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Abstract- MapReduce provides a promising tool for 

processing the massive data sets and becomes a 

representative paradigm for building large scale data 

intensive applications. The principle of energy 

proportionality states that we can save energy by activating 

only a part of cluster nodes in proportion to the amount of 

input workload. However, achieving the energy 

proportionality in MapReduce clusters is challenging since 
arbitrarily deactivating cluster nodes can make a part of data 

unavailable. In this paper, we propose algorithms for task 

allocation and node activation in MapReduce clusters. They 

consolidate the system load to a minimum set of active 

groups, and thus can save energy significantly. Furthermore, 

they are rack-aware and thus can reduce energy consumption 

of power-hungry rack components, such as cooling, power 

distribution units, and power backup equipment. Experiment 

results indicate a reduction in energy consumption up to 30% 

when compared to previous algorithms. 

 

Keywords: Big data, MapReduce, Energy proportionality, 

Cluster, Node activation. 

 

 

Introduction 
Large data center operating costs have prompted the 

consideration of energy management policies. Current 

solutions can be divided into two categories: cluster-wide 

and local [1]. Cluster-wide policies achieve energy 

proportionality by reconfiguring the cluster dynamically. 

When the cluster load is very high, most nodes should turn 

on and share the load. However, if the cluster load is 

significantly lower than the peak load, cluster-wide policies 

consolidate the load on a subset of nodes and turning off the 
remaining nodes. As a result, the entire cluster can consume 

energy in proportion to its load level. Local policies put 

unused resources in a low-power state. Typical examples 

include dynamic voltage scaling and power-aware storage 

management. 

This paper focuses on cluster-wide energy 

management for MapReduce clusters. MapReduce has 

emerged as an important paradigm for building large scale 

data intensive applications [2]. It provides a simple and 

powerful programming model that enables easy development 

of distributed applications to process vast amounts of data on 

large clusters of commodity machines. Recent empirical 

studies show that MapReduce clusters have to support highly 

diverse workloads consisting of short interactive jobs and 

long-running batch jobs [3][4]. Furthermore, some workload 

has high peak-to-average ratios [5]. A cluster provisioned for 

the peak load would be often underutilized and waste a great 

deal of energy. This means that MapReduce clusters have 
high potential to save energy by cluster-wide energy 

management. 

In this paper, we assume that the cluster is 

partitioned into several groups. Each group includes one 

replica of every data item. To save energy, we exploit both 

inter-group strategy and intra-group strategy. The inter-

group strategy consolidates system load to a minimum set of 

active groups so that nodes in other groups can stay at low-

power mode for a long time. The intra-group strategy 

leverages rack-aware node activation to reduce the number 

of active racks for each group. A recent study on data center 

power management shows that rack-based power 

management can lead to several times more energy savings 

than other solutions that focus only on the power consumed 

by node [6]. The contribution of this paper can be 

summarized as follows. 
 

  We first propose task allocation algorithms that select 

target nodes to execute input tasks. The goal is to 

consolidate the system load to a minimum set of active 

groups. We present two alternatives on node selection, 

group-based and locality-based, which shows an 

interesting trade-off between energy consumption and 

performance. 

 Then we propose node activation algorithms that 

determines a node to be activated when the system load 

increases. Considering the activation relationship of 

group, rack, and node, we propose three node activation 

algorithms, entire activation, rack-based activation, and 

locality-based activation. They also exploit a trade-off 

between energy consumption and performance. 

 We develop an experiment model of MapReduce cluster 
and evaluate the proposed algorithms with respect to 

energy consumption and performance. 
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The rest of this paper is organized as follows. 

Section 2 presents related work and explains its limitations. 

Section 3 describes the cluster architecture that we assume in 

this paper. Section 4 proposes algorithms for task allocation 

and node activation. Section 5 describes the experiment 

model and Section 6 analyzes the experiment results. Finally, 

the concluding remarks appear at Section 7 

 
 

Related Work 
A number of studies have reported cluster-wide energy 

management methods for MapReduce clusters. The covering 

set (CS) method [7] is the initial work. It keeps one replica of 

every data item within a small subset of nodes called CS 

nodes. CS nodes remain fully powered to preserve data 

availability while the rest is powered down. However, this 

method supports limited energy proportionality. The cluster 

is in either full performance mode with every node activated 

or energy mode with only the CS nodes activated. 

Sierra [8] motivates our work the most. It extends 

the CS method by partitioning the cluster into  groups, 

where  is a replication factor. Each node belongs to one of 

the groups so that one replica of each data is placed to each 
group. Similar to our work, Sierra reconfigures the cluster by 

activating or deactivating each group according to the system 

load. However, it may suffer from two limitations. First, it 

lacks an elaborate task allocation scheme that determines 

which nodes are going to execute incoming tasks. As we will 

describe at Section 4, the number of idle nodes can be 

different according to the task allocation algorithm, 

especially when the variance of cluster load is significant. By 

maximizing the number of idle nodes, we can increase the 

probability of deactivating racks and groups. The next 

limitation of Sierra is that it does not consider the order of 

node activation for each group. We will show that activating 

nodes at random order causes unnecessary energy 

consumption and longer execution time for each task. 

GreenHDFS [9] divides the cluster into disjoint hot 

and cold groups. The frequently accessed data is placed in 

the hot group, which is always powered on. Similarly, 

BEEMR [5] partitions the cluster into disjoint interactive and 

batch group. The interactive group is always powered on. It 

runs all of the interactive jobs and stores every data for the 

jobs. Both algorithms can save energy by deactivating 

another group (cold or batch) for a long time. The 
performance loss of active group can also be minimal since 

the number of replicas of frequently accessed data is not 

reduced. The drawback of both algorithms is that any jobs 

should experience considerable delay when they access data 

stored in the deactivated group. 

AIS (All-in Strategy) [10] is a totally different 

approach. It runs the given jobs with the entire set of nodes 

in the cluster to complete them as quickly as possible. Upon 

completion of the jobs, every node is deactivated to save 

energy until the next run. One potential drawback is that 

even with small jobs, AIS still needs to wake up the entire 

cluster, possibly wasting energy. Furthermore, it cannot 

support real-time jobs that require fast response time and 

deadline constraint [11]. 

Recently, iPACS [12] presents a CS set discovery 
algorithm that finds an energy-optimized node set to satisfy 

the given data requirement. Unlike Sierra where each group 

includes a replica of entire data set, the CS set contains a 

replica of required data set under the assumption that the data 

set can be available for the next time window. To achieve the 

energy proportionality, iPACS also proposes a multi-level 

CS discovery algorithm. The level in this case means the 

number of replicas. When the system load increases, iPACS 

finds a higher level CS set that contains more replicas of the 

required data set. The problem of iPACS is the difficulty of 

predicting the data set of the next time window. If the CS set 

does not include the data set actually accessed by some jobs, 

the jobs should experience considerable delay. 

 

 

Rack 1.1 Rack 1.n

Group 1

Rack r.1 Rack r.n

Group r

node

disk

replica of data item
Front-end

 

Fig.1. Cluster architecture 
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Cluster Architecture 
Figure 1 shows the baseline cluster architecture. It follows 

the conventional master-slave architecture of Hadoop [13]. 

Basically, the cluster is a shared-nothing architecture, where 

each node has its own set of private disks and only the owner 

node can directly access its disks. Each file is split into 

smaller data blocks and these blocks are distributed across 
the cluster. A block is replicated to different nodes to ensure 

data availability. The cluster stores  replicas for each block, 

and  is called as a replication factor. The default setting of  
is three in Hadoop. 

The cluster is partitioned into  groups, and each 

group stores one replica of every data item. This means that 

there are  replica for each data item. Group 1 is a primary 
group. It has a role to CS nodes [7] and thus always powered 

on. As a result, the primary group can ensure the immediate 

availability of data items required for real-time jobs. Other 

groups may be activated or deactivated according to the 

system load. This way we can support the principle of energy 

proportionality such that the amount of energy consumed by 

the cluster is proportional to the amount of work performed.  

We assume that each group consists of n distinct 

racks and all nodes in a rack are in the same group. This 

permits the entire rack to be turned off when the owner group 

is deactivated, allowing additional power savings by turning 

off rack-wide equipment such as switches [6][8]. We also 

assume that there is more bandwidth available between 

nodes on the same rack compared to nodes on different rack. 

Note that this assumption is effective for most configurations 
of current data centers. For example, Hadoop prefers within-

rack transfers to off-rack transfers when placing MapReduce 

tasks on nodes [13]. 

The front-end is a single point of contact for a client 

wishing to execute a MapReduce job. Typically, a 

MapReduce job is divided into a number of map tasks and 

reduce tasks. The front-end allocates each task to a node in 

some active group. The task allocation has to be performed 

in an energy-efficient manner not to activate excessive 

groups compared to the current load. Furthermore, it tries to 

take advantage of data locality to reduce the amount of inter-

node or inter-rack communications. We will describe the 
proposed task allocation algorithms at Section 4.A. The 

front-end also monitors the system load and compares it to 

the processing capacity of active groups. If the system load 

increases, the current set of active nodes would not afford 

additional tasks. Then the front-end has to turn on new 

nodes. There are some alternatives to select new nodes to be 

activated. We will discuss this issue at Section 4.B. 

 

 

Proposed Algorithms 
In this section, we first describe task allocation algorithms 

that determine a node to execute a task. Then we propose 
node activation algorithms that determine a node to be 

activated to process excessive load. 

 

A. Task allocation algorithms 

We propose two task allocation algorithms, named group-

based allocation (GBA) and locality-based allocation 

(LBA). Figure 2 presents the details of both algorithm for 

allocating a map task. They take advantage of data locality to 

reduce inter-node and inter-rack communications. 

m: map task

d: input data of m

i:  1 (Group number)

Consider group i

Suppose d is stored in 

node n of rack r

Node n can

afford m?

Allocate m

to n

Any node in r

can afford m?

Allocate m

to the node

Any node in i

can afford m?

Allocate m

to the node

i = i + 1

yes

yes

yes

no

no

no

m: map task

d: input data of m

i:  1 (Group number)

Consider group i

Suppose d is stored in 

node n of rack r

Node n can

afford m?

Allocate m

to n

Any node in r

can afford m?

Allocate m

to the node

Group i is 

active?

Check other 

nodes from 

group 1

i = i + 1
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yes

no

no

yes no

(a) Group-based allocation (GBA) (b) Locality-based allocation (LBA)
 

Fig.2. Task allocation algorithms for map task 
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Specifically, they first check if the task is data-local, that is, 

running on the same node that the required data resides on. If 

the node has available slots for the task, the task can be 

allocated to the node. Otherwise, both algorithms check if the 

task is rack-local: on the same rack, but not the same node, 

as the input data. Some task is neither data-local nor rack 

local. For the task, GBA checks if any other node in the 

current group is available to execute it. On the other hand, 
LBA checks if the task is data-local or rack-local for the next 

group. If it is not data-local and rack-local for every active 

group, then LBA checks the availability of other nodes from 

group 1 again. 

 Note that GBA allocates a task to any node in group 

2 only if every node in group 1 cannot afford new tasks. This 

means that GBA can consolidate the system load to the 

limited number of groups. As a result, more groups can be 

deactivated and the amount of energy reduction would be 

significant. LBA adopts a different approach. It allocates the 

task to group 2 in case of data-local or rack-local even 

though some nodes in group 1 are available. Since LBA 

takes advantage of data locality more significantly, it could 

outperform GBA with respect to the execution time. 

However, more groups would be activated at the same time 

and thus the amount of energy reduction is limited.  
Allocating reduce tasks are rather simple. To exploit data 

locality, they can be allocated to the same node or same rack 

of preceding map tasks. If the node or the rack is not 

available, the front-end will simply take any available node 

from group 1. 

 

B. Node activation algorithm 

If the set of active groups cannot afford current system load, 

the front-end has to activate a new group. Considering to the 

activation relationship of group, rack, and node, we propose 

the following node activation algorithms. 

 

 Entire activation (EA): When a group is activated, every 
rack and node in the group is activated at the same time. 

 

 Fractional activation (FA): When a group is activated, 
only part of entire racks and nodes of the group are 

activated according to the system load. To select racks 

and nodes to be activated, the front-end considers the 

required data of yet-to-be-run tasks. There are two 

algorithms of the fractional activation. 

 

- Rack based activation (FA-RBA): It first turns on a 

rack that includes the most required data of yet-to-be-

run tasks. Within the rack, nodes are activated in order 

according to the system load. Only if every node in the 

active racks is activated, FA-RBA turns on a new rack. 

 

- Locality based activation (FA-LBA): It selects an 

inactive node that includes the most required data of 

yet-to-be-run tasks. If the node is included in inactive 

rack, then FA-LBA turns on the rack first and then the 
node. 

 

Note that those algorithms show an interesting 

trade-off between energy consumption and performance. 

First, EA should spend energy the most since all members of 

the group are activated regardless of the system load. 

However, it can cope with the following increase of system 

load without any turn-on delay. FA activates only part of the 

group according to the system load. If the system load 

increases thereafter, the rest should be activated with 

considerable turn-on delay. This means that FA has some 

limitation to adapt dramatic load variation. However, it can 
save energy significantly compared to EA. 

The trade-off between energy consumption and 

performance is also existing between FA-RBA and FA-LBA. 

FA-RBA tries to reduce the number of active racks. Since 

70% of data center power goes toward rack-related 

components, such as cooling, power distribution units, the 

switch gear, and power backup [6], reducing the number of 

active racks must contribute to save energy significantly. On 

the other hand, FA-LBA just activates nodes that store the 

required data the most regardless of rack activation. As a 

result, it is possible that many racks of a group are activated 

while there are very small number of active nodes for each 

rack. FA-LBA increases the probability of data-local at the 

cost of high energy consumption. 

 

 

Experiment Model 
To evaluate the performance of proposed algorithms, we 

developed a simulation model of the MapReduce cluster 

using CSIM discrete-event simulation package [14]. Table 1 

shows the simulation parameters. The parameter values will 

be used for most experiments unless otherwise noted. Many 

of their values are adopted from [6]. 

 

TABLE.1. Simulation Parameters 

Parameters Value 

  

Number of groups 3 

Number of racks 150 

Number of nodes 3000 

Number of Map slots per node 10 

Number of Reduce slots per node 5 

Rack transition time 300 sec 

Node transition time 30 sec 

Maximum duration of staying at idle state 15 min 

Energy consumption of idle node 100 w/h 

Energy consumption of active node 500 w/h 

Rack power overhead for each node 50% 

Fixed energy consumption of active rack 5 kw/h 
Intra-rack network bandwidth 64 Gbps 

Inter-rack network bandwidth 128 Gbps 

Data size of each group 80 TB 

Load skew factor (θ) 0.0 : 1.0 

Portion of hot data 4% 

Probability of accessing hot data 80% 

  

 

The cluster consists of three groups and each group 

has 50 racks. The first group is a primary group and is 

always powered on. The other groups can be deactivated 

according to the system load. We assume a homogeneous 
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computing environment where the hardware specification of 

each device type is same. Specifically, a rack includes 20 

nodes and every node has 10 map slots and 5 reduce slots. 

That means a node can execute 10 map tasks and 5 reduce 

tasks at the same time. Each node can stay at one of three 

execution states: active, idle, and off. An off node does not 

consume any energy. A node is in active state when it 
executes some tasks. When the node completes every 

assigned task, it moves to the idle state. We assume that the 

energy consumption of idle node is much lower than that of 

active node. Furthermore, if any node in non-primary group 

stays at the idle state for longer than the threshold (15 min), 

the front-end turns off the node. The time taken by the node 

to go between idle and off states is set to 30 seconds. 

The state of rack is modeled similarly. If any nodes 

in a rack is active, the rack is also active. If every node in the 

rack is in off state, it moves to the off state. The transition 

delay taken by the rack is set to 300 seconds same to [6]. An 

active rack consumes energy in proportion to the number of 

active nodes. Similar to [6], we configure rack overhead to 

be 50%; i.e, the support-infrastructure like cooling system on 

each rack consumes 50% as much energy as the nodes on the 
rack. Since the rack may also have equipments like 

interconnect bay and power backup that spend energy 

independent of node states, we also model that there is 

significant fixed energy consumption for each rack [15]. 

A group contains one replica for each data item. We 

configure that the data size of each group is 80 TB, and it is 

evenly distributed to the nodes. To model the access skew, 

we categorize the entire data items into hot set and cold set. 

A data item in hot set has a high probability of being 

accessed by tasks. The load skew factor, θ, determines how 

much portion of hot set is assigned to each rack. Suppose 

that Dhot represents the size of entire hot set. We set Dhot to 
3.2 TB which corresponds to 4% of the entire data set (= 80 

TB). If each group inclusdes N racks, the size of hot set in K-

th rack is determined by the following Zipf-like distribution 

expression, 
)(1/

1/
*

1=

θN

i

θ

hot
i

k
D

∑
. If θ is set to 0, every rack has 

the same number of hot data items. On the other hand, if θ is 

set to 1, the first few racks store most of hot data items. 

Figure 3 shows the number of hot data items assigned to 

every rack of a group on different settings of θ. The size of a 

data item is set to 64 MB. 
Figure 4 depicts a load variation model used 

throughout the experiments. It consists of three periods, each 

of which has a load increasing stage and a load decreasing 

stage. The first period lasts for the first seven hours. It is 

intended to model the initial situation of the cluster where 

only the primary group is active and every node of the 

primary group does not cache anything. The second period 

starts after the first period. In this period, the load increases 

up to the maximum cluster capacity and then decreases 

dramatically. The last period starts near fifteen hours. Unlike 

the previous periods, the load increases slowly and thus we 

can compare the performance of proposed algorithms under 

different load increasing speed. We believe that our load 

variation model can capture most of real workload 

characteristics related to MapReduce clusters [5, 9]. 

 

 

Fig.3. Distribution of hot data items on various θ 

 

Fig.4. Load variation mode 
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Experiment Results 
 

We implement two versions of task allocation algorithms, 

GBA and LBA, and four versions of node activation 

algorithms, EA, FA-RBA, FA-LBA, and Sierra [8] that 

chooses the activated node at random. Performance metrics 

are energy usage and response time (turnaround time). The 

energy usage is the aggregate power consumed by every rack 

and node. We use the number of active racks and active 

nodes as a secondary metric to explain the variation of the 

energy usage. The response time in seconds is measured as 

the difference between when a task is submitted and when 

the task successfully commits. 
 

A. Energy usage 

We first compare the energy usage. Figure 5 shows the 

experiment results. As expected, EA consumes energy the 

most because it turns on every rack and node in the activated 

group without regard to the system load. On the other hand, 

the fractional activation algorithms can save energy by 

turning on part of racks and nodes of the group according to 

the system load. 

Among the fractional activation algorithms, FA-

RBA performs best. It can save energy up to 30% compared 

to EA as Figure 5 shows. This is because FA-RBA turns on a 

new rack only if all nodes in active racks are active. Figure 
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Fig.5. Number of active racks (θ = 0.5) 
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Fig.6. Energy usage (θ = 0.5) 
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6.a and 6.b show that the number of active racks is the 
smallest at FA-RBA. Both FA-LBA and Sierra consume 

more energy due to large number of active racks. The 

difference of the number of active nodes is not significant 

among the fractional activation algorithms as Figure 7.a and 

7.b show. Since Sierra selects a new node at random manner, 

the selected node may be any rack in the group. This means 

that Sierra would turn on most racks for each activated 

group. FA-LBA also turns on more racks compared to FA-

RBA. This is because FA-LBA selects a new node that stores 

the requested data items the most, even though the node is in 

inactive rack. It prefers to support fast response time rather 

than reduce energy consumption. 

Task allocation algorithms also affect the energy 

usage. Specifically, LBA consumes more energy than GBA. 

The difference is significant between the second period and 
the third period. Since GBA tries to distribute the system 

load to a minimal number of groups, it has more chances to 

turn off any group compared to LBA. From Figure 6.a and 

7.a, we can guess that GBA activates the primary group only 

between the second period and the third period since the 

number of active racks and nodes correspond to the size of a 

group. On the other hand, as Figure 6.b and 7.b illustrate, 

LBA turns on more racks and nodes at that duration, which 

means that LBA activates additional groups. 

 

B. Response time 

We also compare the response time of proposed algorithms. 

Figure 8 shows the difference of response times of proposed 

algorithms from EA. We select EA as a baseline since EA 

turns on every rack and node immediately for an active 
group. As a result, it may not experience any transition delay 

for any tasks allocated to the group. 

For the most part, the differences of response time 

between node activation algorithms are not significant. This 

is especially true for GBA as Figure 8.a shows. In LBA, the 

difference increases at the first period, and Sierra performs 

worst among them. At the second period, every fractional 

algorithm performs worse dramatically for some point where 

the load increases up to the maximum cluster capacity. Since 

every rack and node in off state should be activated, many 

tasks experience transition delay waiting for the rack and 

node will be active. Similar phenomenon also occurs once 

for FA-RBA at the third period. FA-RBA tries to reduce the 

number of active racks, and thus it may suffer from large 

transition delay when the system load increases suddenly and 

requires many racks being activated. 
 

C. Access skew 

The last experiment compares the energy usage on various 

settings of θ. Figure 9 shows the average energy usage at the 

first period. When θ is 0, FA-RBA performs best and it can 

save energy about 20% of EA. Both FA-LBA and Sierra 
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Fig.8. Difference of response time from EA (θ = 0.5) 
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Fig.7. Number of active nodes (θ = 0.5) 
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consume much energy compared to FA-RBA. Since every 

rack of a group has same number of hot data items when θ is 

0, the access set of tasks distribute the entire racks. This 

means that FA-LBA turns on most racks while very few 

nodes would be activated at each rack. As a result, the fixed 
energy consumption of active rack takes significant part of 

aggregate energy consumption. FA-RBA can reduce the 

fixed energy consumption since it tries to minimize the 

number of active racks. 

The energy consumption of FA-RBA increases in 

proportion to θ, and it consumes more energy than FA-LBA 

when θ is 1. Note that the first few racks store most of hot 

data items when θ is 1. Let us suppose that 'hot rack' is one 

that stores hot data items the most. FA-LBA assigns a task to 

the hot rack only if it accesses hot data items. The execution 

time of the task should be relatively short since it does not 

incur inter-rack communication. On the other hand, in FA-

RBA, the hot rack may be assigned to tasks accessing other 

data items. This causes to make the execution time of the 

tasks longer. Since many tasks have to access data items in 

hot rack, the execution time of the tasks may be also 
prolonged. As a result, more racks should be required to 

provide map/reduce slots for incoming tasks and thus FA-

RBA may consume much energy. 

 

 

Concluding Remarks 
In this paper, we consider cluster-wide energy management 

for MapReduce clusters. We first propose task allocation 

algorithms that select target nodes to execute incoming tasks. 

Then we propose node activation algorithms that determine a 
new node to be activated when the system load increases. 

The proposed algorithms consolidate the system load to a 

minimum set of active groups, and thus can save energy 

significantly. Furthermore, they are rack-aware and thus can 

reduce energy consumption of power-hungry rack 

components, such as cooling, power distribution units, and 

power backup equipment. 

To evaluate the performance of proposed algorithms, 

we develop a simulation model of MapReduce clusters. The 

important experiment results are summarized as follows. 

First, the group-based allocation can reduce the number of 

active racks and thus can save energy considerably compared 

to the locality-based allocation. Next, the rack-aware 

fractional activation outperforms other node activation 

algorithms with regard to the energy usage. The performance 

improvement is up to 30% when compared to entire 
activation algorithm. Furthermore, its response time is 

comparable to other algorithms in most cases. 
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