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Abstract 

The development of process technology has increased system 

performance, but the system failure probability has also 

significantly increased. It is important to consider the system 

reliability in addition to the cost, performance, and power 
consumption. In this paper, we describe the types of faults that 

occur in a system and where these faults originate. Then, 

fault-injection techniques, which are used to characterize the 

fault rate of a system-on-chip (SoC), are investigated to 

provide a guideline to SoC designers for the realization of 

resilient SoCs. 
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Introduction 

Recently, the development of process technology has 

increased system performance, but the system failure 

probability has also significantly increased. It is important to 

consider that the system must be robust against failures when 
designing the circuits in addition to the cost, performance, and 

power consumption. Thus, resilient design becomes 

particularly prominent in system design to increase reliability. 

Many studies have been conducted for over half a century on 

fault tolerance and fault diagnosis to control the system in 

anticipation of inevitable defects. 

Fault avoidance is a technique that addresses the faults of 

devices to prevent failure. This technique includes improving 

the reliability of the product through inspection and testing 

processes. However, a complete fault-free design and 

manufacturing process for complex devices such as processors 

is difficult to achieve. Further, these devices often encounter 

dangerous situations because of aging and internal and 

external defects of the hardware. Therefore, researchers have 

actively studied fault-tolerance techniques to ensure normal 

operation, although the devices may experience some faults. 
Fault-tolerance techniques have made much progress for 

nearly half a century. Among others, the redundancy scheme 

has been highlighted, which tolerates faults using additional 

resources. This scheme is simple to implement and provides 

high reliability. The redundancy scheme can be classified into 

four general types: hardware, software, information, and time 

redundancies. 

To detect the faults in a system, the hardware redundancy 

technique uses replicated hardware, the software redundancy 

technique employs an additional program routine, the 

information redundancy technique inserts extra bits into the 

data to be transferred, and the time redundancy technique 

repetitively performs the same process and compares the 

results. These techniques involve additional costs and delays 

because of the additional resources; thus, designers should 

select one of these techniques after considering the tradeoffs. 

Structures and methods have been studied in recent years to 

reduce these additional resources. 

System diagnosis is naturally important to handle a system 
failure caused by faults. Methods that test and evaluate the 

devices have also been developed following the development 

of fault-tolerance techniques. Fault-injection (FI) techniques 

have been widely used as a fault-testing plan. The FI 

techniques can be classified according to which device injects 

a fault into a target system. These techniques have their own 

advantages and disadvantages. Because most of the defects 

can be eliminated during the testing process, the proper FI 

technique should be selected in accordance with a particular 

design. 

In this paper, we describe what types of faults occur in a 

system and where the faults originate. Then, the FI 

techniques, which are used to characterize the fault rate of a 

system-on-chip (SoC), are investigated to provide a guideline 

to SoC designers for the design of resilient SoCs. 

The rest of this paper is organized as follows. We first classify 
the types of faults in Section 2 and explain the causes that lead 

to faults in Section 3. Section 4 addresses the FI techniques, in 

which a discussion is included. Finally, we conclude this 

paper in Section 5. 

 

 
 

Fig.1. Block diagram of fault and error terminology 

focused on the hardware fault. 

 

 

Type of Faults 

A fault can be classified into hardware or software fault 

according to where it occurs. We focus on hardware faults in 
this study, which greatly affect the device and system. A 

hardware fault is classified into a permanent, an intermittent, 

or a transient fault according to how long it exists in a device 

(see Fig. 1). A permanent fault (stuck-at, stuck-open, and 

bridging faults) remains permanently in the circuit, a transient 

fault appears and disappears within a brief time, and an 

intermittent fault introduces repetitive broken data in a 
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specific place because of hardware damage. Permanent and 

intermittent faults occur because of inaccurate specifications, 

implementation mistakes, or component defects. A transient 

fault usually occurs because of internal and external noise. 

The data errors that result from a hardware fault include hard 

and soft errors. A hard error causes data corruption because of 

hardware faults arising from permanent and intermittent 

faults. A soft error causes data corruption because of a 
disturbance in the environment, such as alpha particles or 

neutrons, and originates from transient faults. In contrast to a 

hard error, a soft error arises under conditions where the 

device is not damaged. A soft error can be divided into single 

and multiple bit flips. A single bit flip consists of one data 

flip, and multiple bit flips consist of several data flips. Further, 

a single bit-flip can be categorized into a single event upset 

(SEU) or a single event transient (SET), depending on where 

it occurs. An SEU occurs at storage element, e.g. in the latch 

or flip-flop, whereas an SET appears in combinational logic. 

Erroneous SEU values in storage element can potentially be 

captured in the following sequential logic. An SET in the 

combinational logic encounters fewer occurrences of rates of 

failure than an SEU because the errors are reduced by logical, 

temporal, or electrical masking. However, higher cost is 

involved in correcting the error because the result of the 
operation is directly propagated as soon as the input data are 

entered. 

The soft error rate (SER) is defined as the occurrence rate of a 

soft error in a device. The number of failures-in-time (FIT) or 

the mean time between failures (MTBF) are commonly used 

to express the SER. The main source of SER originates from 

the flip-flops in most embedded digital applications without a 

microprocessor [1]. 

 

 

Cause of Hardware Faults 

Understanding the types of faults and how they occur is 

essential for fault modeling and diagnosis. The majority of 

causes of hardware faults result from the development of 

process technology. Following the development of process 

technology, the probability of encountering process variations 
or external noise sources (alpha particles or neutrons in 

cosmic rays) increases in the semiconductor manufacturing 

process, leading to soft errors. Similarly, VLSI circuits that 

operate under high operating speeds and low supply voltage 

are susceptible to process variations; thus, these circuits have 

a higher error probability owing to the switching delay of 

transistors. In addition, the defects per chip area in a VLSI 

process increase with the increasing number of on-chip 

transistors, which increases the probability of failure. Thus, 

process-technology improvements result in both hard and soft 

errors. 

 

A. Cosmic-ray Particle 

Cosmic rays cause soft errors in the system. Most cosmic rays 

do not reach the Earth’s surface. However, cosmic rays 

produce energetic secondary particles such as neutrons and 
protons by collision with a nucleus in the Earth’s atmosphere. 

A neutron by itself cannot interfere with the circuit; however, 

it is absorbed by the nucleus and causes a “neutron capture” 

reaction that emits alpha particles. These alpha particles 

generate an incorrect value when they collide with the circuit. 

Neutrons also originate from nuclear-fission reactions or from 

the creation and destruction of radioactive nuclei. Alpha 

particles originate from various radioisotopes during 

radioactive decay and are detected in materials such as 

glasses, fillers, alumina, plastic, and even in the sea [2]. 

A study that cosmic rays potentially affect devices was 

presented in 1962 [3]. Communication disruption due to 
cosmic rays actually occurred, and the cosmic-ray event rate 

was calculated in 1975 through experiments using a scanning 

electron microscope [4]. Devices have become more 

vulnerable to neutrons and alpha particles from cosmic rays 

because of the development of the process technology [5]. 

The fact that circuits are more susceptible to atmospheric 

neutrons was confirmed by a comparison of the SER caused 

by neutrons depending on the scaling of device size of CMOS 

transistors [6]. By checking the SER caused by alpha particles 

and radiation, it observed that the circuits are vulnerable to 

alpha particles when the operating voltage of the devices was 

lowered in the sequential logic, static combinational logic, and 

SRAM [7]. Reference [8] confirmed that the multi-bit error 

rate for 90-nm SRAM was slightly higher than that for 130-

nm SRAM. 

 
B. Noise Sources 

Layman and Chamberlain demonstrated that the various noise 

sources that cause soft errors are thermal, shot, and l/f noise 

[9]. Thermal noise is caused by heat when the charge carriers 

(electrons or holes) move erratically in the capacitor. Thermal 

noise affects the semiconductor threshold voltage and flips the 

original value in the logic, resulting in a soft error. Thermal 

noise can be modeled with the voltage or current [10]. Shot 

noise is generated when the carriers pass over the potential 

barrier in a semiconductor, and the number of carriers 

becomes irregular. Because the direction and speed of the 

electron motion is irregular, each carrier introduces a problem 

in the semiconductor. The 1/f noise is caused by conductance 

fluctuation, which is inversely proportional to the frequency. 

The 1/f noise in the internal components increases 

significantly in the low-frequency region, and the noise 
decreases in the high-frequency region. Thus, these additional 

noise sources attack the noise margins of the semiconductors 

and increase the SER. 

 

C. Critical Charge 

Critical charge is the minimum required amount of charge to 

change the states of a semiconductor. When enough critical 

charge is collected, the logic value is changed. By decreasing 

the semiconductor size, the collected charge required to upset 

the logic also decreases and becomes susceptible to soft 

errors. Similarly, critical charge has been confirmed to 

decrease under lower operating voltages and smaller feature 

sizes [11]. Reference [12] confirmed that the SER is altered 

depending on several factors, including the critical charge. A 

device-level 3D simulation was performed to model the 

relationship between the bit error rate and the critical charge 
values in 90-nm SRAM [13]. 
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D. Crosstalk 

Crosstalk is electrical interference that occurs when the 

distance between two conductors is sufficiently small. 

Narrowing of the distance resulting from deep submicron 

technology causes electrical distortion and adversely affects 

reliability. The high-frequency operation of VLSI causes a 

skin effect propagated along the surface of a conductor [14]. 

This skin effect causes frequency-dependent interconnection 
resistance. The reliability problem of a circuit can be easily 

found in other places because of the increasing signal 

interference of the crosstalk in a smaller transistor and the 

interconnect dimensions [15]. Most designs encounter 

potentially soft errors from the RC delay, noise interference, 

and crosstalk [16]. To investigate the crosstalk properties, 

coupled RLC parameter values on four different interconnects 

were measured for the 0.13-µm and 0.18-µm processes [17]. 

 

E. NBTI 

Negative bias temperature instability (NBTI) is a type of 

aging. The time delay of a circuit increases in proportion to 

the transistor threshold voltage (Vth). NBTI leads to timing 

error because the initial value of Vth for a PMOS varies with 

the negative bias and temperature of a circuit that has been 

used for a long time. This phenomenon was observed in 1967 
[18]. Reference [19] demonstrated that a longer exposure time 

to a negative voltage at the gate results in a larger fluctuation 

in the threshold voltage. Further, a larger change in Vth 

results in more occurrences of the critical timing problem. 

Schroder and Babcock presented many process conditions 

such as oxide damage; the temperature; the oxide electric 

field; the presence of hydrogen, boron, nitrogen, water; and 

the gate length that affect the NBTI sensitivity [20]. The 

reliability of the NBTI significantly decreases when the 

transistor operates at high temperature, has a small gate 

length, and has a large content of boron, nitrogen, hydrogen, 

or water. The fact that hydrogen increases the NBTI was 

proven in [21]. Similarly, the lifetime of a semiconductor is 

significantly reduced because the change in Vth is different, 

depending on the boron content of the gate oxide and the thin 

gate length [22]. The fluctuation in Vth increases according to 
the NBTI stress in nitrogen oxide compared with that in pure 

SiO2 [1]. Water can also affect Vth when the gate oxide layer 

is formed. As the size of CMOS devices is gradually reduced 

with the development of process technology, nitride oxide is 

being used in the gate instead of the existing SiO2 to reduce 

the gate insulator film and improve the performance. 

However, the thin nitride oxide is very sensitive to NBTI 

stress; thus, the PMOS transistor easily acquires defects 

compared with that using the existing SiO2 [1]. 

 

 
 

Fig.2. Fundamental environment of Fault Injection 

 

 
 

Fig.3. Fault Injection Techniques 

 

 

Fault Injection (FI) Techniques 

FI is adopted to verify the reliability of a system or to perform 

fault modeling. In this manner, we can ensure the sensitive 

part of the system against faults and the potential lack of fault 

tolerance to create a resilient design. The basic environment 

of the FI method includes FI system and the target system (see 

Figure. 2). The FI system interacts with the target system for 

fault generation, control, and fault analysis. The FI methods 

can be classified into four techniques as follows: Hardware-

based FI, Software-based FI, imulation-based FI,and 

Emulation-based FI. 

 

A. Hardware-based FI 
Hardware-based FI is the most realistic method, which makes 

target system to experience faults in a physical level and 

measures the occurrence of the failure (see Figure 3(a)). The 

circuit is tested using the change in the operating power or 

temperature or the external shocks that cause transient errors. 

Moreover, this technique directly provides a stimulus at the 

pins or the sockets. The testing speed is fast owing to the real-

time FI structure. By directly changing the environment, a 

wide range of circuits can be evaluated through these 

disturbances. However, its processes are difficult to monitor 

and control because we do not know the exact moment when a 

fault is injected by the disturbance. In addition, damage can be 
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done to the target system because the actual circuit cannot be 

restored after testing [23]. 

A circuit was validated by using a pin-level FI tool 

(MESSALINE) by derivation of the experimental 

measurements such as defective time distribution and size 

[24]. Wang tested the fault-tolerance capability of a software 

to changes in the power supply and payload at a satellite’s on-

board computer [25]. He injected the faults through a cable 
and monitored the changes in the output port. 

Laser injection schemes into a system are available. The 

reliability of time-resolved ICs exposed to a pulsed laser was 

evaluated [26]. The SER was confirmed by calculating and 

normalizing the cumulative error histogram in accordance 

with the laser pulse delay of the circuits. Pin-level FI was 

conducted to verify a fault-tolerant multiprocessor system 

(FASST) [27]. FASST performed a fast fail-silent technique 

that analyzed the error detection coverage and latencies. A 

method that used a high-intensity laser in the microcontrollers 

was proposed [28]. Its drawback was that the disturbance of 

the circuit could be not completely controlled in the 

experiment. 

 

B. Software-based FI 

Software-based FI causes a software fault by modifying the 
execution code of the actual running software in the system 

(see Figure 3(b)). Software-based FI is practical because the 

required hardware and software are actually used in the 

device, and additional hardware to inject a fault is not 

required. However, the method suffers from limitations in 

terms of the types of faults injected by the software. In 

addition, detailed information on the hardware and software is 

necessary to model and control the fault. 

Wulf et al. injected faults by using a software-based FI tool 

for multi-core devices on a cache using MATLAB [29]. This 

tool can generate a cache error by randomly injecting faults in 

the data accessed by the load instructions. Roberto et al. 

suggested a method for selecting appropriate fault locations 

from the analysis of the circuit complexity by 3.8 million 

experiments [30], which significantly reduced the load size of 

the fault effectively and improved the performance. A 
dynamic software fault injection system that targeted the 

Apache Web server was proposed using the PIN framework- a 

dynamic binary instrumentation tool- from Intel [31]. To test 

the reliability of the server, this tool injected faults 

dynamically after recording the information of the fault 

locations. The work in [32] injected faults in microprocessors 

and the main memory circuits. Some of the FI methods were 

evaluated for software fault tolerance that detects and masks 

hardware errors, and the results were then compared. Several 

fault models were experimented on a communication channel 

between the serial port driver and the OS kernel to evaluate 

the effect on the system according to software FI [33]. 

Through the tests, the results of the average execution time, 

implementation complexity, coverage, and injection efficiency 

were manifested in detail. 

 
C. Simulation-based FI 

Simulation-based FI injects a fault into the design and 

observes the failure using computer simulation tools (see 

Figure 3(c)). Simulation-based FI operates along with the 

actual workload in the software program and can be used in 

every process of design for function verification. The 

reliability can be verified simultaneously by functional 

verification of the design. Performing fault modeling and 

control is possible without damaging the real system. 

Moreover, simulation-based FI can change the data of any 

location thanks to its superior accessibility. 

Additionally, environment construction is cheap because 
additional hardware is not required. However, simulation-

based FI suffers from the drawbacks of long simulation setup 

process and simulation time. 

A fault injector that injects board-level component faults was 

implemented for board-level built-in test (BIT) software [34], 

which is suitable for testing the reliability of a BIT system 

because it is created to handle the lack of validation in the BIT 

software. A system C hardware simulation model that uses 

embedded benchmark software was proposed to reduce the 

hardware resources [35]. This model supports a mixed-level 

simulation conducted at an electronic system level and RTL. 

Ruano et al. used a simulation-based FI platform that models 

soft errors to evaluate the reliability of a system [36]. This 

platform has low circuit costs and high controllability and can 

be performed with both synthesizable and non-synthesizable 

models. Reference [37] revealed that injecting faults into all 
places in the RTL and gate-level designs is possible, which 

supports a C function to add new types of faults. Wang et al. 

tested a method that modifies the data of a processor using a 

full system simulator-based FI tool (FSFI) on a system level 

[38]. The FSFI can check the processor components such as 

the integer register files, ALU, and decoder. 

 

D. Emulation-based FI 

Emulation-based FI injects faults into a design implemented 

in the FPGA (see Figure 3(d)). Emulation-based FI is 

proposed to overcome the long simulation time of simulation-

based FI. Diagnosis can be processed quickly with real-time 

or partial reconfiguration. However, emulation-based FI is 

constrained by the precondition that the target design must be 

optimized in the FPGA before the experiment. Further, 

flexibly checking the response to the failure of the target 
design is difficult. 

An FI method for any microprocessor implemented on an 

FPGA with an on-chip debugger (OCD) and a JTAG interface 

was implemented to complement the time bottleneck of an 

OCD built in a processor for debugging [39]. This 

implementation combined hardware and software FI in the 

FPGA design. The OCD-based method is a balanced 

technique in terms of tradeoffs with accuracy, cost, and speed. 

Entrena et al. proposed the FI tool, which can quickly and 

accurately analyze a failure by combining the gate-level 

model of FI and the RTL model, and they analyzed the SET 

and SEU of a logic gate on complex circuits such as 

microprocessors and memories [40]. Mogollon et al. 

experimented with a hardware emulation-based platform that 

optionally uses three modes: an ASIC mode that changes the 

logical structure, an FPGA mode that injects a fault into a 
configuration bit of the FPGA, and a beam-testing mode that 

exposed ion beams [41]. Control flexibility and high speed 

can be obtained at the same time through these different 

resources. Rahbaran et al. implemented a target system and 
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fault injector on an FPGA [42]. The method exhibited high 

testing-process accuracy and controllability characteristics. 

The work in [43] sent compressed data after connecting all 

circuits in the FPGA according to a decision rule to reduce the 

communication time between an FPGA and a host PC. 

 

 

Discussions 
Hardware-based FI potentially hazardous in that it can 

damage the hardware during the experiment. In addition, 

hardware-based FI has low fault coverage and controllability. 

Therefore, the study of hardware-based FI has been somewhat 

reduced in recent years. In spite of the lesser fault coverage of 

software-based FI and the low speed of simulation-based FI, 

they are widely used because of their other outstanding 

strengths, and many studies to overcome their weaknesses are 

currently being conducted. These methods feature 

considerable controllability, low cost, and hardware safety. 

Further, simulation-based FI can address many types of faults 

on a target system. The emulation-based FI method has also 

been widely adopted owing to its low cost, high speed, and 

wide fault coverage. Table 1 summarizes the characteristics of 

the four FI techniques. 

 
TABLE.1. Features of the FI methods 

 

 
 

Conclusions 

A fault is defined as the loss of normal functionality; thus, a 

circuit is required for fault modeling. Understanding the cause 

of a fault is necessary to recognize what type of fault occurs in 

a circuit. After fault characterization, we must select an 

appropriate resilient design technique to reinforce the 

reliability of the system. System reliability must also be 

improved by checking the requirements and characteristics of 

the design. Thus, various evaluation techniques such as 
simulation or emulation techniques are used for accurate 

assessment. 

This paper has described the types of FI techniques available 

and where to use these techniques. In addition, we have 

presented the respective strengths and weaknesses of these 

techniques. FI is quite necessary in SoC design because the 

system failure probability is increasing. We believe that 

understanding the faults and FI techniques presented in this 

paper could provide a guideline to SoC designers for 

designing resilient SoCs. 
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