
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38445-38452

© Research India Publications. http://www.ripublication.com

38445

A Single Scan Prefix-Tree Construction Approach For Maximal Pattern

Mining

R .Vishnu Priya

School Computing Science and Engineering

VIT University Chennai Campus

{vissaru@yahoo.co.in}

ABSTRACT
Mining maximal patterns from databases is useful for

knowledge discovery. In this paper, we propose a novel tree

structure called Single Scan FP-tree (SFP-tree), which scan

entire transactions only once and the tree is constructed along

with its corresponding item list. The items in the item list are

sorted by respective items frequency. Then, constructed tree is

dynamically reorganized for those items satisfy the minimum

support based on the sorted items in the item list. FPmax

approach is used for constructing Maximal Single Scan FP-

tree from SFP-tree. We have evaluated the performance of the

MSFP-tree on benchmark databases such as CHESS,

MUSHROOM CONNECT_4, PUMSB_STAR, T10I4D100K

and T40I0D100K. It is observed that the time taken for

extracting maximal patterns from the MSFP-tree is

encouraging compared to the conventional MFI-tree.

Keywords: Maximal Pattern Mining; Association Rule
Mining; SFP-tree; MSFP-tree; MFI-tree

INTRODUCTION
The frequent item sets present in the database have been used

for finding and extracting interesting patterns for knowledge

discovery. Among various data mining techniques, the

association rule mining is considered as one of the popular

problems. One of the primary steps in association rule mining

is to identify the frequent patterns. Agrawal et. al. have

introduced the frequent item set problem and later the field

has received attention from researchers both in academia and

industries. In Apriori algorithm, mining frequent item set

requires a large memory space that scans the database

multiple times. Han et al. (2004), proposed the FP-tree, which

avoid the multiple scans by constructing highly compact

frequent descending tree structure and it is built with two

scans. It is observed that the number of times for scanning the

database increases the mining time considerably. Meanwhile,

mining subsets for a large frequent item set of length „l‟, then

almost „2l „item sets are generated and leads to increase in

mining time. This can be avoided from the facts that “any

subset of the frequent item set must be frequent” and it is
sufficient to find only the maximal frequent item. In this

paper, we modify the MFI-tree and proposed a novel tree

structure, which scans the transactional database only once.

The proposed tree is constructed only for those items satisfies

minimum support by reorganizing the nodes in each branch

from already constructed tree based on item sorted list. The

maximal item sets are mined from the proposed tree using

FPmax technique. By this approach, modified tree takes less

time for maximal pattern mining compared to the

conventional MFI-tree.

We organize the rest of the paper as follows. We discuss the

related work in the next section. In Section 3, the procedure

for construction and reorganizing of the SFP-tree is presented.

We summarize the maximal pattern mining with suitable

example in Section 4. We present the experimental result in

Section 5 and conclude the paper in the last section of the

paper.

RELATED WORKS
Various algorithms have been proposed for improving the

performance of Apriori-based algorithms such as hashing

technique proposed by Park et al. (1995), partitioning

technique presented by Savasere et al. (1995), Toivonen

(1996) given a sampling approach, dynamic itemset counting
by Brin et al. (1997), Cheung et al. (1996) designed the

incremental. The performances of these approaches are found

to be better compared to Apriori based to mine the frequent

patterns. The issues of apriori based algorithms have been

handled using tree based approaches and the prefix tree

structure algorithms, namely, FP-tree, Light Partial Support-

FP-Forest (Chen et al., 2008) algorithms mines the frequent

pattern with two scans using pattern growth approach without

generating the candidate sets. In case of LPS-FP-Trees

algorithm, it uses two data structures, namely LPS-tree and

LPS-forest for mining frequent patterns and in the second

scan, the LPS-FP-Forest is built. Since, LPS-FP-Forest is

unidirectional, the pointer of the each node in the LPS-FP-

Forest is linked to its parent. Even though, these algorithms

mines frequent patterns with two scans from larger size

database, efficiency of mining is not encouraging. This is due

to the fact that, the number of scan increases the time to mine

patterns. To improve the efficiency, Yong Qiu et al. (2006)

have designed the Quick FP-tree Constructing algorithm, and

the tree is built with single scan. The given transactional

database is divided into ‘n’ parts. During the first scan, the

transactions in each part is scanned to find local item lists, that

consists of items arranged in descending order based on its
local frequency of occurrence. For each part, the local FP-tree

is built based on the corresponding local item list. The support

of each item is count from all the local FP-tree and items are

arranged in descending order based on its frequency. Each

branch of the local FP-tree is removed and sorted based on

descending order of items. The sorted items are inserted as a

branch into the new tree. This process continues till entire

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38445-38452

© Research India Publications. http://www.ripublication.com

38446

local FP-trees are merged. This algorithm uses pattern growth

approach to mine the patterns. Even though, the tree is build

with single scan, this algorithm requires space to hold local

FP-trees and consumes time for merging the trees. The

frequent patterns can also be retrieved using different data

structure and Pei et al. (2001) has proposed H-mine (Hyper-

Structure Mining) algorithm, which is the combination of

array and hyper links. To mine the frequent patterns, the new

conditional databases such as link adjustment are constructed

and the construction cost is low compared to FP-tree.

However, H-mine algorithm has a constraint such that the

items can be ordered only by a fixed order, since the hyper
structure will not change except the hyper link. In addition,

the hyper structure is not found to be efficient for dense

database and the transaction cost is additional for unfiltered

items. In some cases, it is also necessary to process and mine

the data format. Zake et al. (1997) has proposed the

Equivalent Class Transformation algorithm, which use

vertical data format for mining. This is in contrast to the

working principle of both Apriori based and FP-tree based

algorithm. Both of these algorithms mine the frequent patterns

from the horizontal formatted data. It uses lattice theory to

represent the database items. However, it requires an

additional conversion step. In addition, it also uses a Boolean

power set lattice, which uses large space to store the labels

and lists of tid. While this algorithm is found to be competent

for large item sets, the performance is not encouraging for

small item set.

It is noticed from the above discussion that most of the

algorithms require larger time for mining the frequent patterns

from transactional database and to decrease the mining time, it

is enough to find the maximal patterns. Thus, it is imperative

that an algorithm is required for mining maximal patterns

swiftly. In this paper, we proposed a tree, which scan the

transactional database only once and the time for maximal
pattern mining is found to be low compared to some of the

proposed algorithms.

THE SINGLE SCAN FREQUENT PATTERN – TREE
In our approach, the tree is constructed in three stages such as

construction phase, finding local sorted item list phase and

reorganizing phase. We explain each phase in following sub-

sections.

Construction Phase

The transactions are inserted as a branch into the construction

tree one by one based on the order of the items in each

transaction and its corresponding item list is generated. This is

being done to mine maximal patterns by performing only one

scan of the database. Since, the numbers of scans decrease, the

time to mine maximal patterns are also decreases. In Table 1,

we have presented the sample transactions considered for

mining the maximal pattern. The TID is the transaction id and

Ii is the item in a particular transaction.

Table 1. Sample Transactions

TID Transactions

1 I2 I1 I6 I7 I8

2 I4 I5 I1

3 I2 I1 I6 I7 I4

4 I1 I2 I3

5 I1 I4 I7

6 I2 I4 I7 I3 I9

The constructed tree will have the item list along with its

occurrence. The items with lower count value than the support

threshold are pruned. The remaining items are sorted in

descending order of their frequency of occurence and stored in

the list called Item sorted list (Isort). Then, we dynamically

reorganize the constructed tree based on Isort. Below, we

illustrate the process of tree construction with a suitable

example. Initially, an empty node is created with null as the

label. The first transaction in Table 1, which is <I2 I1 I6 I7 I8>,

scanned once. Each item with its frequency of occurrence are

inserted as a branch into the tree. Let the inserted branch in

the tree is <I2:1 I1:1 I6:1 I7:1 I8:1>. After inserting the first

transaction, the next transaction < I4 I5 I1> is scan once. The

first item in this transaction is checked with children of the

root node. In this case, the first item of transaction is I4 and

child of root node is I2. While, if both the items are equal, the
count of the node is incremented in that branch by one and the

current item is not inserted as a node and the process

continued to check the next item. Otherwise, the items in the

transaction are inserted as a branch or path with its support

value as 1. In this case I4 ≠I2, hence it is inserted as a new

branch. Let the second inserted branch in the tree is <I4:1 I5:1

I1:1>. In the same way, all the remaining transactions are

inserted into the tree and its item list consists of the items

along with its total number of occurrence in the database is

generated. The items with the occurrences less than the

support threshold are pruned from the list and remaining items

are sorted in descending order of their frequency and stored

into the list called Isort. In Figure 1, we show the constructed

tree and the corresponding Isort with items satisfy the minimum

support.

Figure 1: The Constructed Tree with Item Sorted List

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38445-38452

© Research India Publications. http://www.ripublication.com

38447

However, at this stage, items are not inserted in the

descending order of its frequency and thus the constructed tree

is similar to Frequent-Independent tree with its Isort.

Below, we present the algorithm for generating the

construction tree along with its Isort.

Algorithm for tree construction
Input: Transaction database DB, Total number of transactions

N.

Output: Constructed Tree, Item Sorted List Isort.

Method:

1. Read DB, N and set j=1.

2. Create an empty node for the tree

“T” with null as the label.

3. while (j<=N)

4. {

5. Examine the transaction tj from DB

6. Let the transaction be [i/I], where

i is the foremost item and I is the

remaining items in the transaction,then

Call construct_tree([i/I],T).

7. Function construct_tree([i/I],T)

8. {

9. if T has no child then

10. insert transaction [i/I] as the

branch of T

11. else

12. {

13. if T has a child C such that

C.item_name=I.item_name then

increase C’s count by 1 and then child of

C is check(equal or not equal) with

subsequently item in I.

14. else

15. {

16. Create a new_node I;

17. I’s count=1; I’s predecessor be

connected to I;

18. I’s node_link be connected to rest

of the items in the transaction

19. }

20. }

21. End Function

22. } Increment j variable.

23. }

24. Find occurrences of each item from

the constructed tree and pruned those

items not satisfied minimum support. Then

items are arranged based on occurrences

are stored into Isort.

Once, the tree is constructed by using all the transaction, it is

necessary to reorganize the constructed tree in such a way that

the nodes with frequency of occurrence will be on the top and

the one with less frequency of occurrence will be in the

bottom of the tree. This is being carried out for effective

maximal pattern mining. The reorganizing phase of the SFP-

tree is explained below.

Reorganizing Phase
The constructed tree depicted in Fig. 1, consists of many

branches and many paths. In reorganizing phase, the nodes in

each branch of the tree will be reorganized based on the order

of items in Isort. The reorganizing process can be performed

using various sorting techniques, and in our approach the

merge sorting technique is used. Each path of the branch is

removed from the tree sorted based on Isort and inserted back
as a branch into the tree. This reorganizing process continues

till the entire branches in the constructed tree are reorganized

based on Isort. Now we illustrate the reorganizing phase with a

suitable example. The unsorted paths are reorganized into

sorted paths. The first path of the second branch of I2 from the

constructed tree <I2:1 I1:1 I6:1 I7:1 I8:1> is removed. The

removed path is unsorted and is stored in a temporary array.

The items stored in the temporary array are sorted based on

the items arranged in Isort using merge sort technique. The

sorted path along with its corresponding frequency < I1:1 I2:1

I7:1 I6:1> is inserted back as a branch into the reorganized tree

and is shown in Figure 2. We can observe that an item I8 is

pruned from the sorted path, since its frequency of occurrence

is less than the specified support threshold.

Figure 2: The Reorganized Tree (SFP-tree)

After insertion, the next unsorted branch is removed from the

tree, which is < I4:1 I5:1 I1:1> (Figure 1) and stored in

temporary array. The items in temporary array are sorted

based on Isort and the first item <I1:1> in Isort is checked with

children of the root node, which is <I1:1> and both are equal.

Thus, the count of the item in the branch is incremented by

count of the item in temporary array. After checking the first

item, the second item <I4:1> is checked with second node of

the branch <I2:1>. In this case, both are not equal and <I4:1>

is linked as a child of <I1:5>. The rest of the items in temp

array is linked as the child of <I4:1> as shown in Figure 2.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38445-38452

© Research India Publications. http://www.ripublication.com

38448

This process is continued till all the branches in constructed

tree are inserted into reorganized tree. While constructing the

reorganized tree, the tree is constructed only for all items that

satisfy the minimum support. In this case, the minimum

support given by the user is “2”. Below, we present the

algorithm for reorganizing phase.

Algorithm for tree reorganizing
Input: Isort and Constructed Tree T.

Output: Reorganize Tree.

Method:

1. Read Isort and Constructed Tree T

2. for each branch Bi in T

3. for each unprocessed path Pj in Bi

4. Remove the unprocessed path Pj from

T

5. If each node in Pj is sorted based

on Isort

6. {for each node nk in Pj from the

leafp node

7. for each sub_path S from nk to leafc

with leafc not equal to leafp
8. If frequency of each node in S from

nk to leafc are less than frequency of

node nk

9. P= path from the root to leafc

10. Execute the step from 15 - 18

11. else

12. P= S from nk to leafc

13. If P is sorted path

14. Execute the step from 5 - 13 }

15. else

16. {Reduce the frequency of each node

in Pj to the frequency of leaf node

17. Stored each node in P into the temp

array

18. Insert sorted nodes as a branch

into reorganized tree R}

19. Terminate while the entire path in

tree T is inserted into R based on Isort.

In the above algorithm, we retrieves constructed tree and Isort

for reorganizing the constructed tree based on Isort. Each

branch of the constructed tree is checked, if the branch is

unsorted then the branch is sorted using merge sort technique.

Otherwise, we skip the sort operation for that path and also

spread the path information to all branching nodes in the same

path of the whole branch. Hence, for the remaining sub-paths

in the same branch, it is sufficient to check only the node from

leaf to the branching node of the sub-path. This process get

terminate, while all the branches in the constructed tree are

reorganized based on Isort.

MINING MAXIMAL PATTERNS USING SFP-TREE
One of the important tasks in the association rule mining is
maximal pattern mining. In this section, we illustrate maximal

patterns mining from the SFP-tree using FPmax approach. At

first, the conditional pattern base is found for all the items in

the Isort. Each and every item from the bottom in Isort is

considered for finding the conditional pattern base. While

finding the conditional pattern base of the current item, we

retrieve the set of prefix paths from the root of the reorganized

tree till the current item. Each item present in the prefix path

carries the occurrence of the corresponding current item in

that path. From the conditional pattern base of the current

item, a small Ilistcur is generated. Ilistcur consists of the items

that satisfy the support threshold. After Ilistcur is created, a

new conditional tree is constructed from the conditional

pattern base of the current item by eliminating all infrequent
items, which are not found in Ilistcur. Similarly the conditional

trees are found for all the items in the Isort. The procedure for

maximal patterns mining is explained with a suitable example.

For mining maximal patterns of each item, we start travelling

from bottom to top in Isort, which consist of items I1:5 I2:4 I4:4

I7:4 I3:2 I6:2. Since the last item in Isort is I6:2, the set of prefix

paths occurring along with I6 is retrieved for mining. Hence,

we found the two prefix paths namely I1:5 I2:3 I7:1 I6:1 and

I1:5 I2:3 I4:1 I7:1 I6:1 that are co-occurring with I6. I1, I2 and I7

are the items in the first prefix path with the occurrence of 5, 3

and 1 respectively. We already stated that “each items present

in the prefix path carries the occurrence of the corresponding

item I6 in that path”. Hence, we can find that the occurrence of

I6 in the first path is “1”. Thus, the occurrence of each item in

the first prefix path became I1 I2 I7:1. Similarly, the second

prefix path becomes I1 I2 I4 I7:1. Now, the conditional pattern

base for I6 consists of two prefix paths such as {(I1 I2 I7:1), (I1

I2 I4 I7:1)}. After finding the conditional pattern base for I6,

the IlistI6 is created from the conditional pattern base of I6. Let

the items in IlistI6 are I1:2 I2:2 I4:1 I7:2. In the IlistI6, item I4 is

infrequent having a count less than the minimum support

value (i.e.) 2 given by the user. Hence, the item I4 is

eliminated while constructing the conditional tree for I6. After
mining all the patterns suffixing I6 is completed, we move to

the next item in Isort which is “I3”. To mine the maximal

patterns for I3, the same procedure is followed. While finding

the conditional pattern base for I7, we get four prefix paths

(Figure 2). One among the four paths is <I1 I2 I7 I6>, which

consists of item I6 and appears together with the item I7.

However, while finding the conditional pattern base for I7, we

have not included item I6 in the prefix path. This is due to the

fact that we have already analyzed the patterns involving I6.

The same procedure is followed to find the conditional tree

for all items in Isort. In Table 2, we have presented the

conditional pattern base and its corresponding conditional

SFP-tree for all frequent items in Isort.

Table 2. Mined Patterns

item conditional pattern base Conditional SFP-

tree

I6:2 <I1 I2 I4 I7:1> <I1 I2 I7:1> <I1:2 I2:2 I7:2>

I3:2 <I1 I2:1> <I2 I4 I7:1> <I2:2>

I7:4 <I1 I2 I4:1> <I1 I2:1> <I1 I4:1> <I2

I4:1>

<I1:3 I2:3 I4:3>

I4:4 <I1 I2:1> <I1:2> <I2:1> <I1:3 I2:2>

I2:4 <I1:3> <I1:3>

I1:5 NULL NULL

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38445-38452

© Research India Publications. http://www.ripublication.com

38449

The Maximal SFP-tree is constructed using conditional SFP-

tree, which is presented in Table. 2. From the conditional tree

of „I6‟ {I1:2, I2:2, I7:2}, we acquire {I1, I2, I7} as frequent item

set. Since, {I1, I2, I7} is a maximal item set, it is inserted as a

branch into the MSFP-tree and is shown in Fig. 3a. The next

frequent pattern from the conditional tree of „I3‟ is {I2}. The

item set of „I3‟ is not inserted into the MSFP-tree, since the

one of the subsets of {I1, I2, I7} is {I2}. For the item „I7‟, the

conditional item sets is {I1 I2 I4}. Since, {I1, I2} is one of the

subset of {I1 I2 I7}, these item sets are inserted directly as a

path into the tree and is depicted in Fig. 3b. The conditional

item sets from the conditional tree for items„I4‟, „I2‟ and „I1‟
are {I1, I2}, {I1}, {Null} respectively. We can determine that

these item sets are already inserted into MSFP-tree as the

branches and these item set are not inserted into the MSFP-

tree

Figure 3: After insertion of the maximal patterns (a) {I1,
I2, I7, I6} (b) {I1, I2, I4, I7} into the MSFP-tree

EXPERIMENTAL RESULTS
In this section, we have shown the runtime of the MSFP-tree

for mining maximal frequent patterns from the benchmark

databases. The synthetic databases developed by IBM

Almaden Quest research group and real databases from the

UCI Machine Learning Repository have been used for our

experimental purpose. The experiments have been carried out

using three dense databases such as CHESS, MUSHROOM

and CONNECT-4 and three sparse databases such as

T10I4D100K, T40I10D100K and PUSMB_STAR. In general,

the minimum support threshold values for mining maximal

patterns from the dense database is high compared to sparse

databases, since, each transaction of dense database contains

many items per transaction and only a few distinct items. In

contrast, the sparse database represents with few items and

contains many distinct items. The real databases used for our

experiment are CHESS, MUSHROOM and CONNECT-4,

while synthetic database are T10I4D100K, T40I10D100K.

The experimental results of the proposed tree are presented in

two subsections. In the first subsection, we have presented the
performance evaluation of the MSFP-tree in terms of runtime.

The runtime includes the tree construction time, rearranging

time and time for mining the maximal pattern. The scalability

of the MSFP-tree is also presented in the next subsection. We

have compared the performance of the MSFP-tree with the

MFI-tree.

Performance analysis of Runtime
The runtime for mining maximal patterns from dense and

sparse databases using both the MSFP-tree and MFI-tree is

presented. In Figures 4(a-e), x-axis shows the support

threshold values (%) and y-axis shows the runtime in seconds.

The runtime of the MSFP-tree and MFI-tree is shown with

different minimum support values for various databases. In

Figure 4a, we show the time for extracting maximal patterns

from the MSFP-tree and MFI-tree using CHESS database.
The CHESS database contains 3196 transactions and 75 items

with 0.34MB as size. The maximum transaction size and

average transaction length are 29 and 10.10 respectively. It is

observed from Figure 4a that the MFI-tree takes slightly more

time compared to the MSFP-tree for mining maximal patterns.

For example, the MSFP-tree takes 9.165 and 0.781 seconds

for the support thresholds of 1% and 95% respectively.

However, in case of MFI-tree, the time taken is 9.369 and

0.984 seconds. Similarly, the total number of transactions and

items in the MUSHROOM database are 8124 and 119

respectively with 0.83MB as size. The maximum length and

average size of each transaction in MUSHROOM database is

23 and 23.00 respectively. While mining with MUSHROOM

database, the MSFP-tree and the MFI-tree take larger time for

lower support values and lesser time for higher support

values. The runtime for the support values of 1% and 95%

using MSFP-tree is 9.153 and 2.109 seconds respectively. The

MFI-tree has taken 9.748 and 2.687 seconds respectively. This

is due to the fact that for lower support values the maximal

patterns to mine are large in number and it requires higher

mining time, which increases the rate of change in overall

runtime. In contrary, for higher minimum support, the

maximal patterns to mine are low in number and it requires
low mining time. The last dense database we have used for the

experiment is CONNECT-4, which contains 67,557

transactions and 129 items with 8.82 sizes. Each transaction in

CONNECT-4 is with 43 items and average transaction length

is 43.00. The runtime for mining using MSFP-tree and MFI-

tree for the minimum support of 30% is 63.274 and 71.21

seconds and for 70% it is 37.681 and 45.305 seconds

respectively. It is noticed from Figures 4(a-c), that the run

time taken by the MSFP-tree is low compared to MFI-tree.

Since, MFI-tree has constructed the frequent-descending

prefix tree structure with two scans, the runtime is found to be

higher.

Further, the performance comparisons of the proposed method

using sparse databases are shown in Figures 4(d -f). The

T10I4D100K is the first sparse database used in our

experiment with 3.93MB size. It contains 1, 00,000

transactions and 870 items. The maximum length of the

transaction consists of 29 items and average length is 10.10

items respectively. To mine maximal patterns from

T10I4D100K database, for the lowest minimum support value

of 0.01% is 385.179 and for the highest minimum support

value of 3% is 110.342 seconds. However, MFI-tree takes

414.196 and 140.505 seconds respectively. The second sparse
database we have used is T40I10D100K with 1, 00,000

transactions and average transaction size is 39.61. The

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38445-38452

© Research India Publications. http://www.ripublication.com

38450

proposed algorithm mines pattern from T40I10D100K in

3062.629 and 2084.923 seconds and from the MFI-tree in

3161.699 and 2193.497 seconds for the support values of

0.1% and 3% respectively. The last sparse database used is

PUMSB_STAR with 10.70MB. It consists of 49, 046

transactions and 2088 items. The maximum length of each

transaction in PUMSB_STAR is 63 and average length of

50.48 respectively. While, in PUMSB_STAR database, the

runtime of the MSFP-tree for the supports 10% and 60% is

712.823 and 748.331 seconds and MFI-tree takes 895.254 and

709.434 seconds respectively. From the experimental result, it

is observed that the performance of the proposed approach is
encouraging. This performance enhance is due to the fact that

the proposed MSFP-tree is built with single scan.

Figure 4: Runtime for different databases. Extracting

maximal patterns from (a) CHESS database (b)

MUSHROOM database (c) CONNECT-4 database (d)

T10I4D100K database (e) T40I10DI00K database (f)

PUMSB_STAR data bases

Scalability of the MSFP-tree

In this subsection, we have shown that scalability of the

proposed method by varying the number of transactions as

well as support threshold values and mined maximal patterns

from both dense and sparse databases. The experimental

results for scalability are discussed below.

Scalability with the number of transactions
To measure the scalability by varying the number of

transactions, we have selected the CHESS and T10I4D100K

databases. We split the CHESS database into four equal parts

with 1000 transactions in each part. The SFP-tree is built for

1000 transactions by following the same procedure presented

in the construction phase and the maximal patterns are mined.

While, the database is updated with next 1000 transactions,

the old tree is not used and the entire 2000 transactions are

rescanned to construct the SFP-tree by again performing the

construction and reorganizing process. In Figure 5a, we have

presented the experimental result for scalability with various

transaction sizes for CHESS database. The x-axis shows the

number of transactions in each parts and y-axis shows the

runtime, which includes time for tree construction and

reorganizing of the SFP-tree. We have fixed the minimum

support value=10% for mining maximal patterns. From the

graph, we can observe that as the number of transactions

increases, the time to mine maximal patterns increases. This is
due to the fact that while the number of transactions increases

constantly, the maximal patterns to mine are more and thus

the runtime increases linearly. In Figure 5b, we have

presented the experimental results for T10I4D100K. We split

the T10I4D100K database into ten equal parts consisting

10,000 transactions and the support value is fixed to 0.01%. In

Figure 5a, for various transactions, the MSFP-tree takes less

time compared to MFI-tree and the similar case for

T10I4D100K database also. This performance enhancement is

due to the fact that the SFP-tree construction time is less

compared to the FP-tree construction time.

Figure 5: Scalability for various transaction size (a)

CHESS database (b) T10I4D100K database

Scalability with minimum support values

Similar to the above experiment, we have conducted

experiment for different minimum support threshold. We have

presented experimental results in Figure 6 for CONNECT-4

and PUMSB_STAR databases. We mine the maximal patterns

by changing support values from 30% to 70% for CONNECT-

4 database and from 10% to 60% for PUMSB_STAR

database. We can observe for the higher support values, the

runtime for mining maximal patterns decreases, since the

number of maximal patterns present in the database is low for

higher support values. From the result it is noticed that the

runtime of the MSFP-tree for mining maximal patterns is low

compared to the runtime of the MFI-tree with varying

minimum supports. This is due to the effect of novelty in tree

construction phase of the MSFP-tree.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38445-38452

© Research India Publications. http://www.ripublication.com

38451

Figure 6: Scalability with various in minimum support

values (a) CONNECT-4 database (b) PUMSB_STAR

database

CONCLUSIONS
Various algorithms and approaches have been proposed in

related works for mining patterns. However, most of these

approaches take more time for mining especially in very large

voluminous transactional databases. Hence we proposed the

algorithm, which captures the entire transactional database

with single scan to construct the prefix tree for mining

maximal patterns. SFP-tree is constructed using already

constructed tree, which is frequent-independent order. Hence,

we dynamically reorganize the frequent-independent tree into

frequent-descending order using merge sort technique. We

pictorially illustrated these procedures for sample

transactional database. It is noticed that the database scan time

increases the mining time considerably, since, MFI-tree is

constructed with two scan, it is imperative that the number of

scans of the database required to be reduced for mining

maximal patterns efficiently. Hence, the efficiency is

developed in our algorithm using single scan of the database.
Due to the novel modification in construction process, the

MSFP- tree takes lesser time compare to MFI-tree. FPmax

approach is used in our algorithm to mine maximal patterns

from the MSFP-tree. The performance of the proposed tree is

evaluated in benchmark databases with huge number of

transactions with varying length. We have also used both

sparse and dense databases for mining the maximal patterns.

Our future research work to modify this algorithm for

sequential patterns mining.

REFERENCES

1. Agarwal, R., Aggarwal & C.C., Prasad, V.V.V.

(2001). A tree projection algorithm for generation of

frequent itemsets. J Parallel Distribution

Computation 61:350–371.

2. Agrawal, R., & Shafer, J.C. (1996). Parallel mining

of association rules: design, implementation, and

experience. IEEE Trans Knowledge Data

Engineering 8:962–969.

3. Agrawal, R., & Srikant, R. (1994). Fast algorithms

for mining association rules. In: Proceedings of the
international conference on very large data bases

(VLDB’94), Santiago, Chile, pp 487–499.

4. Bayardo, R.J. (1998). Efficiently mining long

patterns from databases. In: Haas LM, Tiwary A

(eds) Proceedings of the SIGMOD 1998, ACM Press,

New York, pp 85–93.

5. Blake, C.L., & Merz, C.J.(1998). UCI Repository of

Machine Learning Databases, University of

California – Irvine, Irvine, CA.

6. Brin, S et al., (1997). Dynamic itemset counting and

implication rules for market basket analysis. In:

Proceeding of the international conference on

management of data (SIGMOD’97), Tucson, AZ, pp

255–264.
7. Burdick, D., Calimlim, M., & Gehrke, J. (2003).

MAFIA: A Performance Study of Mining Maximal

Frequent Itemsets. In: Proceedings of the IEEE

ICDM Workshop on Frequent Itemset Mining

Implementations Melbourne, Florida, USA.

8. Cheung, D.W., Han, J., Ng, V., & Wong, C.Y.

(1996). Maintenance of discovered association rules

in large an incremental updating technique. In:

Proceeding of the international conference on data

engineering (ICDE’96), New Orleans, LA, pp 106–

114.

9. Cheung, D.W. et al., (1996). A fast distributed

algorithm for mining association rules. In:

Proceeding of the international conference on

parallel and distributed information systems, Miami

Beach, FL, pp 31–44.

10. Geerts, F., Goethals, B., & Bussche, J. (2001). A

tight upper bound on the number of candidate

patterns. In: Proceeding of the international

conference on data mining (ICDM’01), San Jose,

CA, pp 155–162.

11. Grahne, G., & Zhu, J.F. (2003). High Performance

Mining of Maximal Frequent Itemsets. In:
Proceeding of the 6th SIAM International Workshop

on High Performace Data Mining, San Francisco,

CA, pp:135-143.

12. Gouda, K., & Zaki, M. J. (2001). Efficiently Mining

Maximal Frequent Itemsets. In: Proceedings of the

IEEE International Conference on Data Mining, San

Jose.

13. Han, J., Pei, J., & Yin, Y. (2004). Mining frequent

patterns without candidate generation: A Frequent-

Pattern Tree approach. In: Data Mining and

Knowledge Discovery, 8, 53–87.

14. Holsheimer, M. et al. (1995). A perspective on

databases and data mining. In: Proceeding of the

international conference on knowledge discovery and

data mining (KDD’95), Montreal, Canada, pp 150–

155.

15. IBM, QUEST Data Mining Project,

<http://www.almaden.ibm.com/cs/quest>.

16. Liu, J., Pan, Y., Wang, K., & Han, J. (2002). Mining

frequent item sets by opportunistic projection. In:

Proceeding of the ACM SIGKDD international

conference on knowledge discovery in databases

(KDD’02), Edmonton, Canada, pp 239–248.
17. Liu, G. et al. (2003). On computing, storing and

querying frequent patterns. In: Proceeding of the

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38445-38452

© Research India Publications. http://www.ripublication.com

38452

international conference on knowledge discovery and

data mining (KDD’03), Washington, DC, pp 607–

612.

18. Mannila, H., Toivonen, H., & Verkamo, A.I. (1994).

Efficient algorithms for discovering association

rules. In: Proceeding of the AAAI’94 workshop

knowledge discovery in databases (KDD’94), Seattle,

WA, pp 181–192.

19. Park, J.S., Chen, M.S., & Yu, P.S. (1995). An

effective hash-based algorithm for mining

association rules. In: Proceeding of the international

conference on management of data (SIGMOD’95),
San Jose, CA, pp 175–186.

20. Park, J.S., Chen, M.S., & Yu, P.S. (1995). Efficient

parallel mining for association rules. In: Proceeding

of the 4th international conference on information

and knowledge management, Baltimore, MD, pp 31–

36.

21. Pei, J. et al. (2001). PrefixSpan: mining sequential

patterns efficiently by prefix-projected pattern

growth. In: Proceeding of the international

conference on data engineering (ICDE’01),

Heidelberg, Germany, pp 215–224.

22. Pei, J. et al. (2001). Hmine: Hyper-structure mining

of frequent patterns in large databases. In:

Proceeding of the IEEE International Conference on

Data Mining, pp. 441–448.

23. Rigoutsos, L., & Floratos, A.(1998). Combinatorial

pattern discovery in biological sequences:The

Teiresias algorithm. Bioinformatics 14, 1,pp. 55-67.

24. Sarawagi, S., Thomas, S., & Agrawal, R. (1998).

Integrating association rule mining with relational

database systems: alternatives and implications. In:

Proceeding of the international conference on

management of data (SIGMOD’98), Seattle, WA, pp
343–354.

25. Savasere, A., Omiecinski, E., & Navathe, S. (1995).

An efficient algorithm for mining association rules in

large databases. In: Proceeding of the international

conference on very large data bases (VLDB’95),

Zurich, Switzerland, pp 432–443.

26. Shiguang Ju., & Chen Chen. (2008). MMFI: an

Effective Algorithm for Mining Maximal Frequent

Itemsets. In: Proceedings of the International

Symposiums on Information Processing.

27. Toivonen, H. (1996). Sampling large databases for

association rules. In: Proceeding of the international

conference on very large data bases (VLDB’96),

Bombay, India, pp 134–145.

28. Xiaoyun Chen et al. (2008). A High Performance

Algorithm for Mining Frequent Patterns: LPS-Miner.

In: Proceeding of the International Symposium on

Information Science and Engineering, IEEE

Computer Society, Washington, DC, USA.

29. Yong, Qiu., & Yong-Jie., Lan. (2006). Efficient

Improvement of FT-Tree Based Frequent Itemsets

Mining Algorithms. In: Proceedings of the First

International Conference on Innovative Computing,
Information and Control - Volume III (ICICIC'06),

vol. 3, pp.374-377.

30. Yuejin Yan., Zhoujun Li., & Huowang Chen. (2004).

Fast Mining Maximal Frequent ItemSets Based on

FP-Tree. P. Atzeni et al. (Eds.): ER 2004, ©

Springer-Verlag Berlin Heidelberg, LNCS 3288, pp.

348.361.

31. Zaki, M.J., Parthasarathy, S., Ogihara, M., & Li, W.

(1997). Parallel algorithm for discovery of

association rules. data mining knowledge discovery,

1:343–374.

32. Zaki, MJ. (2000). Scalable algorithms for association

mining. IEEETransaction Knowledge Data

Engineering 12:372–390.

