1 I5:1 

I1:1>. In the same way, all the remaining transactions are 

inserted into the tree and its item list consists of the items 

along with its total number of occurrence in the database is 

generated. The items with the occurrences less than the 

support threshold are pruned from the list and remaining items 

are sorted in descending order of their frequency and stored 

into the list called Isort. In Figure 1, we show the constructed 

tree and the corresponding Isort with items satisfy the minimum 

support. 

 

Figure 1:  The Constructed Tree with Item Sorted List 
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However, at this stage, items are not inserted in the 

descending order of its frequency and thus the constructed tree 

is similar to Frequent-Independent tree with its Isort. 

Below, we present the algorithm for generating the 

construction tree along with its Isort. 

 
Algorithm for tree construction 
Input: Transaction database DB, Total number of transactions 

N. 

Output: Constructed Tree, Item Sorted List Isort. 

 

Method: 
 

 

1. Read DB, N and set j=1. 

2. Create an empty node for the tree 

“T” with null as the label. 

3. while (j<=N) 

4. { 

5. Examine the transaction tj from DB 

6. Let the transaction be [i/I], where 

i is the foremost item and I is the 

remaining items in the transaction,then 

Call construct_tree([i/I],T). 

7. Function construct_tree([i/I],T) 

8. { 

9. if T has no child then 

10. insert transaction [i/I] as the 

branch of T 

11. else 

12. { 

13. if T has a child C such that 

C.item_name=I.item_name then 

increase C’s count by 1 and then child of 

C is check(equal or not equal) with     

subsequently item in I. 

14. else 

15. { 

16. Create a new_node I; 

17. I’s count=1; I’s predecessor  be 

connected to I; 

18. I’s node_link be connected to rest 

of the items in the transaction 

19. } 

20. } 

21. End Function 

22. } Increment j variable. 

23. } 

24. Find occurrences of each item from 

the constructed tree and pruned those 

items not satisfied minimum support. Then 

items are arranged based on occurrences 

are stored into Isort. 

 

 

 

Once,  the tree is constructed by using all the transaction, it is 

necessary to reorganize the constructed tree in such a way that 

the nodes with frequency of occurrence will be on the top and 

the one with less frequency of occurrence will be in the 

bottom of the tree. This is being carried out for effective 

maximal pattern mining. The reorganizing phase of the SFP-

tree is explained below. 

 
 
Reorganizing Phase 
The constructed tree depicted in Fig. 1, consists of many 

branches and many paths. In reorganizing phase, the nodes in 

each branch of the tree will be reorganized based on the order 

of items in Isort. The reorganizing process can be performed 

using various sorting techniques, and in our approach the 

merge sorting technique is used. Each path of the branch is 

removed from the tree sorted based on Isort and inserted back 
as a branch into the tree. This reorganizing process continues 

till the entire branches in the constructed tree are reorganized 

based on Isort.  Now we illustrate the reorganizing phase with a 

suitable example. The unsorted paths are reorganized into 

sorted paths. The first path of the second branch of I2 from the 

constructed tree <I2:1 I1:1 I6:1 I7:1 I8:1> is removed. The 

removed path is unsorted and is stored in a temporary array. 

The items stored in the temporary array are sorted based on 

the items arranged in Isort using merge sort technique. The 

sorted path along with its corresponding frequency < I1:1 I2:1 

I7:1 I6:1> is inserted back as a branch into the reorganized tree 

and is shown in Figure 2. We can observe that an item I8 is 

pruned from the sorted path, since its frequency of occurrence 

is less than the specified support threshold. 

 

 

 

Figure 2: The Reorganized Tree (SFP-tree) 

 
 

After insertion, the next unsorted branch is removed from the 

tree, which is < I4:1 I5:1 I1:1> (Figure 1) and stored in 

temporary array. The items in temporary array are sorted 

based on Isort and the first item <I1:1> in Isort is checked with 

children of the root node, which is <I1:1> and both are equal. 

Thus, the count of the item in the branch is incremented by 

count of the item in temporary array. After checking the first 

item, the second item <I4:1> is checked with second node of 

the branch <I2:1>. In this case, both are not equal and <I4:1> 

is linked as a child of <I1:5>. The rest of the items in temp 

array is linked as the child of <I4:1> as shown in Figure 2. 
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This process is continued till all the branches in constructed 

tree are inserted into reorganized tree. While constructing the 

reorganized tree, the tree is constructed only for all items that  

satisfy the minimum support. In this case, the minimum 

support given by the user is “2”. Below, we present the 

algorithm for reorganizing phase. 

 
Algorithm for tree reorganizing 
Input: Isort and Constructed Tree T. 

Output: Reorganize Tree. 

 

Method: 
 

 

1. Read Isort and Constructed Tree T 

2. for each branch Bi in T 

3. for each unprocessed path Pj in Bi 

4. Remove the unprocessed path Pj from 

T 

5. If each node in Pj is sorted based 

on Isort 

6. {for each node nk in Pj from the 

leafp node 

7. for each sub_path S from nk to leafc  

with leafc not equal to leafp 
8. If frequency of each node in S from 

nk to leafc are less than  frequency of 

node nk 

9. P= path from the root to leafc 

10. Execute the step from 15 - 18 

11. else 

12. P= S from nk to leafc 

13. If P is sorted path 

14. Execute the step from 5 - 13  } 

15. else 

16. {Reduce the frequency of each node 

in Pj to the frequency of leaf node 

17. Stored each node in P into the temp 

array 

18. Insert sorted nodes as a branch 

into reorganized tree R} 

19. Terminate while the entire path in 

tree T is inserted into R based on Isort. 

 

In the above algorithm, we retrieves constructed tree and Isort 

for reorganizing the constructed tree based on Isort. Each 

branch of the constructed tree is checked, if the branch is 

unsorted then the branch is sorted using merge sort technique. 

Otherwise, we skip the sort operation for that path and also 

spread the path information to all branching nodes in the same 

path of the whole branch. Hence, for the remaining sub-paths 

in the same branch, it is sufficient to check only the node from 

leaf to the branching node of the sub-path. This process get 

terminate, while all the branches in the constructed tree are 

reorganized based on Isort. 

 
 
MINING MAXIMAL PATTERNS USING SFP-TREE 
One of the important tasks in the association rule mining is 
maximal pattern mining. In this section, we illustrate maximal 

patterns mining from the SFP-tree using FPmax approach. At 

first, the conditional pattern base is found for all the items in 

the Isort. Each and every item from the bottom in Isort is 

considered for finding the conditional pattern base. While 

finding the conditional pattern base of the current item, we 

retrieve the set of prefix paths from the root of the reorganized 

tree till the current item. Each item present in the prefix path 

carries the occurrence of the corresponding current item in 

that path. From the conditional pattern base of the current 

item, a small Ilistcur is generated. Ilistcur consists of the items 

that satisfy the support threshold. After Ilistcur is created, a 

new conditional tree is constructed from the conditional 

pattern base of the current item by eliminating all infrequent 
items, which are not found in Ilistcur. Similarly the conditional 

trees are found for all the items in the Isort. The procedure for 

maximal patterns mining is explained with a suitable example. 

For mining maximal patterns of each item, we start travelling 

from bottom to top in Isort, which consist of items I1:5 I2:4 I4:4 

I7:4 I3:2 I6:2. Since the last item in Isort is I6:2, the set of prefix 

paths occurring along with I6 is retrieved for mining. Hence, 

we found the two prefix paths namely I1:5 I2:3 I7:1 I6:1 and 

I1:5 I2:3 I4:1 I7:1 I6:1 that are co-occurring with I6.  I1, I2 and I7 

are the items in the first prefix path with the occurrence of 5, 3 

and 1 respectively. We already stated that “each items present 

in the prefix path carries the occurrence of the corresponding 

item I6 in that path”. Hence, we can find that the occurrence of 

I6 in the first path is “1”. Thus, the occurrence of each item in 

the first prefix path became I1 I2 I7:1. Similarly, the second 

prefix path becomes I1 I2 I4 I7:1. Now, the conditional pattern 

base for I6 consists of two prefix paths such as {(I1 I2 I7:1), (I1 

I2 I4 I7:1)}. After finding the conditional pattern base for I6, 

the IlistI6 is created from the conditional pattern base of I6. Let 

the items in IlistI6 are I1:2 I2:2 I4:1 I7:2. In the IlistI6, item I4 is 

infrequent having a count less than the minimum support 

value (i.e.) 2 given by the user. Hence, the item I4 is 

eliminated while constructing the conditional tree for I6. After 
mining all the patterns suffixing I6 is completed, we move to 

the next item in Isort which is “I3”. To mine the maximal 

patterns for I3, the same procedure is followed. While finding 

the conditional pattern base for I7, we get four prefix paths 

(Figure 2). One among the four paths is <I1 I2 I7 I6>, which 

consists of item I6 and appears together with the item I7. 

However, while finding the conditional pattern base for I7, we 

have not included item I6 in the prefix path. This is due to the 

fact that we have already analyzed the patterns involving I6. 

The same procedure is followed to find the conditional tree 

for all items in Isort. In Table 2, we have presented the 

conditional pattern base and its corresponding conditional 

SFP-tree for all frequent items in Isort. 

 

Table 2. Mined Patterns 

 

item conditional pattern base Conditional SFP-

tree 

I6:2 <I1 I2 I4 I7:1> <I1 I2 I7:1> <I1:2 I2:2 I7:2> 

I3:2 <I1 I2:1> <I2 I4 I7:1> <I2:2> 

I7:4 <I1 I2 I4:1> <I1 I2:1> <I1 I4:1> <I2 

I4:1> 

<I1:3 I2:3 I4:3> 

I4:4 <I1 I2:1> <I1:2> <I2:1> <I1:3 I2:2> 

I2:4 <I1:3> <I1:3> 

I1:5 NULL NULL 
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The Maximal SFP-tree is constructed using conditional SFP-

tree, which is presented in Table. 2. From the conditional tree 

of „I6‟ {I1:2, I2:2, I7:2}, we acquire {I1, I2, I7} as frequent item 

set. Since, {I1, I2, I7} is a maximal item set, it is inserted as a 

branch into the MSFP-tree and is shown in Fig. 3a. The next 

frequent pattern from the conditional tree of „I3‟ is {I2}. The 

item set of „I3‟ is not inserted into the MSFP-tree, since the 

one of the subsets of {I1, I2, I7} is {I2}. For the item „I7‟, the 

conditional item sets is {I1 I2 I4}. Since, {I1, I2} is one of the 

subset of {I1 I2 I7}, these item sets are inserted directly as a 

path into the tree and is depicted in Fig. 3b. The conditional 

item sets from the conditional tree for items„I4‟, „I2‟ and „I1‟ 
are {I1, I2}, {I1}, {Null} respectively. We can determine that 

these item sets are already inserted into MSFP-tree as the 

branches and these item set are not inserted into the MSFP-

tree 

 

 

Figure 3:   After insertion of the maximal patterns (a) {I1, 
I2, I7, I6} (b) {I1, I2, I4, I7} into the MSFP-tree 

 
 

EXPERIMENTAL RESULTS 
In this section, we have shown the runtime of the MSFP-tree 

for mining maximal frequent patterns from the benchmark 

databases. The synthetic databases developed by IBM 

Almaden Quest research group and real databases from the 

UCI Machine Learning Repository have been used for our 

experimental purpose. The experiments have been carried out 

using three dense databases such as CHESS, MUSHROOM 

and CONNECT-4 and three sparse databases such as 

T10I4D100K, T40I10D100K and PUSMB_STAR. In general, 

the minimum support threshold values for mining maximal 

patterns from the dense database is high compared to sparse 

databases, since, each transaction of dense database contains 

many items per transaction and only a few distinct items. In 

contrast, the sparse database represents with few items and 

contains many distinct items. The real databases used for our 

experiment are CHESS, MUSHROOM and CONNECT-4, 

while synthetic database are T10I4D100K, T40I10D100K. 

The experimental results of the proposed tree are presented in 

two subsections. In the first subsection, we have presented the 
performance evaluation of the MSFP-tree in terms of runtime. 

The runtime includes the tree construction time, rearranging 

time and time for mining the maximal pattern. The scalability 

of the MSFP-tree is also presented in the next subsection. We 

have compared the performance of the MSFP-tree with the 

MFI-tree. 

 
Performance analysis of Runtime 
The runtime for mining maximal patterns from dense and 

sparse databases using both the MSFP-tree and MFI-tree is 

presented. In Figures 4(a-e), x-axis shows the support 

threshold values (%) and y-axis shows the runtime in seconds. 

The runtime of the MSFP-tree and MFI-tree is shown with 

different minimum support values for various databases. In 

Figure 4a, we show the time for extracting maximal patterns 

from the MSFP-tree and MFI-tree using CHESS database. 
The CHESS database contains 3196 transactions and 75 items 

with 0.34MB as size. The maximum transaction size and 

average transaction length are 29 and 10.10 respectively. It is 

observed from Figure 4a that the MFI-tree takes slightly more 

time compared to the MSFP-tree for mining maximal patterns. 

For example, the MSFP-tree takes 9.165 and 0.781 seconds 

for the support thresholds of 1% and 95% respectively. 

However, in case of MFI-tree, the time taken is 9.369 and 

0.984 seconds. Similarly, the total number of transactions and 

items in the MUSHROOM database are 8124 and 119 

respectively with 0.83MB as size. The maximum length and 

average size of each transaction in MUSHROOM database is 

23 and 23.00 respectively. While mining with MUSHROOM 

database, the MSFP-tree and the MFI-tree take larger time for 

lower support values and lesser time for higher support 

values. The runtime for the support values of 1% and 95% 

using MSFP-tree is 9.153 and 2.109 seconds respectively. The 

MFI-tree has taken 9.748 and 2.687 seconds respectively. This 

is due to the fact that for lower support values the maximal 

patterns to mine are large in number and it requires higher 

mining time, which increases the rate of change in overall 

runtime. In contrary, for higher minimum support, the 

maximal patterns to mine are low in number and it requires 
low mining time. The last dense database we have used for the 

experiment is CONNECT-4, which contains 67,557 

transactions and 129 items with 8.82 sizes. Each transaction in 

CONNECT-4 is with 43 items and average transaction length 

is 43.00. The runtime for mining using MSFP-tree and MFI-

tree for the minimum support of 30% is 63.274 and 71.21 

seconds and for 70% it is 37.681 and 45.305 seconds 

respectively. It is noticed from Figures 4(a-c), that the run 

time taken by the MSFP-tree is low compared to MFI-tree. 

Since, MFI-tree has constructed the frequent-descending 

prefix tree structure with two scans, the runtime is found to be 

higher. 

Further, the performance comparisons of the proposed method 

using sparse databases are shown in Figures 4(d -f). The 

T10I4D100K is the first sparse database used in our 

experiment with 3.93MB size. It contains 1, 00,000 

transactions and 870 items. The maximum length of the 

transaction consists of 29 items and average length is 10.10 

items respectively. To mine maximal patterns from 

T10I4D100K database, for the lowest minimum support value 

of 0.01% is 385.179 and for the highest minimum support 

value of 3% is 110.342 seconds. However, MFI-tree takes 

414.196 and 140.505 seconds respectively. The second sparse 
database we have used is T40I10D100K with 1, 00,000 

transactions and average transaction size is 39.61. The 
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proposed algorithm mines pattern from T40I10D100K in 

3062.629 and 2084.923 seconds and from the MFI-tree in 

3161.699 and 2193.497 seconds for the support values of 

0.1% and 3% respectively. The last sparse database used is 

PUMSB_STAR with 10.70MB. It consists of 49, 046 

transactions and 2088 items. The maximum length of each 

transaction in PUMSB_STAR is 63 and average length of 

50.48 respectively. While, in PUMSB_STAR database, the 

runtime of the MSFP-tree for the supports 10% and 60% is 

712.823 and 748.331 seconds and MFI-tree takes 895.254 and 

709.434 seconds respectively. From the experimental result, it 

is observed that the performance of the proposed approach is 
encouraging. This performance enhance is due to the fact that 

the proposed MSFP-tree is built with single scan. 

 

 

Figure 4: Runtime for different databases. Extracting 

maximal patterns from (a) CHESS database (b) 

MUSHROOM database (c) CONNECT-4 database (d) 

T10I4D100K database (e) T40I10DI00K database (f)  

PUMSB_STAR data bases 

Scalability of the MSFP-tree 
 

 

In this subsection, we have shown that scalability of the 

proposed method by varying the number of transactions as 

well as support threshold values and mined maximal patterns 

from both dense and sparse databases. The experimental 

results for scalability are discussed below. 

 

Scalability with the number of transactions 
To measure the scalability by varying the number of 

transactions, we have selected the CHESS and T10I4D100K 

databases. We split the CHESS database into four equal parts 

with 1000 transactions in each part. The SFP-tree is built for 

1000 transactions by following the same procedure presented 

in the construction phase and the maximal patterns are mined. 

While, the database is updated with next 1000 transactions, 

the old tree is not used and the entire 2000 transactions are 

rescanned to construct the SFP-tree by again performing the 

construction and reorganizing process. In Figure 5a, we have 

presented the experimental result for scalability with various 

transaction sizes for CHESS database. The x-axis shows the 

number of transactions in each parts and y-axis shows the 

runtime, which includes time for tree construction and 

reorganizing of the SFP-tree. We have fixed the minimum 

support value=10% for mining maximal patterns. From the 

graph, we can observe that as the number of transactions 

increases, the time to mine maximal patterns increases. This is 
due to the fact that while the number of transactions increases 

constantly, the maximal patterns to mine are more and thus 

the runtime increases linearly. In Figure 5b, we have 

presented the experimental results for T10I4D100K. We split 

the T10I4D100K database into ten equal parts consisting 

10,000 transactions and the support value is fixed to 0.01%. In 

Figure 5a, for various transactions, the MSFP-tree takes less 

time compared to MFI-tree and the similar case for 

T10I4D100K database also. This performance enhancement is 

due to the fact that the SFP-tree construction time is less 

compared to the FP-tree construction time. 

 

 

Figure 5: Scalability for various transaction size (a) 

CHESS database (b) T10I4D100K database 

 

 

Scalability with minimum support values 

Similar to the above experiment, we have conducted 

experiment for different minimum support threshold. We have 

presented experimental results in Figure 6 for CONNECT-4 

and PUMSB_STAR databases. We mine the maximal patterns 

by changing support values from 30% to 70% for CONNECT-

4 database and from 10% to 60% for PUMSB_STAR 

database. We can observe for the higher support values, the 

runtime for mining maximal patterns decreases, since the 

number of maximal patterns present in the database is low for 

higher support values. From the result it is noticed that the 

runtime of the MSFP-tree for mining maximal patterns is low 

compared to the runtime of the MFI-tree with varying 

minimum supports. This is due to the effect of novelty in tree 

construction phase of the MSFP-tree. 
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Figure 6: Scalability with various in minimum support 

values (a) CONNECT-4 database (b) PUMSB_STAR 

database 

 
 

CONCLUSIONS 
Various algorithms and approaches have been proposed in 

related works for mining patterns. However, most of these 

approaches take more time for mining especially in very large 

voluminous transactional databases. Hence we proposed the 

algorithm, which captures the entire transactional database 

with single scan to construct the prefix tree for mining 

maximal patterns. SFP-tree is constructed using already 

constructed tree, which is frequent-independent order. Hence, 

we dynamically reorganize the frequent-independent tree into 

frequent-descending order using merge sort technique. We 

pictorially illustrated these procedures for sample 

transactional database. It is noticed that the database scan time 

increases the mining time considerably, since, MFI-tree is 

constructed with two scan, it is imperative that the number of 

scans of the database required to be reduced for mining 

maximal patterns efficiently. Hence, the efficiency is 

developed in our algorithm using single scan of the database. 
Due to the novel modification in construction process, the 

MSFP- tree takes lesser time compare to MFI-tree. FPmax 

approach is used in our algorithm to mine maximal patterns 

from the MSFP-tree.  The performance of the proposed tree is 

evaluated in benchmark databases with huge number of 

transactions with varying length. We have also used both 

sparse and dense databases for mining the maximal patterns. 

Our future research work to modify this algorithm for 

sequential patterns mining. 
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