
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38368-38376

© Research India Publications. http://www.ripublication.com

38368

Dynamic Reconstruction of MapReduce Clusters for Achieving

Energy Proportionality

M. Kim H. Cho*

Ph.D. Candidate Professor

 Department of Computer Engineering Department of Computer Engineering

 Yeungnam University, Republic of Korea Yeungnam University, Republic of Korea

* Corresponding author: hrcho@yu.ac.kr

Abstract- MapReduce provides a promising tool for

processing the massive data sets and becomes a

representative paradigm for building large scale data

intensive applications. The principle of energy

proportionality states that we can save energy by activating

only a part of cluster nodes in proportion to the amount of

input workload. However, achieving the energy

proportionality in MapReduce clusters is challenging since
arbitrarily deactivating cluster nodes can make a part of data

unavailable. In this paper, we propose algorithms for task

allocation and node activation in MapReduce clusters. They

consolidate the system load to a minimum set of active

groups, and thus can save energy significantly. Furthermore,

they are rack-aware and thus can reduce energy consumption

of power-hungry rack components, such as cooling, power

distribution units, and power backup equipment. Experiment

results indicate a reduction in energy consumption up to 30%

when compared to previous algorithms.

Keywords: Big data, MapReduce, Energy proportionality,

Cluster, Node activation.

Introduction
Large data center operating costs have prompted the

consideration of energy management policies. Current

solutions can be divided into two categories: cluster-wide

and local [1]. Cluster-wide policies achieve energy

proportionality by reconfiguring the cluster dynamically.

When the cluster load is very high, most nodes should turn

on and share the load. However, if the cluster load is

significantly lower than the peak load, cluster-wide policies

consolidate the load on a subset of nodes and turning off the
remaining nodes. As a result, the entire cluster can consume

energy in proportion to its load level. Local policies put

unused resources in a low-power state. Typical examples

include dynamic voltage scaling and power-aware storage

management.

This paper focuses on cluster-wide energy

management for MapReduce clusters. MapReduce has

emerged as an important paradigm for building large scale

data intensive applications [2]. It provides a simple and

powerful programming model that enables easy development

of distributed applications to process vast amounts of data on

large clusters of commodity machines. Recent empirical

studies show that MapReduce clusters have to support highly

diverse workloads consisting of short interactive jobs and

long-running batch jobs [3][4]. Furthermore, some workload

has high peak-to-average ratios [5]. A cluster provisioned for

the peak load would be often underutilized and waste a great

deal of energy. This means that MapReduce clusters have
high potential to save energy by cluster-wide energy

management.

In this paper, we assume that the cluster is

partitioned into several groups. Each group includes one

replica of every data item. To save energy, we exploit both

inter-group strategy and intra-group strategy. The inter-

group strategy consolidates system load to a minimum set of

active groups so that nodes in other groups can stay at low-

power mode for a long time. The intra-group strategy

leverages rack-aware node activation to reduce the number

of active racks for each group. A recent study on data center

power management shows that rack-based power

management can lead to several times more energy savings

than other solutions that focus only on the power consumed

by node [6]. The contribution of this paper can be

summarized as follows.

 We first propose task allocation algorithms that select

target nodes to execute input tasks. The goal is to

consolidate the system load to a minimum set of active

groups. We present two alternatives on node selection,

group-based and locality-based, which shows an

interesting trade-off between energy consumption and

performance.

 Then we propose node activation algorithms that

determines a node to be activated when the system load

increases. Considering the activation relationship of

group, rack, and node, we propose three node activation

algorithms, entire activation, rack-based activation, and

locality-based activation. They also exploit a trade-off

between energy consumption and performance.

 We develop an experiment model of MapReduce cluster
and evaluate the proposed algorithms with respect to

energy consumption and performance.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38368-38376

© Research India Publications. http://www.ripublication.com

38369

The rest of this paper is organized as follows.

Section 2 presents related work and explains its limitations.

Section 3 describes the cluster architecture that we assume in

this paper. Section 4 proposes algorithms for task allocation

and node activation. Section 5 describes the experiment

model and Section 6 analyzes the experiment results. Finally,

the concluding remarks appear at Section 7

Related Work
A number of studies have reported cluster-wide energy

management methods for MapReduce clusters. The covering

set (CS) method [7] is the initial work. It keeps one replica of

every data item within a small subset of nodes called CS

nodes. CS nodes remain fully powered to preserve data

availability while the rest is powered down. However, this

method supports limited energy proportionality. The cluster

is in either full performance mode with every node activated

or energy mode with only the CS nodes activated.

Sierra [8] motivates our work the most. It extends

the CS method by partitioning the cluster into groups,

where is a replication factor. Each node belongs to one of

the groups so that one replica of each data is placed to each
group. Similar to our work, Sierra reconfigures the cluster by

activating or deactivating each group according to the system

load. However, it may suffer from two limitations. First, it

lacks an elaborate task allocation scheme that determines

which nodes are going to execute incoming tasks. As we will

describe at Section 4, the number of idle nodes can be

different according to the task allocation algorithm,

especially when the variance of cluster load is significant. By

maximizing the number of idle nodes, we can increase the

probability of deactivating racks and groups. The next

limitation of Sierra is that it does not consider the order of

node activation for each group. We will show that activating

nodes at random order causes unnecessary energy

consumption and longer execution time for each task.

GreenHDFS [9] divides the cluster into disjoint hot

and cold groups. The frequently accessed data is placed in

the hot group, which is always powered on. Similarly,

BEEMR [5] partitions the cluster into disjoint interactive and

batch group. The interactive group is always powered on. It

runs all of the interactive jobs and stores every data for the

jobs. Both algorithms can save energy by deactivating

another group (cold or batch) for a long time. The
performance loss of active group can also be minimal since

the number of replicas of frequently accessed data is not

reduced. The drawback of both algorithms is that any jobs

should experience considerable delay when they access data

stored in the deactivated group.

AIS (All-in Strategy) [10] is a totally different

approach. It runs the given jobs with the entire set of nodes

in the cluster to complete them as quickly as possible. Upon

completion of the jobs, every node is deactivated to save

energy until the next run. One potential drawback is that

even with small jobs, AIS still needs to wake up the entire

cluster, possibly wasting energy. Furthermore, it cannot

support real-time jobs that require fast response time and

deadline constraint [11].

Recently, iPACS [12] presents a CS set discovery
algorithm that finds an energy-optimized node set to satisfy

the given data requirement. Unlike Sierra where each group

includes a replica of entire data set, the CS set contains a

replica of required data set under the assumption that the data

set can be available for the next time window. To achieve the

energy proportionality, iPACS also proposes a multi-level

CS discovery algorithm. The level in this case means the

number of replicas. When the system load increases, iPACS

finds a higher level CS set that contains more replicas of the

required data set. The problem of iPACS is the difficulty of

predicting the data set of the next time window. If the CS set

does not include the data set actually accessed by some jobs,

the jobs should experience considerable delay.

Rack 1.1 Rack 1.n

Group 1

Rack r.1 Rack r.n

Group r

node

disk

replica of data item
Front-end

Fig.1. Cluster architecture

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38368-38376

© Research India Publications. http://www.ripublication.com

38370

Cluster Architecture
Figure 1 shows the baseline cluster architecture. It follows

the conventional master-slave architecture of Hadoop [13].

Basically, the cluster is a shared-nothing architecture, where

each node has its own set of private disks and only the owner

node can directly access its disks. Each file is split into

smaller data blocks and these blocks are distributed across
the cluster. A block is replicated to different nodes to ensure

data availability. The cluster stores replicas for each block,

and is called as a replication factor. The default setting of
is three in Hadoop.

The cluster is partitioned into groups, and each

group stores one replica of every data item. This means that

there are replica for each data item. Group 1 is a primary
group. It has a role to CS nodes [7] and thus always powered

on. As a result, the primary group can ensure the immediate

availability of data items required for real-time jobs. Other

groups may be activated or deactivated according to the

system load. This way we can support the principle of energy

proportionality such that the amount of energy consumed by

the cluster is proportional to the amount of work performed.

We assume that each group consists of n distinct

racks and all nodes in a rack are in the same group. This

permits the entire rack to be turned off when the owner group

is deactivated, allowing additional power savings by turning

off rack-wide equipment such as switches [6][8]. We also

assume that there is more bandwidth available between

nodes on the same rack compared to nodes on different rack.

Note that this assumption is effective for most configurations
of current data centers. For example, Hadoop prefers within-

rack transfers to off-rack transfers when placing MapReduce

tasks on nodes [13].

The front-end is a single point of contact for a client

wishing to execute a MapReduce job. Typically, a

MapReduce job is divided into a number of map tasks and

reduce tasks. The front-end allocates each task to a node in

some active group. The task allocation has to be performed

in an energy-efficient manner not to activate excessive

groups compared to the current load. Furthermore, it tries to

take advantage of data locality to reduce the amount of inter-

node or inter-rack communications. We will describe the
proposed task allocation algorithms at Section 4.A. The

front-end also monitors the system load and compares it to

the processing capacity of active groups. If the system load

increases, the current set of active nodes would not afford

additional tasks. Then the front-end has to turn on new

nodes. There are some alternatives to select new nodes to be

activated. We will discuss this issue at Section 4.B.

Proposed Algorithms
In this section, we first describe task allocation algorithms

that determine a node to execute a task. Then we propose
node activation algorithms that determine a node to be

activated to process excessive load.

A. Task allocation algorithms

We propose two task allocation algorithms, named group-

based allocation (GBA) and locality-based allocation

(LBA). Figure 2 presents the details of both algorithm for

allocating a map task. They take advantage of data locality to

reduce inter-node and inter-rack communications.

m: map task

d: input data of m

i: 1 (Group number)

Consider group i

Suppose d is stored in

node n of rack r

Node n can

afford m?

Allocate m

to n

Any node in r

can afford m?

Allocate m

to the node

Any node in i

can afford m?

Allocate m

to the node

i = i + 1

yes

yes

yes

no

no

no

m: map task

d: input data of m

i: 1 (Group number)

Consider group i

Suppose d is stored in

node n of rack r

Node n can

afford m?

Allocate m

to n

Any node in r

can afford m?

Allocate m

to the node

Group i is

active?

Check other

nodes from

group 1

i = i + 1

yes

yes

no

no

yes no

(a) Group-based allocation (GBA) (b) Locality-based allocation (LBA)

Fig.2. Task allocation algorithms for map task

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38368-38376

© Research India Publications. http://www.ripublication.com

38371

Specifically, they first check if the task is data-local, that is,

running on the same node that the required data resides on. If

the node has available slots for the task, the task can be

allocated to the node. Otherwise, both algorithms check if the

task is rack-local: on the same rack, but not the same node,

as the input data. Some task is neither data-local nor rack

local. For the task, GBA checks if any other node in the

current group is available to execute it. On the other hand,
LBA checks if the task is data-local or rack-local for the next

group. If it is not data-local and rack-local for every active

group, then LBA checks the availability of other nodes from

group 1 again.

 Note that GBA allocates a task to any node in group

2 only if every node in group 1 cannot afford new tasks. This

means that GBA can consolidate the system load to the

limited number of groups. As a result, more groups can be

deactivated and the amount of energy reduction would be

significant. LBA adopts a different approach. It allocates the

task to group 2 in case of data-local or rack-local even

though some nodes in group 1 are available. Since LBA

takes advantage of data locality more significantly, it could

outperform GBA with respect to the execution time.

However, more groups would be activated at the same time

and thus the amount of energy reduction is limited.
Allocating reduce tasks are rather simple. To exploit data

locality, they can be allocated to the same node or same rack

of preceding map tasks. If the node or the rack is not

available, the front-end will simply take any available node

from group 1.

B. Node activation algorithm

If the set of active groups cannot afford current system load,

the front-end has to activate a new group. Considering to the

activation relationship of group, rack, and node, we propose

the following node activation algorithms.

 Entire activation (EA): When a group is activated, every
rack and node in the group is activated at the same time.

 Fractional activation (FA): When a group is activated,
only part of entire racks and nodes of the group are

activated according to the system load. To select racks

and nodes to be activated, the front-end considers the

required data of yet-to-be-run tasks. There are two

algorithms of the fractional activation.

- Rack based activation (FA-RBA): It first turns on a

rack that includes the most required data of yet-to-be-

run tasks. Within the rack, nodes are activated in order

according to the system load. Only if every node in the

active racks is activated, FA-RBA turns on a new rack.

- Locality based activation (FA-LBA): It selects an

inactive node that includes the most required data of

yet-to-be-run tasks. If the node is included in inactive

rack, then FA-LBA turns on the rack first and then the
node.

Note that those algorithms show an interesting

trade-off between energy consumption and performance.

First, EA should spend energy the most since all members of

the group are activated regardless of the system load.

However, it can cope with the following increase of system

load without any turn-on delay. FA activates only part of the

group according to the system load. If the system load

increases thereafter, the rest should be activated with

considerable turn-on delay. This means that FA has some

limitation to adapt dramatic load variation. However, it can
save energy significantly compared to EA.

The trade-off between energy consumption and

performance is also existing between FA-RBA and FA-LBA.

FA-RBA tries to reduce the number of active racks. Since

70% of data center power goes toward rack-related

components, such as cooling, power distribution units, the

switch gear, and power backup [6], reducing the number of

active racks must contribute to save energy significantly. On

the other hand, FA-LBA just activates nodes that store the

required data the most regardless of rack activation. As a

result, it is possible that many racks of a group are activated

while there are very small number of active nodes for each

rack. FA-LBA increases the probability of data-local at the

cost of high energy consumption.

Experiment Model
To evaluate the performance of proposed algorithms, we

developed a simulation model of the MapReduce cluster

using CSIM discrete-event simulation package [14]. Table 1

shows the simulation parameters. The parameter values will

be used for most experiments unless otherwise noted. Many

of their values are adopted from [6].

TABLE.1. Simulation Parameters

Parameters Value

Number of groups 3

Number of racks 150

Number of nodes 3000

Number of Map slots per node 10

Number of Reduce slots per node 5

Rack transition time 300 sec

Node transition time 30 sec

Maximum duration of staying at idle state 15 min

Energy consumption of idle node 100 w/h

Energy consumption of active node 500 w/h

Rack power overhead for each node 50%

Fixed energy consumption of active rack 5 kw/h
Intra-rack network bandwidth 64 Gbps

Inter-rack network bandwidth 128 Gbps

Data size of each group 80 TB

Load skew factor (θ) 0.0 : 1.0

Portion of hot data 4%

Probability of accessing hot data 80%

The cluster consists of three groups and each group

has 50 racks. The first group is a primary group and is

always powered on. The other groups can be deactivated

according to the system load. We assume a homogeneous

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38368-38376

© Research India Publications. http://www.ripublication.com

38372

computing environment where the hardware specification of

each device type is same. Specifically, a rack includes 20

nodes and every node has 10 map slots and 5 reduce slots.

That means a node can execute 10 map tasks and 5 reduce

tasks at the same time. Each node can stay at one of three

execution states: active, idle, and off. An off node does not

consume any energy. A node is in active state when it
executes some tasks. When the node completes every

assigned task, it moves to the idle state. We assume that the

energy consumption of idle node is much lower than that of

active node. Furthermore, if any node in non-primary group

stays at the idle state for longer than the threshold (15 min),

the front-end turns off the node. The time taken by the node

to go between idle and off states is set to 30 seconds.

The state of rack is modeled similarly. If any nodes

in a rack is active, the rack is also active. If every node in the

rack is in off state, it moves to the off state. The transition

delay taken by the rack is set to 300 seconds same to [6]. An

active rack consumes energy in proportion to the number of

active nodes. Similar to [6], we configure rack overhead to

be 50%; i.e, the support-infrastructure like cooling system on

each rack consumes 50% as much energy as the nodes on the
rack. Since the rack may also have equipments like

interconnect bay and power backup that spend energy

independent of node states, we also model that there is

significant fixed energy consumption for each rack [15].

A group contains one replica for each data item. We

configure that the data size of each group is 80 TB, and it is

evenly distributed to the nodes. To model the access skew,

we categorize the entire data items into hot set and cold set.

A data item in hot set has a high probability of being

accessed by tasks. The load skew factor, θ, determines how

much portion of hot set is assigned to each rack. Suppose

that Dhot represents the size of entire hot set. We set Dhot to
3.2 TB which corresponds to 4% of the entire data set (= 80

TB). If each group inclusdes N racks, the size of hot set in K-

th rack is determined by the following Zipf-like distribution

expression,
)(1/

1/
*

1=

θN

i

θ

hot
i

k
D

∑
. If θ is set to 0, every rack has

the same number of hot data items. On the other hand, if θ is

set to 1, the first few racks store most of hot data items.

Figure 3 shows the number of hot data items assigned to

every rack of a group on different settings of θ. The size of a

data item is set to 64 MB.
Figure 4 depicts a load variation model used

throughout the experiments. It consists of three periods, each

of which has a load increasing stage and a load decreasing

stage. The first period lasts for the first seven hours. It is

intended to model the initial situation of the cluster where

only the primary group is active and every node of the

primary group does not cache anything. The second period

starts after the first period. In this period, the load increases

up to the maximum cluster capacity and then decreases

dramatically. The last period starts near fifteen hours. Unlike

the previous periods, the load increases slowly and thus we

can compare the performance of proposed algorithms under

different load increasing speed. We believe that our load

variation model can capture most of real workload

characteristics related to MapReduce clusters [5, 9].

Fig.3. Distribution of hot data items on various θ

Fig.4. Load variation mode

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38368-38376

© Research India Publications. http://www.ripublication.com

38373

Experiment Results

We implement two versions of task allocation algorithms,

GBA and LBA, and four versions of node activation

algorithms, EA, FA-RBA, FA-LBA, and Sierra [8] that

chooses the activated node at random. Performance metrics

are energy usage and response time (turnaround time). The

energy usage is the aggregate power consumed by every rack

and node. We use the number of active racks and active

nodes as a secondary metric to explain the variation of the

energy usage. The response time in seconds is measured as

the difference between when a task is submitted and when

the task successfully commits.

A. Energy usage

We first compare the energy usage. Figure 5 shows the

experiment results. As expected, EA consumes energy the

most because it turns on every rack and node in the activated

group without regard to the system load. On the other hand,

the fractional activation algorithms can save energy by

turning on part of racks and nodes of the group according to

the system load.

Among the fractional activation algorithms, FA-

RBA performs best. It can save energy up to 30% compared

to EA as Figure 5 shows. This is because FA-RBA turns on a

new rack only if all nodes in active racks are active. Figure

EA
FA-RBA
FA-LBA
Sierra

50

70

90

110

130

150

0:05 4:00 7:55 11:50 15:45 19:40 23:35
Time

N
u

m
b

er
 o

f
a
ct

iv
e

ra
ck

s

EA
FA-RBA
FA-LBA
Sierra

50

70

90

110

130

150

0:05 4:00 7:55 11:50 15:45 19:40 23:35
Time

N
u

m
b

er
 o

f
a
ct

iv
e

ra
ck

s

(a) Task allocation algorithm = GBA

(b) Task allocation algorithm = LBA

Fig.5. Number of active racks (θ = 0.5)

EA
FA-RBA
FA-LBA
Sierra

800

1200

1600

2000

2400

2800

0:05 4:00 7:55 11:50 15:45 19:40 23:35

Time

E
n

er
g

y
 u

sa
g

e
(k

W
/h

)

(a) Task allocation algorithm = GBA

EA
FA-RBA
FA-LBA
Sierra

800

1200

1600

2000

2400

2800

0:05 4:00 7:55 11:50 15:45 19:40 23:35
Time

E
n

er
g

y
 u

sa
g

e
(k

W
/h

)

(b) Task allocation algorithm = LBA

Fig.6. Energy usage (θ = 0.5)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38368-38376

© Research India Publications. http://www.ripublication.com

38374

6.a and 6.b show that the number of active racks is the
smallest at FA-RBA. Both FA-LBA and Sierra consume

more energy due to large number of active racks. The

difference of the number of active nodes is not significant

among the fractional activation algorithms as Figure 7.a and

7.b show. Since Sierra selects a new node at random manner,

the selected node may be any rack in the group. This means

that Sierra would turn on most racks for each activated

group. FA-LBA also turns on more racks compared to FA-

RBA. This is because FA-LBA selects a new node that stores

the requested data items the most, even though the node is in

inactive rack. It prefers to support fast response time rather

than reduce energy consumption.

Task allocation algorithms also affect the energy

usage. Specifically, LBA consumes more energy than GBA.

The difference is significant between the second period and
the third period. Since GBA tries to distribute the system

load to a minimal number of groups, it has more chances to

turn off any group compared to LBA. From Figure 6.a and

7.a, we can guess that GBA activates the primary group only

between the second period and the third period since the

number of active racks and nodes correspond to the size of a

group. On the other hand, as Figure 6.b and 7.b illustrate,

LBA turns on more racks and nodes at that duration, which

means that LBA activates additional groups.

B. Response time

We also compare the response time of proposed algorithms.

Figure 8 shows the difference of response times of proposed

algorithms from EA. We select EA as a baseline since EA

turns on every rack and node immediately for an active
group. As a result, it may not experience any transition delay

for any tasks allocated to the group.

For the most part, the differences of response time

between node activation algorithms are not significant. This

is especially true for GBA as Figure 8.a shows. In LBA, the

difference increases at the first period, and Sierra performs

worst among them. At the second period, every fractional

algorithm performs worse dramatically for some point where

the load increases up to the maximum cluster capacity. Since

every rack and node in off state should be activated, many

tasks experience transition delay waiting for the rack and

node will be active. Similar phenomenon also occurs once

for FA-RBA at the third period. FA-RBA tries to reduce the

number of active racks, and thus it may suffer from large

transition delay when the system load increases suddenly and

requires many racks being activated.

C. Access skew

The last experiment compares the energy usage on various

settings of θ. Figure 9 shows the average energy usage at the

first period. When θ is 0, FA-RBA performs best and it can

save energy about 20% of EA. Both FA-LBA and Sierra

-0.5

0

0.5

1

1.5

2

2.5

3

0:05 4:00 7:55 11:50 15:45 19:40 23:35

Time

D
if

fe
re

n
ce

 o
f

re
sp

o
n

se
 t

im
e

w
it

h
 E

A
 (

se
c)

FA-RBA

FA-LBA

Sierra

FA-RBA

FA-LBA

Sierra

-0.5

0

0.5

1

1.5

2

2.5

3

0:05 4:00 7:55 11:50 15:45 19:40 23:35

Time

D
if

fe
re

n
ce

 o
f

re
sp

o
n

se
 t

im
e

w
it

h
 E

A
 (

se
c)

(a) Task allocation algorithm = GBA

(b) Task allocation algorithm = LBA

Fig.8. Difference of response time from EA (θ = 0.5)

EA
FA-RBA
FA-LBA
Sierra

1000

1500

2000

2500

3000

0:05 4:00 7:55 11:50 15:45 19:40 23:35
Time

N
u

m
b

er
 o

f
a
ct

iv
e

n
o
d

es

EA
FA-RBA
FA-LBA
Sierra

1000

1500

2000

2500

3000

0:05 4:00 7:55 11:50 15:45 19:40 23:35
Time

N
u

m
b

er
 o

f
a
ct

iv
e

n
o
d

es

(a) Task allocation algorithm = GBA

(b) Task allocation algorithm = LBA

Fig.7. Number of active nodes (θ = 0.5)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38368-38376

© Research India Publications. http://www.ripublication.com

38375

consume much energy compared to FA-RBA. Since every

rack of a group has same number of hot data items when θ is

0, the access set of tasks distribute the entire racks. This

means that FA-LBA turns on most racks while very few

nodes would be activated at each rack. As a result, the fixed
energy consumption of active rack takes significant part of

aggregate energy consumption. FA-RBA can reduce the

fixed energy consumption since it tries to minimize the

number of active racks.

The energy consumption of FA-RBA increases in

proportion to θ, and it consumes more energy than FA-LBA

when θ is 1. Note that the first few racks store most of hot

data items when θ is 1. Let us suppose that 'hot rack' is one

that stores hot data items the most. FA-LBA assigns a task to

the hot rack only if it accesses hot data items. The execution

time of the task should be relatively short since it does not

incur inter-rack communication. On the other hand, in FA-

RBA, the hot rack may be assigned to tasks accessing other

data items. This causes to make the execution time of the

tasks longer. Since many tasks have to access data items in

hot rack, the execution time of the tasks may be also
prolonged. As a result, more racks should be required to

provide map/reduce slots for incoming tasks and thus FA-

RBA may consume much energy.

Concluding Remarks
In this paper, we consider cluster-wide energy management

for MapReduce clusters. We first propose task allocation

algorithms that select target nodes to execute incoming tasks.

Then we propose node activation algorithms that determine a
new node to be activated when the system load increases.

The proposed algorithms consolidate the system load to a

minimum set of active groups, and thus can save energy

significantly. Furthermore, they are rack-aware and thus can

reduce energy consumption of power-hungry rack

components, such as cooling, power distribution units, and

power backup equipment.

To evaluate the performance of proposed algorithms,

we develop a simulation model of MapReduce clusters. The

important experiment results are summarized as follows.

First, the group-based allocation can reduce the number of

active racks and thus can save energy considerably compared

to the locality-based allocation. Next, the rack-aware

fractional activation outperforms other node activation

algorithms with regard to the energy usage. The performance

improvement is up to 30% when compared to entire
activation algorithm. Furthermore, its response time is

comparable to other algorithms in most cases.

References

[1] Cho, H., 2012, "Energy management for a real-time

shared disk cluster," J. Supercomputing, 62(3), pp.

1338-1361.

[2] Sakr, S., Liu, A., and Fayoumi, A., 2013, "The family of

MapReduce and large-scale data processing systems,"

ACM Comp Surveys, 46(1), pp. 1-44.

[3] Chen, Y., Alspaugh, S., and Katz, R., 2012, "Interactive
analytical processing in big data systems: a cross-

industry study of MapReduce workloads," J. Proc. of

VLDB Endowment, 5(12), pp. 1802-1813.

[4] Ren, K., Kwon, Y., Balazinska, M., and Howe, B., 2013,

"Hadoop's adolescence - an analysis of Hadoop usage

in scientific workloads," J. Proc. of VLDB Endowment,

6(10), pp. 129-139.

[5] Chen, Y., Alspaugh, S., Borthakur, D., and Katz, R.,

2012, "Energy efficiency for large-scale MapReduce

workloads with significant interactive analysis," Proc.

7th ACM European Conf. Computer Syst.

(EuroSys'12), pp. 43-56.

[6] Ganesh, L., Weatherspoon, H., Matian, T., and Birman,

K., 2013, "Integrated approach to data center power

management," IEEE Trans. Computers, 62(6), pp.

1086-1096.
[7] Leverich, J., and Kozyrakis, C., 2010, "On the energy

(in)efficiency of hadoop clusters," Operating Syst.

Review, 44(1), pp. 61-65.

[8] Thereska, E., Donnelly, A., and Narayanan, D., 2011,

"Sierra: practical power-proportionality for data center

storage," Proc. 6th ACM European Conf. Computer

Syst. (EuroSys'11), pp. 169-182.

[9] Kaushik, R., Bhandarkar, M., and Najrstedt, K., 2010,

"Evaluation and analysis of GreenHDFS: a self-

adaptive, energy-conserving variant of the Hadoop

1000

1050

1100

1150

1200

1250

0 0.25 0.5 0.75 1

E
n

er
g

y
 u

sa
g

e
 (

k
W

/h
)

EA FA-RBA FA-LBA Sierra

1000

1050

1100

1150

1200

1250

1300

0 0.25 0.5 0.75 1

E
n

e
r
g

y
 u

sa
g

e
 (

k
W

/h
)

EA FA-RBA FA-LBA Sierra

(a) Task allocation algorithm = GBA

(b) Task allocation algorithm = LBA

Fig.9. Average energy usage on various θ

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38368-38376

© Research India Publications. http://www.ripublication.com

38376

distributed file system," Proc. 2nd IEEE Int. Conf.

Cloud Comp. Tech. and Sci. (CloudCom'10), pp. 274-

287.

[10] Lang, W., and Patel, J. M., 2010, "Energy management

for MapReduce clusters," J. Proc. of VLDB

Endowment, 3(1-2), pp. 129-139.

[11] Borthakur, D., et al, 2011, "Apache hadoop goes

realtime at Facebook," Proc. 2011 ACM SIGMOD, pp.
1071-1080.

[12] Kim, J., Chou, J., and Rotem, D., 2014, "iPACS:

Power-aware covering sets for energy proportionality

and performance in data parallel computing clusters," J.

Parallel Distrib. Comput., 74(1), pp. 1762-1774.

[13] White, T., 2012, Hadoop - The definitive guide (3rd

Edition), O'Reilly.

[14] Mesquite Software, Inc., 2009, User's guide of CSIM20

simulation engine.

[15] Patil, V., and Chaudhary, V., 2013, "Rack aware

scheduling in HPC data centers: an energy conservation

strategy," Cluster Comput., 16(3), pp. 559-573.

