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Abstract 

Rapid development and automation of production steadily 

increase the scope required for the development of scheduling 

algorithms, which consider various constraints. A special but 

wide class of scheduling problems encountered in the 

practical control of complex systems forms the problems of 

minimizing the time taken to perform several operations, with 

constraints on the number and interchangeability of operators 

and total value of operations. In particular, the problems of 

working out and implementing innovative development 

projects refer to this class. A method is proposed to solve the 

scheduling problem of minimizing the time taken in 

performing several operations, with constraints on the number 

and interchangeability of operators and total value of 

operations. The proposed algorithm obtains both exact and 

approximate solutions of a problem in scheduling theory, 

which is involved in minimizing the time taken in performing 

a set of interrelated operations with constraints on the number 

of interchangeable operators and the total cost of the operation 

performance. 
 

Keywords: operations research, queuing theory, method, 

algorithm, scheduling problem, control of projects, resources, 

optimization. 

 

 

1. STATEMENT OF THE PROBLEM 

Meeting the challenges of planning and management has 

become particularly relevant in the 20th century. At that time, 

a new branch of mathematics, namely, operations research, 

and related disciplines, namely, queuing theory, scheduling 

theory, theory of automatic control, optimal control theory, 

and theory of multicriteria decision making, have emerged. 

Scheduling theory is one of the most popular disciplines 

because of its theoretical and practical point of view in the 

field of operations research. Scheduling problems are related 

to construction schedules, namely, in ordering certain 

operations (operations) in terms of time and/or performers 

(devices). For example, scheduling problems arise in the 

following situations: 

•  work, that is, when a worker needs to arrange 

separate operations implementing management tools 

and time; 
•  transport, that is, in scheduling the operations of 

trains, airplanes, and public urban transport; 

•  planning activities in educational institutions; 

•  planning the employment of personnel, such as 

doctors on duty; 

•  performing complex construction projects, such as 

buildings and ships; 

•  planning of sports events; and 

•  operating computer networks with packet-scheduling 

priority information. 

 

At the same time, scheduling should consider restrictions on 

the sequence of works and limitations associated with the 

performers. The purpose of solving such problems includes 

constructing feasible schedules in which all limits are met or 

determining the optimal feasible schedule for a particular 

optimality criterion. For example, an optimal schedule for 

speed (i.e., minimizing the total execution time of all work) 

schedules with minimal cost. The solution for scheduling 

problems is complicated because most of them are NP-hard 

(i.e., the algorithms for the solutions, which are implemented 

on a computer, may require an unacceptably large amount of 

time to solve practical problems «large dimension»). 

Informally, many scheduling problems are optimizing, that is, 

they choose (finding) among the set of feasible schedules 

(schedules permit the conditions of the problem) to obtain 

decisions, which reach an “optimal” value of the objective 
function. Usually, optimal means a minimum or a maximum 

value of the objective function. Feasible schedule is 

understood in terms of its practicability and optimality [1, 5]. 

One of the main problems is classifying the scheduling 

problems and establishing their complexity. The most settled 

classification in the present-day scheduling problem 

classification was proposed by Graham [7]. 

The vast majority of surveyed scheduling problems are NP-

hard. However, the practice requires the solution of such 

problems. Several approaches exist [4, 11]. The first approach 

is to develop polynomial heuristic algorithms. Some heuristic 

algorithms that detect errors estimate the solution. Such 

algorithms are called approximation. Algorithms that 

guarantee both relative error and absolute error are also 

available. Some NP-hard problems admit the existence of the 

so-called approximation scheme. In this scheme, you can 

determine an approximate solution to the relative error. This 

error does not exceed any given value of ε > 0 for the time 

polynomial in 1 / ε and the size of the input data of the 

problem, which is a polynomial approximation scheme (FPT 

AS). Problems with no approximation scheme are highly 

important to establish the limit ε, for which the possibility of 

finding the ε-approximate solution in polynomial time, PT 
AS, exists. Metaheuristic algorithms that are «good» solutions 

close to the optimum in a reasonable time are common at 

present. The disadvantage of these algorithms is the lack of 

assessment for solution quality. How the optimum solution 

differs from the worst case is not known. The exact methods 

for solving NP-hard problems are also given considerable 

attention in studies on scheduling theory. The most widely 
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used method of search reduction is called branch-and-bound 

method. Calculated lower bounds of the objective function (in 

the case of minimization) and combinatorial properties use 

tasks to perform search reduction. Solving the problems of 

scheduling theory is also a widely applied method of dynamic 

programming. Most scheduling problems can be formulated 

as integer linear programming problems. The method of 

constraint programming has recently become widespread 

(defense, in English literature-Constraint Programming). One 

of the areas of its successful application is scheduling theory. 

Some complex scheduling problems can be optimally solved 

by algorithms that use elements of several methods, which is 
one of the most promising approaches [8, 9]. 

A special but wide class of scheduling problems encountered 

in the practical control of complex systems forms the 

problems of minimizing the time taken to perform several 

operations, with constraints on the number and 

interchangeability of operators and the total value of 

operations. In particular, the problems of working out and 

implementation of innovative development projects and others 

refer to this class. 

To formalize these problems, the structure and interrelation of 

operations are conveniently represented in form of a network 

as follows: 

,,,,1,0,,, jimjijiG   

where i, j are node numbers and (m + 1) is the number of 

nodes.
 

With each operation in this network, we associate an arc 

 that connects the ith and jth nodes. The node i = 0 

represents a start point in the system of analyzed operations. 

The nodes i = 1, 2,..., m represent the last points that have 

already been performed, which correspond to arcs entering 

each node. N represents the total number of operations [2]. 

A sequence of operations is subject to the following condition: 

the operation corresponding to an arc coming from any node 

can be commenced only when all operations that enter that 

node have been completed. 

Each operation  is characterized by its length ji,  

and the required number of operators jin , . 

To perform the operations, the set R = {1, 2,..., K} of 

operators is employed (where k  is the operator’s number and 

K  is the number of operators). 

The interchangeability of operators is described by the matrix 

GjiKkji
k

,,,,2,1,),( 
, 

where 

.0

,),(,1
),(

wiseother

operationthjitheperformtousedbecanoperatorthktheif
jik . 

The cost of calling on the operators to perform the operation is 

described by the matrix 

GjiKkjicC k ),(,...,2,1,),( , 

where ),( jick  is the cost of unit time for the kth operator to 

perform the (i, j-)th operation. 

The schedule of performing the whole set of operations is 

defined by the set 

RjirGjijirjiXY YYY ,,,,,, ,  (1.1) 

where jiX Y ,  is the time at which operation (i,j) begins for 

implementation of schedule Y; and
 jirY ,  is the set of 

operators called on to perform the (i,j)th operation according 
to schedule Y. 

We assume that the interruption of an operation that has been 

started Gji,
 
is not allowed, and the complexity of the 

selected operators jirY ,  during the performance does not 

change. 

The cost ),( jiY  of the operations (i,j) to implement 

schedule Y is defined by the proportion 

),(

),(),(),(
jirk

kY

Y

jijicji .  (1.2) 

The set of the paths from the initial node to the terminal node 

is determined as G. The time taken to perform the whole set of 

operations is equal to the maximum length 
LT of the path 

LGL  from the initial node 0i  of graph G to the 

terminal mj  in the implementation of schedule Y. 

This problem of minimizing the time taken uses the 

conventional notation to perform a set of operations with 

constraints on the number of operators. Their 

interchangeability and cost can be represented formally as the 

following mathematical programming problem: 

A schedule 

RjirGjijirjiXY YYY
,,,,,, ***

  (1.3) 

of the performance of a set G of interrelated operations, must 

be determined. This schedule is subject to the condition that 

)(maxmin)( ** YTYTT L
GLY L

  (1.4) 

with constraints on 

il

Y
il

Y GjiililXjiX

,

,
;),()},,(),({max),(   (1.5) 

),(),(

),(),(
jirji

k

Y

jinji ;  (1.6) 

)(),(

),((
tFji Y

Kjin ;  (1.7) 

K

k

k jinji
1

);,(),(   (1.8) 

Gji

ji
),(

,),(   (1.9) 

where tFY  
is a set of operations that are being performed at 

the current time t implementing the schedule Y; and Ω* is the 

maximum cost of the set G. 

Condition (1.4) shows the tendency of minimizing the time 

taken to perform the whole set of operations in problems (1.3) 
to (1.9). 

Condition (1.5) establishes that the operations issued from any 

node of the graph can only be started after all the operations 

that have entered that node are completed. 

Condition (1.6) requires that an established number of 

operators be allocated for each operation. 
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Condition (1.7) means that the number of operators used at 

any one time cannot be more than the total number of 

operators. 

Condition (1.8) requires that the number of operators with the 

respective qualifications is large enough for each operation to 

be performed. 

Condition (1.9) establishes that the total value of the set of 

operations cannot be over an acceptable level. 

Problems (1.3) to (1.9) formally represent a nonlinear problem 

of discrete heterogeneous resources in the entire network. 

These problems can be classified as NP-hard, as described in 

the schedule theory. The exact methods of solving these 
problems are presented in [1, 2]. However, only renewable 

recourses, namely, operators and their productivity, are 

considered in this kind of model. The calendar plans for 

realization of different projects are formed. Not only the 

renewable resources but also the existing unrenewable ones 

must be considered. In problems (1.3) to (1.9), they are 

defined as the cost  of each completed operation 

Gji,  for the implementation of schedule Y, with the 

constraint (1.9). Resulting from the introduction of this ratio 

model, problems (1.3) to (1.9) are further generalizations of 

[1] model of schedule theory. Exact algorithms for solving 

problems (1.3) to (1.9) are not currently available. However, 
the management practice necessity of implementing complex 

projects inspires the development of such algorithms. The 

purpose of this study is to build one of them. 

 

 

2. DESCRIPTION OF DEVELOPED METHOD 

The existence of a solution for problems (1.3) to (1.9) is 

necessary and sufficient for the following reasons: 

a) the cast and interchangeability of operators provide 

the ability to perform the whole complexity of G 

operations, and 

b) the cost of performing complex G operations does 

not exceed a prescribed level Ω*. 

 
Formally, the fulfillment of the first of these requirements is 

the term (1.8). This term means that professionals can be 

selected from the whole group of operators to perform any 

work of complex G operations. To check the fulfillment of the 

second requirement, we consider the set 

,2,1,,|,* qGjijirR q
  (2.1) 

of all possible options of resource allocation for the 

corresponding operations. This set definitely involves another 

one, namely, 

Gjiqjiq ),(,,...2,1),,(   (2.2) 

of the costs Ωq(i,j) of the performance of corresponding 

operations in selected options of resource allocation. Set (2.2) 

elements are defined by the proportion 

),(

).,(),(),(
jirk

k

q

q

jiCjiji   (2.3) 

On the basis of (2.3), the second requirement, which ensures 

the existence of the solution for problems (1.3) to (1.9), can be 

presented in the following form: 

Gji

q

q
qji

),(

....,2,1,),(min   (2.4) 

Checking the feasibility of the requirements (1.8) and (2.4) 

before the start of the search procedure for solving problems 

(1.3) to (1.9) can be useful. If these requirements are feasible, 

then the solution of problems (1.3) to (1.9) exists. The 

algorithm of this search is based on the branch-and-bound 

procedure for solving the problems of schedule theory 
proposed in [2]. 

The algorithm consists of a finite number of steps and rests on 

the following constructions: 

a) Set SV  of fragment S of schedule Y is 

represented, which is feasible in terms of constraints 

(1.5) to (1.7) and (1.9) in the form of a subset tree 

(branching). 

b) The lower bound of the objective function (1.2) is 

calculated for these subsets. 

c) Feasible schedules are determined. 

d) The optimality of these schedules is checked. 

 

The proposed procedure [2] permits defining the calendar plan 

(1.3) of performance of complex G operations, thereby 

fulfilling conditions (1.5) to (1.8). 

The special point in this algorithm considers branching and 

condition (1.9) continually. If it is violated, then the solution 

obtained by continuing the branches of the tree of options is 

not feasible, and a new branch should be made. 

In this algorithm, branching is constructed through a 

dichotomous scheme. In such a scheme, each vertex vs (Sth 

branch of the tree) is a feasible element. If the (i,j)th operation 

corresponding to the element is started at the time xS(i,j) with 

the rS(i,j)th alternative allocation of operators, then 
vS={xS(i,j), rS(i,j)}.  (2.5а) 

If the (i,j)th operation for the rS(i,j)th alternative allocation of 

operators is not begun at time xS(i,j), then 

vS = Ø.   (2.5б) 

For each branch VS , the values GjijixS ,,,  (the 

times at which the corresponding operations are started) have 

to be chosen from the increasing sequence 

,2,1, ntt n

SS , 

where 01

St  and subsequent times ,3,2, ntn

S  are 

found with the recurrence formula 

,),(),(

)1(),(

min jijix
n
s

tFji

t S
n
S ,  (2.6) 

where 
1n

SS tF  is the set of operations ji,  previously 

included in the Sth branch and uncompleted by the time 
1n

S
t , 

that is, 

jijixtjixGjijitF S

n

SS

n

SS ,,,,,|, 11
.  (2.7) 

Thus, St  is the sequence of times at which operations 

included in a given branch of the tree are completed, and the 
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corresponding operators become free. The condition 01

St  

reflects the fact that all alternative schedules start at time 0. 

Setting the starting times of operations not in accordance with 

the previous sequences does not permit reduction of the time 
to perform the set of operations. The reason is that for any 

schedule Y that contains the fragment S, an earlier start of an 

operation Sji, belongs to the sequence St  by definition. 

Thus, later starts of operations lying on critical paths for 

schedule Y also belong to that sequence. The starting times of 

operations, which do not belong to critical paths, can vary 

within the corresponding time reserves. At the same time, the 

boundaries of these reserves also belong to this sequence, and 

variation within boundaries does not help to reduce the time 

taken to perform a set of operations as a whole. Thus, the 

optimal times for the start of operations with regard to 

criterion (1.4) in schedule (1.3) must belong to respective 

sequence St . 

To realize the dichotomous scheme, we consider the following 

set related to (2.1): 

,2,1| qdD q ,  (2.8) 

where 1qd  if allocation jirq ,  is made for the ji, th 

operation; otherwise, 0qd . 

Then, the serial number of q  element 1qd  of set D  

characterizes the operation that has been performed, the 

particular allocation of operators for it, and its cost. 

With regard to (2.8), branching to form an optimal schedule 

(1.3) involves choosing for each time 
n

S
t  feasible variables 

Ddq  and establishing their values, which takes the form 

1, q

n

SS dt , if the Gji, operation 

corresponding to qd  is started at time 
n

SS tjix ,  with 

allocation jirq , , and 0, q

n

SS dt , if this operation 

is not started with allocation jirq ,  at time 
n

S
t . 

The set 
n

SP of variables Ddq , which may be included in 

the S th fragment of the schedule at time 
n

St  contains the 

values Ddq corresponding to operations Gji, , 

which are not previously in S for which 

Giltililx n

S ,,,, ;  (2.9а) 

n

S

q Rjir , ,  (2.9б) 

)( 1

,...,2,1,0
n
SS tDm

qmm qd   (2.9в) 

where 
n

S
R  is the set of unoccupied operators for the Sth 

fragment of the schedule at time 
n

S
t ; and )(

1n

SS
tD  is the set of 

variables 
qd  included in the Sth fragment of the schedule at 

time 
1n

St . 

The first of these conditions determines the operations by time 
n

St . All proceedings have been performed, the second 

identifies those for which unoccupied suitably qualified 

operators exist, and the third marks those for which the cost of 

operator performance is suitable [3]. 

The estimate SW  of the lower boundary of the objective 

function (1.4) can be taken as the maximum length of the path 

from the initial G to the last node of G found, without 

allowing for resource constraints (1.7) and (1.9), for 

operations not included in S. Then, if corresponding time 
n

S
t  

stops on the next branching, then ,1qd 1qS dW  is 

determined as follows: 

a) operations Gil, , which were already in the Sth 

schedule fragment, that is, operations for which 

ntilx SS ,  are started at the respective times 

ilxS ,  and are finished at ililxS ,, ; 

b) for an operation Gji,  corresponding to the 

n

Sq Pd , which is placed into the branch of the tree 

of alternatives
n

SS tjix ,  in the given step; 

c) for operations Gji, corresponding to variables 

quPd n

Su , , which cannot be placed in the 

schedule at time 
n

S
t  simultaneously with 

1n

St  

because of the resource constraint (2.9), the length is 

defined by the proportion ),(1 hetn

S . 

 

However, if 0
q

d  on the given branching step, then 

0qS dW  is as follows: 

a) operations Gil, , which were already in the Sth 

scheduling fragment (operations, which 
n

SS tilx , , are started at time ilxS ,  and 

finished at time ililxS ,, ); 

b) for the operation ji ,  corresponding to the 

variables 
n

Sq Pd  started at time
1n

St and finished 

at ilt n

S ,1
; 

c) for other operations Ghe,  corresponding to the 

variables quPd n

Su ,  started at time 
n

St  and 

finished at time het n

S , . 

 

An important element of this method of solving problems 

(1.1) to (1.9), which has a considerable influence on its 
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convergence, is the technique used to select the next operation 

and the allocation of operators for it, that is, the choice of 

variables 
n

sq Pd  for inclusion in the Sth branch method 

at time 
n

st . In this method, the choice of qd  at the next 

branching step is made in two stages: first, the operation is 

selected, and then, operator allocation is selected from the 

alternatives. The next operation is chosen in accordance with 

the following preference sequence: 

,minmin),(maxmin )( jijiT n

j

 

that is, the first operation to be included is the one that 

corresponds to the shortest last completion time 
)(n

jT . If 

several completion times exist, then the largest operation is 

chosen. Moreover, if several such operations exist, then the 

operation with smallest numbers ji,  is chosen. The last 

completion periods must be found on the basis of the given 

fragment S. 

The allocation of operators ),( jir  for the chosen 

operation ),( ji  is determined from the condition that the 

value 

Shl

k

jirk

hl
),(),(

),,(  

is a minimum, that is, the operators that are least able to 

perform any of the other remaining operations Shl ),(  are 

allocated. 

The operation ),( ji  and the allocation ),( jir  chosen in 

this way uniquely define the next variable 
n

Sq Pd , which is 

included in the Sth branch of the tree of alternatives at time. 

The route through the tree is in accordance with the rule “go 

to the right.” Then, the current schedule fragment, the smallest 

previously obtained value of the objective function, and the 
corresponding feasible schedule must be stored when solving 

the problem. 

This rule, allied with the method of choosing the operations 

and the operators examined earlier, constitutes the 

approximate algorithm for solving problems (1.3) to (1.9) and 

allows the first feasible solution to be obtained in a finite 

number of steps, which is equal to the number N of operations 

in the network G. 

Each Sth branch ends if all N operations are included, that is, a 

feasible schedule Y has been obtained, or if 

,10),1(0TWs   (2.10) 

where 
0T is the smallest (record) value or the objective 

function for previous feasible solutions; and  is the given 

permissible deviation of the objective function from the 

optimal solution (optimization accuracy). If condition (2.10) 

holds, then a previous record in the current branch is 

impossible to improve and continuing it is pointless. 

The search for the solution ends if condition (2.10) holds for 

all remaining branches. The way of routing through the tree 

corresponds to the second return to root vertex. The last 

record is the required optimal value of the objective function 

(1.4), and the corresponding feasible schedule is the optimal 

schedule Y. 

 

 

3. CONCLUSION 

The application of the described procedure provides an 

analysis of all possible schedules and eliminates duplicates 

when revising them. For its implementation, storing in 
computer memory only the current fragment of the plan, the 

smallest of the previously obtained values of the objective 

function (1.4), and the corresponding feasible schedule to 

perform the set of operations is sufficient. This rule of routing 

through the tree in combination with the method of choosing 

operations and resources at each step of branching is the 

approximate algorithm for solving problems (1.3) to (1.9), 

thereby allowing the creation of the first valid spot calendar 

plan for a finite number of steps equal to the number of N 

operations in the network G. However, the proposed 

algorithm does not correspond to the idea of building spot 

plans. In accordance with the scheme of tree options at each 

step of branching, a decision to include or not to include a 

certain operation in the plan should be considered. The 

options for resource reservation are similarly considered. 

Therefore, the proposed scheme of branching with the rule of 

obtaining sequences of ts moments by choosing the set of 

operations and resource allocation provides a revision of all 

possible options of the calendar plan. 

Overall, the proposed algorithm leads to both exact and 

approximate solutions of a problem in scheduling theory, 

which is involved in minimizing the time taken to perform a 

set of interrelated operations with constraints on the number 
of interchangeable operators and the total cost of the operation 

performance. 
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