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Abstract- Privacy Preserving Data Mining (PPDM) addresses the 

problem of developing accurate models about aggregated data 

without access to precise information in individual data record. A 

widely studied perturbation-based PPDM approach introduces 

random perturbation to individual values to preserve privacy 

before data are published. Previous solutions of this approach are 

limited in their tacit assumption of trust on data miners without 

sensitivity issue. In this work, we overcome the problem of 
distrust and set, the more trusted a data miner is the less perturbed 

copy of the data it can access. Under this setting, a malicious data 

miner may have access to differently perturbed copies of the same 

data through various means, and may combine these diverse 

copies to jointly infer additional information about the original 

data that the data owner does not intend to release. Preventing 

such diversity attacks is the key challenge of our work. Perturbing 

costs on data sets are further optimized based on the sensitivity of 

the attributes required for perturbation. Our solution allows a data 

owner to generate perturbed copies of its data for arbitrary 

sensitivity levels on demand. This feature offers data owners‟ a 

maximum flexibility. 

 

Keywords: Data Mining, Privacy Preserving Data Mining, 

Perturbation, Additive Noise. 

 

Introduction   
The convergence of pervasive forms of data collection, 

widespread deployment of cheap digital sensors, and economics 

of infinite storage is apparently leading us into an age of perfect 

remembering where “everyone is on the record all the time.” This 

convergence of pervasive forms of data collection, widespread 

digitization of analog records, economics of infinite storage, and 

subsumption of all media into the digital format is, according to 

the majority of commentators, inexorably leading us into an age 

of “perfect remembering,” enabling individuals to “google their 

past,” recalling at will individual events in full multimedia 

richness, identifying trends in personal health, work activities, 

and lifestyle. Indeed, if one factors in the gradual elimination of 

paper in favor of digital forms for commercial transactions, 

communication, documentation, etc., and the continually 

plummeting costs of digital storage, the picture of a world where 

“everyone is on the record all the time” does not seem far-

fetched. With regard to both health and learning, similar patterns 

will obtain. Instead of relying on patients‟ vague account of their 

ailments, doctors will finally have access to “minutely detailed 

chronicles of vital signs, behavior, diet, and exercise, along with 
physician’ diagnoses, prescriptions, advice, and test results.” 

While each of these approaches does contribute something to 

restoring a certain balance, each has also significant 

drawbacks. Practitioners of digital abstinence must 

systematically forego the various benefits service providers 

offer in exchange of release of personal information; privacy 

rights have historically enjoyed limited successes in the US, 

and policies for automatic negotiation of privacy settings 

between information sharing devices are notoriously 

complicated for dedicated experts, let alone for casual users. 
 

What is PPDM? 

Privacy in data for data mining is ensured by many methods 

since decades. Data Transformation in the KDD process 

ensures transforming the data into cryptic codes and some 

abbreviated forms, yet the details of the data are guessable to 

the data miners. Protecting privacy for the data which is 

believed to confidential such as individual data, has been a 

great challenge for the data miners during the KDD process. 

The main consideration in privacy preserving data 

mining is the sensitive nature of raw data. The data miner, 

while mining for aggregate statistical information about the 

data, should not be able to access data in its original form 

with all the sensitive information. Simple techniques like 

deleting the unique personal identifier like name or social 

security number from a dataset containing personal 

information does not help always. It is not safe enough since 

re-identification attacks have emerged which can link 

different public data sets to re-identify the original subjects. 

 

Perturbation 

One approach to privacy-preserving data mining is based on 

perturbing the original data, then providing the perturbed 
dataset as input to the data mining algorithm. The privacy-

preserving properties are a result of the perturbation: Data 

values for individual entities are distorted, and thus 

individually identifiable (private) values are not revealed. 

This work shows that random additive perturbation fails to 

preserve privacy in the data mining. As in the erstwhile 

research, random matrices have „predictable‟ structures in the 

spectral domain and it develops a random matrix-based 

„Spectral Filtering Technique‟ (SPF) to retrieve original data 

from the dataset distorted by adding random values. The 

proposed method works by comparing the spectrum 

generated from the observed data with that of random 

matrices. This work presents the theoretical foundation and 

extensive experimental results to demonstrate that in many 

cases random data distortion preserves very little data 

privacy. It presents some direct comparison with previously 

suggested privacy preserving data mining techniques based 
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on additive random perturbation as well to show the serious 

breach of privacy. It also explores the possibility of proposed 

spectral filtering technique on different data types and 

perturbation methods e.g. discrete data and exclusive or noise. 

The analytical framework presented in this work points out 

several possible avenues for the development of new privacy-

preserving data mining techniques. 

 

Background 
Data anonymization is the process of conditioning a dataset such 

that no sensitive information can be learned about any specific 

individual, yet valid scientific conclusions can nevertheless be 

drawn. Deidentification, or removing explicit identifiers like 

names and phone numbers, is necessary but insufficient to protect 

individual privacy. We must also remove enough additional 

information so that an attacker cannot infer an identity based on 

what remains (a reidentification disclosure) or otherwise infer 

sensitive information about an individual (a prediction 

disclosure). These kinds of disclosures could be made by 

examining the data for combinations of variables that might 

uniquely identify someone, or for patterns of values that 

unintentionally reveal sensitive information. This is exactly what 

happened when a reporter reidentified an Internet user in released, 

deidentified search queries - the combination of several queries 

was enough to narrow the searcher‟s identity to one particular 

person [2]. 

The only known way to prevent these disclosures is to 

remove additional information from the dataset. Most existing 

methods work by perturbing or suppressing variable values, 

causing uncertainty in identity inference or sensitive–value 
estimation. This has been an area of active research for three 

decades, yet nearly every aspect of it remains an open question: 

How do we measure privacy protection, and what amount of 

protection do we want? What is the optimal method of perturbing 

the data to achieve this protection? How do we measure the 

impact of the perturbation on scientific analysis, and what is an 

acceptable impact? 

 

Related Work 
Disclosure limitation in a public data release involves some 

degree of modification of the data to be released. Instead of 

publishing the original data D, a masked version D′ is published. 

The masking improves privacy but reduces the utility of the 

published data, in comparison to the original data. This tension 

between privacy and utility is unavoidable: privacy and utility are 

two different views of the same thing, the amount of information 

published. By reducing the amount of information published, 

privacy improves but utility decreases; and the other way round. 
Two extreme cases are: publish the original data, which offers the 

greatest utility but the least privacy; and publish encrypted or 

random data, which incurs no disclosure risk at all, but offers no 

utility. 

Disclosure limitation technologies seek equilibrium 

between privacy and utility: the disclosure risk must be limited, 

but the data need to remain useful. Sometimes the required 

equilibrium between privacy and utility does not exist; for 

instance, when access to very accurate and sensitive data is 

required by some data recipient. As the publication of such a data 

set is not feasible, data providers must rely on other mechanisms 

such as data access restriction and non-disclosure agreements. 

Most disclosure limitation mechanisms are 

specifically designed to avoid releasing information that is 

known to be disclosive. Such mechanisms are instructed with 

the kind of data releases that may lead to a privacy breach, 

and are designed to avoid them. To determine the data 

releases that may lead to a privacy breach, a guess on the 

amount of side information available to the intruders is 

usually made. As long as this guess is accurate, the disclosure 

limitation mechanism accomplishes its duty, but a privacy 

breach may happen if there are intruders with greater 

amounts information. 

 
Perlin Noise 

A good random number generator produces numbers that 

have no relationship and show no discernible pattern. As we 

are beginning to see, a little bit of randomness can be a good 

thing when programming organic, lifelike behaviors. 

However, randomness as the single guiding principle is not 

necessarily natural. An algorithm known as “Perlin noise,” 

named for its inventor Ken Perlin, takes this concept into 

account. Perlin developed the noise function while working 

on the original Tron movie in the early 1980s; it was 

designed to create procedural textures for computer-

generated effects. In 1997 Perlin won an Academy Award in 

technical achievement for this work. Perlin noise can be used 

to generate various effects with natural qualities, such as 

clouds, landscapes, and patterned textures like marble. The 

applications of Perlin Noise are most considered in the field 

of graphics, where a smooth noise is added to an image, 

video or audio in order to conceal certain facts. The similar 

attempt is made on the databases, where the result of a query 

could not reveal the original status of the data. Perlin noise 

has a more organic appearance because it produces a 

naturally ordered (“smooth”) sequence of pseudo-random 

numbers. The Perlin Noise depends on Octaves, Colors and 
Textures, which are the properties detected from the data, 

when Perlin Noise is applied on the graphics. When comes to 

databases, they are the Sensitivity Levels of the Attribute, 

Database schemas that attributes are present, Semantic 

Inference of the attributes for the queries posed on the 

databases. 

 

Symbols 

Components to 

Generate Perlin 

Noise for Graphics 

Equivalent Assumptions 

of Components in a 

database for Noise 

generation. 

 Octaves 
Sensitivity Levels of the 

Attribute; 

 Colors 
Database schemas that 

attributes are present; 

 Textures 

Semantic Inference of the 

attributes in the query 

results returned  from the 

databases; 

Table 1: Symbols used for describing the dimensions in 

Perlin Noise. 

 

Therefore a Three-dimensional PN (3dPN) is an ideal for will 

be generated for the data set. For One-dimensional 
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application of Perlin Noise, the noise is only the random number 

of the integer. 
 

x = random (0, width) 
 

In the above assumption, width is the difference between 

the lower limit and the upper limit of the data values of a given 

attribute and zero is the starting flag of the random number 

generation. The random values are dependent on time t. Time gap 

persists in generating the random numbers series, from one 

random value to the next. As one of the computing overhead of a 

microprocessor is time that varies for each instruction to generate 

the random numbers in a series, they appear to be incremental for 

short time gaps, a considerably large time gap can generate even a 

lower random number than in the progressive series of random 

numbers. 

 

 
Fig 1: Illustrating Noise value with respect to time variance. 
 

However the time gap cannot be kept algorithmically as a 

constant. The group of time gaps is always chosen. 

Influence of Octaves or/are the Sensitivity Levels of the Attribute: 

Octaves are measured as low and high in the CG application of 

PN. In the database application, the attribute‟s sensitivity level is 

assumed. Less the sensitivity, coarse the noise generated, more 

the sensitivity smooth noise generated. If the degree of sensitivity 

is high, obviously the attribute is very sensitive that it can project 

more information or the just the presence of such attribute in the 

query result gives much crucial information to the adversary 

(query intruder/poser/attacker), where measures to conceal the 

ability of projecting facts need to be taken care. If the degree of 

sensitivity is low, the presence of attribute in the query result is 

very auxiliary, even measures to conceal the ability of projecting 

facts is taken care but not more than that of an attribute with 

higher degree of sensitivity. 
Influence of Colors or/are the Database schemas that attributes 

are present: Colors are notional in the Perlin Noise. Variations of 

the data with respect to colors are a basic representation of the 

differences in the data. Attributes during the design of schemas in 

the databases, have similar applications though they differ in their 

nomenclature. Such attributes having similar range, domain and 

entropy need to be identified as the data with different colors. A 

sum of a kind of similar attributes with respect to their 

applications is measured as colors of attributes. 

Influence of Textures or/are the Semantic Inference of the 

attributes in the query results returned  from the databases: Some 

of the attributes that pose prominence in the query result, same set 

of attributes form as a supporting group to form a composition of 

information.  

 

Kronecker product 

In this problem, the covariance matrix of Relaxed Perlin Noise 

can be written as the Kronecker product of two matrices. Where 

the data set is have a 1 × n and noise as p × q. We explore the 

properties of the Kronecker product for efficient computation. 

 

The Kronecker product is a binary matrix operator 

that maps two matrices of arbitrary dimensions into a larger 

matrix with a special block structure. The example is shown 

below. 

Let us take in this example, If A is an m × n matrix 

and B is a p × q matrix, then the Kronecker product A  B is 
the mp × nq block matrix: 

 

BaBa

BaBa

BA

mnm

n

...

.........

...

1

111

    [1] 

 

Problem Formulation 

In this section, we present the problem setting and describe 

our threat model, state our privacy goal and identify the 
design space. 

Following are the symbols and names used in the 

description of problem formulation: 

 

Notation Definition 

X Original data set 

N Number of tuples addressed in data set  

Y Perturbed copies of data set 

Z Noise generated using Relaxed Perlin Noise 

H Noise Inducer 

I Set of Noise values (in a matrix) 

R Relation in the data set 

s Perturbation magnitude 

S A set of sensitivity levels 

k Clearance constant 

j A particular sensitivity level 

 
Problem Settings 

In PPDM problem, we consider in this paper, a data owner 

trusts data miners at different levels and generates a series of 

perturbed copies of its data for different trust levels.  This is 

done by adding varying amount of noise to the data. Under 

this setting, data miners at higher trust levels can access less 

perturbed copies. Such less perturbed copies are not 

accessible by data miners at lower trust levels.  In certain 

scenarios, data miners at higher trust levels may also have 

access to the perturbed copies at more than one trust levels.  

Data miners at different trust levels may also collude to share 

the perturbed copies among them. As such, it is common that 

data miners can have access to more than one perturbed 
copies. 

Specifically, we assume that the data owner wants to 

release M perturbed copies of its data X, which is an N × 1 

vector with calculated mean and covariance. These M copies 

can be generated in various fashions. They can be jointly 

generated all at once. Alternatively, they can be generated at 

different times upon receiving new requests from data 

miners, in an on-demand fashion. The latter case gives data 

owners‟ a maximum flexibility. 
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It is true that the data owner may consider releasing only the 

mean and covariance of the original data. We remark that simply 

releasing the mean and covariance does not provide the same 

utility as the perturbed data. For many real applications, knowing 

only the mean and covariance may not be sufficient to apply data 

mining techniques, such as clustering, principal component 

analysis, and classification. By using random perturbation to 

release the data set, the data owner allows the data miner to 

exploit more statistical information without releasing the exact 

values of sensitive attributes. 

Based on the above scenario the about the sensitive 

attributes, where there is also a need for dispersal of sensitive 

attributes, the existing methods pose a problem face to present 

such attributes to the believed to be data miners also. In this 

problem the sensitivity of the attributes also are assessed and the 

guided noise using the Relaxed Perlin Noise generation method is 

applied, to enable the comfort of the data miners. This method 

can also be applied to the other attributes where the privacy can 

be ensured with relative data. This method prevents the 

guessability attacks and other adversarial attacks even in the 

distributed scenario. 

 

Basic Setting 

Let Y = [Y1…YM] be the set of all perturbed copies Yi where 1   i 

 M and M is maximum number of perturbed copies. Let Z = 

[Z1…ZM] be the set of noise generated using Relaxed Perlin Noise 

generator. Let H be an inducer with ( N · M ) × N and the matrix 

follows: 

N

N

I

I

H ...     [2] 

where IN represents an N × N identity matrix. Now, we have the 

relationship between Y, X, and Z as  Y = HX + Z. 

To be more robust against advanced filtering attacks, 

individual noise terms in Zi added to different attributes in X 

should have the same correlations as the attributes themselves; 

otherwise Zi can be easily filtered out. That explains the 

covariance of the individual noise terms and the covariance of the 

data set should be in correlation with respect to a perturbation 

magnitude (s). The perturbation magnitude is chosen by the data 

owner a value, according to the trust level associated with the 

target perturbed copy Yi. 

COV(Zi) = s.COV(X) and COV(Yi) = ( 1 + s ).COV(X) 

  [3] 

Setting with Sensitivity of Attribute 

This is further expanded for the above setting, with explicitly 

sensitivity identification and generating the Relaxed Perlin Noise 

for sensitive attributes. 

Let X be the data set that contains various attributes 

which among them some are high in sensitivity and some are low 

in sensitivity. The level or degree of sensitivity is determined by 

Information Gain methods where the attribute is said to have a set 

of values which can determine the primary class. Typically in 

data mining functionalities, classification of datasets in data 

mining is a group of attributes contribute to define a class, 

using which a classification tree or decision tree is generated. 

Usually ID3 algorithm and its variants are used to determine 

the tree. Information Gain calculation methods are widely 

used to determine the attribute participation into a class and 

connect as node in some level of the tree. The top level of the 

tree has attributes with high degree of information gain, the 

degree of information gain reduces to the sub levels. 

However, the fundamental Information Gain method is used 

to group the attributes into a class. Similar method is used to 

determine the Information Gain ratio for each attribute of the 

data set and determined to be sensitive if the ratio satisfies 

the assumed threshold. The data set X is said to have 

attributes of A1
1
 … An

S
. Where there are n attributes and S 

degrees of sensitivity levels. 

 

DEFINITION 1: 

A relation R in the data set X with n number of attributes 

with S levels of degrees of sensitivity. 

DEFINITION 2: 

A relation R in the data set X with n number of attributes 

with S levels of degrees of sensitivity. 

Where n is not equal to S. 

DEFINITION 3: 

A relation R in the data set X with n number of attributes 

with S levels of degrees of sensitivity. 

Where all n attributes does not have all sensitivity levels S. 

DEFINITION 4: 

A relation R in the data set X with n number of attributes 

with S levels of degrees of sensitivity. 

Where a group of attributes among n have a particular 

discrete sensitivity levels in S. 

DEFINITION 5: 

A relation R in the data set X with n number of attributes 

with S levels of degrees of sensitivity. 

Where a group of or all the attributes among n does not have 

any particular discrete sensitivity levels in S. 

DEFINITION 6: 

A relation R in the data set X with n number of attributes 

with S levels of degrees of sensitivity. 

Where a group of or a few attributes among n have any 

particular sensitivity level only in S. 

As stated from the above definitions, various 

assumptions can be made of the data sets which containing 

various characteristics. In this formulation let us assume the 

ideal version of the data set which contains a sufficient 

number of attributes (n) with selected sensitivity levels in S.  

The sensitivity levels are described in a spectrum consisting 

from high to low. The maximum of sensitivity levels in the 
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group of attributes or the individual selection of attributes is 

considered for the determining the perturbation magnitude. 

The perturbation magnitude (s) is even judged according 

to the sensitivity level of a group or individual attributes (A). In a 

group of attributes, for each attribute information gain ratio is 

calculated and where the maximum of information gain ratio 

among the attributes in the group is selected as the perturbation 

magnitude. This perturbation magnitude is applied to all the 

attributes commonly and the distortion is applied with 

randomization. 
 

s ≡ k.max(S)     [4] 
 

The value of s is identically equal to the maximum 

sensitivity of the attributes with a clearance constant. A clearance 

constant is used to rectify approximation error in the sensitivity 

level in order to calculate the integer perturbation magnitude. 

The data miner who requests for the data set from the 

data owner does not always have the need of all attributes. A set 

of attributes significantly or randomly selected would be chosen 

and they need to publish. A particular perturbed copy for the 

convenience of the data miner is not possible to develop from the 

original data set, several perturbed copies are developed and 

distributed among the group of data miners and they are shared 

according to their requirements.  

For a data set X with A attributes say there are n 

attributes, n  n number of gain groups are generated and their 

Information Gain ratio is calculated. From the data miner end the 

attribute information required to publish is taken, however all the 

attributes requested by the data miner for publishing are not 

perturbed and not issued to public use. The attributes for 

publishing are available in the gain groups but in many 

combinations of other attributes. A particular gain group is 

selected with the less information gain ratio where it contains 

maximum of the attributes to publish. Based on the Information 

Gain ratio of that group as the seed value for the Relaxed Perlin 

Noise generates noise for the group of attributes and their values. 

The perturbation of the data with the noise is implemented by 

Kronecker product of the data set and the Relaxed Perlin Noise 

values. 

Let A [(1…n)  (1…n)] (X) Gain groups of the data set, 

Let AP is the set of attributes required be published to the data 

miner and they are members of all the groups of attributes A 

[(1…n)  (1…n)] (X) in the data set,  

 AP  A [(1…n)  (1…n)] (X) and  

 AP  A [(1…n)  (1…n)] (X) 

Let Information Gain ratios of all the attribute groups of the data 

set X be G(A [(1…n)  (1…n)]). 

 s = max(G(A [(1…n)  (1…n)])) is the perturbation 

magnitude. 

Let Seed value for the Relaxed Perlin Noise generator is  

G(AP) ≤ G(A [(1…n)  (1…n)]). 

Gratio (G(AP)) is the seed value for the Relaxed Perlin Noise 

generator.  

Let P be the Relaxed Perlin Noise that is generated 

as a vector for all the attributes and their values of the 

selected data set of an attribute group to publish to the data 

miner.  

So,  

......

.........

......

=

11

mnP

P

P   

is the matrix of Relaxed Perlin Noise values each column 

generated for the attribute in the group and the rows for the 

values of the attributes and hence, the perturbed copies Y is 

determined as 
 

Y = X(AP)  P     [5] 
 

Let Y = [Y1…YM] be the set of all perturbed copies Yi 

where 1   i  M and M is maximum number of perturbed 

copies. Let P = [P1…PM] be the set of noise generated using 

Relaxed Perlin Noise generator with the sensitivity 

consciousness. Let H be an inducer with ( N · M ) × N and the 

matrix follows: 

N

N

I

I

H ...      [6] 

where IN represents an N × N identity matrix. Now, we have 

the relationship between Y, X, and P as  Y = HX + P or the 

YP. 

To be more robust against advanced filtering 

attacks, individual noise terms in Pi added to different 

attributes in X should have the same correlations as the 

attributes themselves, otherwise Pi can be easily filtered out. 

That explains, the covariance of the individual noise terms 

and the covariance of the data set should be in correlation 

with respect to a perturbation magnitude (s) . The 

perturbation magnitude is chosen by the data owner a value, 

according to the trust level associated with the target 

perturbed copy Yi. 

COV(Zi) = s.COV(X) and COV(Yi) = ( 1 + s ).COV(X)

   [7] 

Threat Model 

We always think malicious data miners who always attempt 

to attack on publishing, reconstruct a more accurate estimate 

of the original data given in perturbed copies. The 

reconstruction accuracy depends heavily on the adversaries‟ 

knowledge about the domain. Reinforcing the assumption 

that adversaries have the knowledge of the statistics of the 

original data X and the noise Z , i.e., mean of X, and 

covariance matrices of X and Z and that the adversaries with 

less knowledge are weaker. We assume adversaries only 

perform linear estimation attacks, where estimates can only 

be linear functions of the perturbed data Y. It is known that if 
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X follows a jointly Gaussian distribution, then Linear Least 

Square estimation achieves the minimum estimation error among 

both linear and nonlinear estimation methods. For X with general 

distribution, Linear Least Square estimation has the minimum 

estimation error among all linear estimation methods. In our 

setting the perturbed copies with Relaxed Perlin Noise generation 

YP. From the derivation of Y = HX + P has very least estimation 

that an adversary can possibly make.  

 

Design Space and Privacy goal 

In this setting, a data owner releases distinctly perturbed copies of 

its data to multiple data miners. One key goal of the data owner is 

to control the amount of information about its data that 

adversaries may derive.  

We assume that the data owner wants to distribute a total 

of M different perturbed copies of its data, i.e., Yi (1 ≤ i ≤ M), 

each for a trust level i. The assumption of M is for ease of 

analysis. It will become clear later that our solution of the on-

demand generation allows a data owner to generate as many 

different copies as it wishes. The data owner can easily control 

the amount of the information about its data an attacker may infer 

from a single perturbed copy. The data owner can easily control 

the privacy of an individual copy Yi by setting s (perturbation 

magnitude) according to trust level i through a one-to-one 

mapping. 

 

Conclusions 
Many interesting and important directions are worth exploring. 

For example, it is not clear how to expand the scope of other 

approaches in the area of partial information hiding, such as 

random rotation-based data perturbation, k-anonymity, and 

retention replacement, to multiple levels of sensitivity. It is also of 

great interest to extend our approach to handle evolving data 

streams. 

Last but not the least, our solution allows data owners to 

generate perturbed copies of its data at arbitrary sensitivity levels 

on-demand. This property offers the data owner maximum 

flexibility. 

The key challenge lies in preventing the data miners 

from combining copies at different trust levels to jointly 

reconstruct the original data more accurate than what is allowed 

by the data owner. We address this challenge by properly 

correlating noise across copies at different sensitivity levels. We 

prove that if we design the noise covariance matrix to have 

corner-wave property, then data miners will have no diversity 

gain in their joint reconstruction of the original data. 
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