Prediction of development prospects of roller support designs for conveyor systems Yerzhan Y. Shayakhmetov¹Bolat A. Manezhanov² Toqtasyn M. Mendebayev¹ Omar T. Temirtasov² Rysbala R. Ibragimova¹ Yermek T. Abilmazhinov² ¹Kazakh National Technical University after K.I. Satpayev Republic of Kazakhstan, 050013, Almaty 22a, Satpayev Street ²Shakarim State University of Semey Kazakhstan, 070012, Semey, Glinki Street, 20A #### Abstract General Definitional Table (GDT) of roller supports for conveyor systems was developed in this paper. Prospects for further development of proposed designs of roller supports were analyzed on the basis of engineering prediction. Comprehensive experimental and theoretical investigation of various inventions made it possible to develop fundamentally new designs of roller supports for conveyor systems. Inventions are confirmed by patents of the Republic of Kazakhstan **Keywords:** conveyor, roller support, barrel shell, hub, rolling bearings, sealing arrangements, axle part. ### Introduction In industry, conveyors and conveyor systems are widely used with roller supports acting as basic elements that define performance, power consumption and fire safety and affect durability. Cost of a roller supports is 25-30% of the total cost, and roller supports account for over 40% of all maintenance and repair costs (Shayakhmetov and Manezhanov, 2009; Temirtasov et al.,2013). The basis of engineering forecasting in development of General Definitional Table (GDT) is a triad: reliability and durability of parts and assemblies taken into account during the design; manufacturing quality; successful operation ensured by timely maintenance (Dzhienkulov and Sarguzhin. 1994). The GDT is made taking into account the morphological classification of roller supports in conveyor systems used worldwide (Table 1). Table 1. General Definitional Table (GDT) of roller supports design features | Item | Characteristics of a patent solution (2(i)) | Rating | | | | | |------------|--|--------|----------|--|--|--| | 100111 | Characteristics of a patent solution - $\varphi(i)$ | | Proposed | | | | | 1 | 2 | 3 | 4 | | | | | - | 1. Technical excellence of the design φ | (1) = | 1 | | | | | <i>R1</i> | Roller body does not provide for | 1 | 1 | | | | | 111 | simultaneous misalignment of built-in | 1 | 1 | | | | | | outer ring and sealing elements related to | | | | | | | | the inner ring of bearings and sealing | | | | | | | | elements placed on the deformed axis or | | | | | | | | deformed semi-axes | | | | | | | <i>R</i> 2 | Partial simultaneous misalignment is | 2 | 2 | | | | | | ensured for bearing rings and sealing | | | | | | | | elements due to mechanical compliance of | | | | | | | | the hub or the outer rubber-metal cage of | | | | | | | | the bearings | | | | | | | <i>R3</i> | Partial simultaneous misalignment is | 3 | 3 | | | | | | ensured for bearing rings and sealing | | | | | | | | elements due to mechanical compliance of | | | | | | | - 1 | hubs and the sidewall | | | | | | | <i>R4</i> | Simultaneous misalignment is ensured for | 4 | 4 | | | | | | bearing rings and sealing elements due to | | | | | | | | self-aligning bearing units in parallel | | | | | | | R5 | planes | 5 | 5 | | | | | KS | Simultaneous misalignment is ensured for bearing rings and sealing elements due to | 3 | 3 | | | | | | self-aligning bearing units with predefined | | | | | | | | trajectory in a common aligned plane | | | | | | | | 2. Degree of novelty $\varphi(2) = 1$ | | | | | | | <i>R1</i> | Improvement of parts of existing | 1 | 1 | | | | | Λ1 | engineering designs | 1 | 1 | | | | | R2 | Improvement of sealing devices of bearing | 2 | 2 | | | | | -1- | assemblies in existing engineering designs | _ | _ | | | | | R3 | Improvement of the entire existing bearing | 3 | 3 | | | | | | assembly at a new technological level | | | | | | | R4 | New technical solution that complements | 4 | 4 | | | | | | existing patent solutions | | | | | | | R5 | Fundamentally new solution that has the | 5 | 5 | | | | | | meaning of an invention in this area | | | | | | | | 3. Roller support reliability $\varphi(3) = 0$ |),75 | | | | | | <i>R1</i> | Does not satisfy requirements for | 1 | 0.75 | | | | | | reliability, durability, conservability and | | | | | | | | maintainability | | | |------------|---|-------|--------| | R2 | Satisfies one of the four listed | 2 | 1.5 | | | requirements | | | | R3 | Satisfies two of the four listed | 3 | 2.25 | | | requirements | | | | <i>R4</i> | Satisfies three of the four requirements | 4 | 3.0 | | <i>R5</i> | Satisfies all four requirements | 5 | 3.75 | | | 4. Cost-effectiveness of the design $ \phi(4) $ | =0, | 5 | | R1 | Does not satisfy the requirements of ease | 1 | 0.5 | | | of manufacturing, standardization, ease of | | | | | maintenance and repair | | | | <i>R</i> 2 | Satisfies one of the four requirements | 2 | 1.0 | | <i>R3</i> | Satisfies two of the four requirements | 3 | 1.5 | | <i>R4</i> | Satisfies three of the four requirements | 4 | 2.0 | | <i>R5</i> | Satisfies all four requirements | 5 | 2.5 | | 5. | Environmental compatibility of the engineer | ering | design | | | $\varphi(5) = 0.31$ | | | | <i>R1</i> | Does not satisfy requirements for | 1 | 0.31 | | | quietness, bearing assemblies protection | | | | | from clogging, absence of grease leaking, | | | | | bezoplenochnosti rolling elements | | | | R2 | Satisfies one of the four requirements | 2 | 0.62 | | R3 | Satisfies two of the four requirements | 3 | 0.93 | | R4 | Satisfies three of the four requirements | 4 | 1.24 | | R5 | Satisfies all four requirements | 5 | 1.55 | There are about a hundred forecasting methods (Yantch, 1970; Dikson, 1971; Bright, 1973; Fusfeld, 1973; Jerardan, 1973; Glazier,1973; Dzhienkulov and Sarguzhin, 1994; Timofeeva, 1974; Ayres, 1976; Radkevich et al., 2001; Uhov et al., 1980). In our work we used such methods as the Theoretical Solution of Inventive Tasks (TSIT) and the Theory of Double Variables (Zener, 1961). ## Methods. Forecasting based on patent sources consists of the following operations: preparation of GDT; comparing patents with GDT and defining Invention Recall Factor. The Invention Recall Factor \mathcal{F} characterizes the probability of commissioning new machinery and the potential technical level of the anticipated object: $$r = \frac{q}{q_{\text{max}}} = \frac{\sum_{i=1}^{n} j \cdot \varphi(i)}{n \sum_{i=1}^{n} \varphi(i)},$$ (1) where $\, q \,$ is actual sum of assessments received in course of comparing the patent with the GDT, and $q_{\rm max}$ is the maximum sum of assessments taken from the characterization matrix. In whole, coefficient r is a generalized index that makes it possible to estimate the engineering and technical relevance of new solutions presented in non parametric sources (patents). Calculation of coefficient r makes it possible to sort and identify (prospective design of) really valuable inventions and to perform further prediction on them. Values of the Invention Recall Factor are within the following limits: $0.2 \le r \le 1$. Viability of the engineering solution is higher when it approaches unity. Deficiency or reserve of further improvement of the invention is defined by d=1-r. Roller supports, depending on their level of perfection, are divided into five technical complexes. With coefficients \mathcal{F} using semantic categories and scoring system taken from basis matrices, we obtained conventional compliance that quantitatively reflects synthesis of patent information. Attestation scale has been obtained from traditional five-point evaluation (Table 2). Recall Factor of a Single Invention or a technological complex is the main criterion for engineering prediction. This criterion defines the reduced number of patents, generalized recall factor and the optimum strategy of a technical system. Table 2. Scale of assessments of predicted efficiency of technical solutions in case of using non-parametric information sources | Coefficient of | Predicting | Category of | | |---------------------|-------------|-------------|------------| | invention project | Semantic | Assessment | prediction | | (intensity of local | assessment | level | | | strategy) | | | | | 1.00 0.93 | Very | Upper | I up | | 0.92 0.86 | promising | Middle | I mid | | 0.85 0.80 | | Lower | Ilow | | 0.79 0.73 | Promising | Upper | II up | | 0.72 0.66 | | Middle | II mid | | 0.65 0.60 | | Lower | II low | | 0.59 0.53 | Little | Upper | III up | | 0.52 0.46 | promising | Middle | III mid | | 0.45 0.40 | | Lower | III low | | 0.39 0.20 | Unpromising | - | IV | Indicated number of patents M_n characterizes technical potentiality of competing groups presented by N_n patents: $$M_n = \sum_{1}^{K=N_n} r_K \,, \tag{2}$$ here r_K is the recall factor for inventions selected by functionally homogeneous characteristics. Generalized recall factor of invention r_1 characterizes the likely level of technology in the perspective and has the form: $$r_{1} = \frac{1}{N_{n}} \sum_{K=1}^{K=N_{n}} r_{K} \eta_{K} , \qquad (3)$$ here N_n is the nominal number of patents; η_K is the frequency of a patent getting into a certain statistic class; r_K is the coefficient of a single patent. r_1 is based on analysis of a random value of sources of information distribution by statistical classes, and r_2 is based on deterministic assessment of trends (information flow) related to the nominal and reduced flows of patent information. In practical calculations, a modified generalized invention recall factor r_2 is used, which is the ratio of the reduced flow of patent information- $\boldsymbol{M}_n(t)$ to the nominal $N_n(t)$ number: $$r_{2} = \frac{\lim_{\delta \to 0} \sum_{a}^{b} M_{n}(t) \cdot \Delta t}{\lim_{\delta \to 0} \sum_{a}^{b} N_{n}(t) \cdot \Delta t} = \frac{\int_{b}^{a} M_{n}(t) \cdot dt}{\int_{b}^{a} N_{n}(t) \cdot dt}$$ whereby, $|\Delta t| < b$ (4). ## Main part. Ways of improving conveyors, storages, elevators and palletizers with roller floor feature development of main designs of roller supports in five directions (Temirtasov, 2009; Shirong and Xiaohua, 2011; Lihua Zhao and Yin Lin, 2011; Dzhienkulov and Omarov, 1999). The majority of patents since the 20-ties of the last century are roller supports with rigid body (K1). Since 1935, roller supports with special bearings appeared (K2). After World War II, roller supports with hubs made of rubber and combined materials started to be introduced (K3) (Temirtasov, 2009; Chubarov and Popov, 2004). Rollers with thin sidewalls and shaped elastic hubs (K4) were developed for light and medium loads (see Table 3). Table 3. Roller support with shaped thin sidewall elastic hubs K4 | No. | Initial data | Number | | В | as | se | | q_{max} | q | recall | Category | |-----|--------------|---------|-------|------------|-------|-------|-------|-----------|--------|------------|----------| | | | of | as | assessment | | | | | factor | of | | | | | designs | | | | | | | r | prediction | | | | Country, | in the | i_I | i_2 | i_3 | i_4 | i_5 | | | | | | | patent | patent | | | | | | | | | | | | number, | | | | | | | | | | | | | certificate | | | | | | | | | | | | | of | | | | | | | | | | | | | invention, | | | | | | | | | | | | | class, | | | | | | | | | | | | | subclass, | | | | | | | | | | | | | date of | | | | | | | | | | | | | publication | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 1 | Roller | 1 | 2 | 2 | 3 | 4 | 3 | 17.8 | 8.9 | 0.5 | 3med | | | support | | | | | | | | | | | | | made by | | | | | | | | | | | | | French | | | | | | | | | | | | | company | | | | | | | | | | | | | "Galle" | | | | | | | | | | | | | with Z- | | | | | | | | | | | | | shaped thin | | | | | | | | | | | | | hubs, | | | | | | | | | | | | | designed in | | | | | | | | | | | | | the 70-ties | | | | | | | | | | | | | XX74 | 1 | 1 | 2 | - | - | 1 | 170 | 10.4 | 0.70 | 2 1 | |---|--------------------------|---|----------|---|---|-----|---|--------|------|------|-------| | 2 | West | 1 | 2 | 3 | Э | Э | 4 | 1 / .8 | 12.4 | 0.70 | 2 med | | | Germany | | | | | | | | | | | | | application | | | | | | | | | | | | | # 2724243,
IPC B 65 G | 3 | 39/07, 1978
Invention | 1 | 2 | 3 | 1 | 4 | 1 | 170 | 11.4 | 0.64 | 2low | | 3 | Certificate | 1 | | 3 | 4 | 4 | 4 | 17.0 | 11.4 | 0.04 | 210W | | | of the | | | | | | | | | | | | | USSR # | | | | | | | | | | | | | 668853, | | | | | | | | | | | | | IPC B 65 G | | | | | | | | | | | | | 39/06 | applied 07.02.1978, | | | | | | | | | | | | | # 2577509, | published 25.06.1979 | | | | | | | | | | | | 4 | West | 1 | 1 | 2 | 2 | 4 | 2 | 17.8 | 7 8 | 0.44 | 3low | | 4 | | 1 | 1 | _ | ٥ | + | ٦ | 1 / .0 | 7.0 | 0.44 | SIOW | | | Germany
patent # | | | | | | | | | | | | | 2512843, | | | | | | | | | | | | | IPC B 65 G | | | | | | | | | | | | | 39/07, | | | | | | | | | | | | | published | | | | | | | | | | | | | 1979 | | | | | | | | | | | | 5 | England | 1 | 2 | 3 | 3 | 4 | 3 | 17.8 | 0 07 | 0.56 | 3h | | | patent # | 1 | _ |) |) | - |) | 17.0 | 2.21 | 0.50 | 311 | | | 1566124 | | | | | | | | | | | | | IPC G 39 B | | | | | | | | | | | | | 65/02, | | | | | | | | | | | | | 30.04.1980 | | | | | | | | | | | | 6 | France | 1 | 1 | 4 | 4 | 4 | 4 | 17.8 | 11.4 | 0.64 | 2low | | | application | 1 | 1 | | • | | | 17.0 | 11.1 | 0.01 | 210 W | | | # 2437545, | | | | | | | | | | | | | cl. F 16 J | | | | | | | | | | | | | 15/447, | | | | | | | | | | | | | 25.04.1980 | | | | | | | | | | | | 7 | England | 1 | 2 | 3 | 4 | 4 | 4 | 17.8 | 11.4 | 0.64 | 2low | | | application | - | <u> </u> | | | Ĭ . | | o | | | | | | # 2047845 | | | | | | | | | | | | | IPC B 65 G | | | | | | | | | | | | | 39/09, | | | | | | | | | | | | | 03.12.1980 | | | | | | | | | | | | 8 | USA patent | 1 | 1 | 2 | 3 | 4 | 3 | 17.8 | 7.8 | 0.44 | 3low | | | # 4311242, | | | | | | | | | | | | | cl. B 07 | | | | | | | | | | | | | 1/14, | | | | | | | | | | | | | 19.01.1982 | | | | | | | | | | | | 9 | Japan | 1 | 2 | 3 | 4 | 4 | 4 | 17.8 | 11.4 | 0.64 | 2low | | | application | | | | | | | | | | | | | # 57- | | | | | | | | | | | | | 126311, | | | | | | | | | | | | | IPC B 65 G | | | | | | | | | | | | | 39/08, | | | | | | | | | | | | | 06.08.1982 | 10 | IIC A notant | 1 | 2 | 2 | 1 | 1 | 1 | 170 | 11 / | 0.64 | 2low | |-----|--------------------------|---|---|---|---|---|---|--------|------|------|-------| | 10 | USA patent # 4448296 | 1 | 2 | 3 | 4 | 4 | 4 | 17.0 | 11.4 | 0.04 | 210W | | | IPC B 65 G | 13/00, | | | | | | | | | | | | 1.1 | 15.05.1984
United | 1 | 1 | 4 | 1 | 4 | 1 | 17.8 | 11 / | 0.64 | 21 | | 11 | | 1 | 1 | 4 | 4 | 4 | 4 | 1 / .8 | 11.4 | 0.64 | 2low | | | Kingdom | | | | | | | | | | | | | application | | | | | | | | | | | | | # 2180035,
IPC B 65 G | | | | | | | | | | | | | 39/00, | | | | | | | | | | | | | published | | | | | | | | | | | | | * | | | | | | | | | | | | 12 | 18.03.1987 | 1 | _ | 2 | 2 | 1 | 2 | 17.0 | 0.07 | 0.56 | 21, | | 12 | Invention | 1 | 2 | 3 | 3 | 4 | 3 | 17.8 | 9.9/ | 0.56 | 3h | | | Certificate | | | | | | | | | | | | Ì | of the RF # 1542872A1, | | | | | | | | | | | | Ì | IPC 5 B 65 | Ì | G 39/00,
15.02.1990 | | | | | | | | | | | | 13 | Invention | 1 | 2 | 3 | 3 | 1 | 3 | 17.8 | 9 97 | 0.56 | 3h | | 13 | Certificate | 1 | _ | 3 | ر | 4 |) | 17.0 | 7.71 | 0.50 | 311 | | | of the RF # | | | | | | | | | | | | | 1806078A3, | | | | | | | | | | | | | IPC 5 B 65 | | | | | | | | | | | | | G 39/00, | | | | | | | | | | | | | 30.03.1993 | | | | | | | | | | | | 14 | Invention | 1 | | | | | | 17.8 | 114 | 0.64 | 2low | | 1. | Certificate | • | | | | | | 17.0 | 11.1 | 0.01 | 210 W | | | of the RF # | | | | | | | | | | | | | 2121957C1, | | | | | | | | | | | | | IPC 6 B 65 | | | | | | | | | | | | | G 39/09, | | | | | | | | | | | | | 20.11.1998 | | | | | | | | | | | | 15 | Provisional | 2 | 4 | 5 | 5 | 4 | 4 | 17.8 | 16 | 0.90 | 1 med | | | patent of the | | | | ľ | | • | | - 0 | | | | Ì | RK # 7610, | | | | | | | | | | | | Ì | IPC B 65 G | | | | | | | | | | | | Ì | 39/00, | | | | | | | | | | | | | published | | | | | | | | | | | | Ì | by IB # 6, | | | | | | | | | | | | | 15.06.1999 | | | | | | | | | | | | 16 | Provisional | 2 | 4 | 5 | 5 | 4 | 4 | 17.8 | 16 | 0.90 | 1 med | | Ì | patent of the | | | | | | | | | | | | Ì | RK # 7756, | | | | | | | | | | | | Ì | IPC B 65 G | | | | | | | | | | | | Ì | 39/00, | | | | | | | | | | | | Ì | published | | | | | | | | | | | | | by IB # 7, | | | | | | | | | | | | L | 15.07.1999 | | L | | L | L | L | | | | | | | | | | | | | | | | | | The need for reliable transportation of heavy and super heavy loads required creating roller supports of new design (Tarasov, 2008; Dyakov et al., 1982). Development of rollers with self-aligning bearing units (K5) Table 4 shows the list of patents and invention certificates in roller design (K5) and Invention Recall Factors - r are identified, category of viability prediction. Four types of curves were built that show distribution of information sources depending on time (fig. 1). Curves 1 and 2 serve for general characterization of generating new technological ideas, and curves 3 and 4 serve the purpose of defining the generalized invention recall rate and characterize viability of a certain design. Figure 1 - Patent information about roller supports with self-aligning bearing units (K5) In order to develop morphologic classification of roller supports by design, invention certificates and patents have been used starting from 1929 and until present by developed countries of the world (Yantch, 1970). Table 4. Roller support with self-aligning bearing units - K5 | # | Initial data | Number | | Е | Bas | se | | q_{max} | q | recall | Category | |---|----------------|---------|-------|-------|-------|-------|-------|-----------|------|--------|------------| | | | of | as | se | SSI | ne | nt | | | factor | of | | | Country, | designs | i_1 | i_2 | i_3 | i_4 | i_5 | | | r | prediction | | | patent | in the | | | | | | | | | | | | number, | patent | | | | | | | | | | | | certificate of | | | | | | | | | | | | | invention, | | | | | | | | | | | | | class, | | | | | | | | | | | | | subclass, date | | | | | | | | | | | | | of publication | | | | | | | | | | | | 1 | . 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 1 | Invention | 1 | 1 | 4 | 4 | 4 | 4 | 17.8 | 11.3 | 0.63 | 2low | | | Certificate of | | | | | | | | | | | | | the USSR # | | | | | | | | | | | | | 543561, IPC | | | | | | | | | | | | | B 65 G 39/00 | | | | | | | | | | | | | published | | | | | | | | | | | | | 1970 | | | | | | | | | | | | 2 | Invention | 3 | 2 | 3 | 5 | 5 | 4 | 17.8 | 12.5 | 0.7 | 2 med | | | Certificate of | | | | | | | | | | | | | the USSR # | | | | | | | | | | | | | 688392, IPC | | | | | | | | | | | | | B 65 G 39/00 | | | | | | | | | | | | | published | | | | | | | | | | | | | 10.12.1979 | | | | | | | | | | | | 3 | | 1 | 1 | 4 | 4 | 4 | 4 | 17.8 | 11.4 | 0.64 | 2low | | | Certificate of | | | | | | | | | | | | | the RF# | | | | | | | | | | | | _ | 150005441 | | | | | | | | | | | |----|----------------|---|---|---|---|---|---|--------|------|-------|--------| | | 1798274A1, | | | | | | | | | | | | | IPC 5 B 65 G | | | | | | | | | | | | | 39/00, | | | | | | | | | | | | | 28.02.1993 | | | | | | | | | | | | 4 | Invention | 1 | 1 | 4 | 4 | 4 | 4 | 17.8 | 11.3 | 0.63 | 2low | | | Certificate of | | | | | | | | | | | | | the RF# | | | | | | | | | | | | | 1810241A1, | | | | | | | | | | | | | IPC 5 B 65 G | | | | | | | | | | | | | 39/00, | | | | | | | | | | | | | published | | | | | | | | | | | | | 23.04.1993 | | | | | | | | | | | | 5 | Provisional | 1 | 4 | 5 | 5 | 5 | 1 | 17 Q | 165 | 0.926 | 1 med | |) | | 1 | 4 |) |) |) | 4 | 1 / .0 | 10.5 | 0.920 | Tilleu | | | patent of the | | | | | | | | | | | | | RK # 7610, | | | | | | | | | | | | | IPC B 65 G | | | | | | | | | | | | | 39/00, | | | | | | | | | | | | | published | | | | | | | | | | | | L | 15.06.1999 | | Ļ | Ļ | Ļ | Ļ | Ļ | 15.0 | 1.5. | 0.65 | | | 6 | | 2 | 4 | 5 | 5 | 5 | 4 | 17.8 | 16.5 | 0.926 | 1 med | | | patent of the | | | | | | | | | | | | | RK # 13658, | | | | | | | | | | | | | IPC B 65 G | | | | | | | | | | | | | 17/24, | | | | | | | | | | | | | published | | | | | | | | | | | | | 14.11.2003 | | | | | | | | | | | | 7 | Provisional | 2 | 4 | 5 | 5 | 5 | 4 | 17.8 | 16.5 | 0.926 | 1 med | | | patent of the | | | | | | | | | | | | | RK # 17624, | | | | | | | | | | | | | IPC B 65 G | | | | | | | | | | | | | 17/00, | | | | | | | | | | | | | published | | | | | | | | | | | | | 13.06.2006 | | | | | | | | | | | | 8 | Provisional | 2 | 4 | 5 | 5 | 5 | 4 | 17.8 | 16.5 | 0.926 | 1 med | | | patent of the | _ | • | | | | | 17.10 | 10.0 | 0.720 | 111100 | | | RK # 1998, | | | | | | | | | | | | | IPC B 65 G | | | | | | | | | | | | | 15/00, | | | | | | | | | | | | | published | | | | | | | | | | | | | 26.06.2008 | | | | | | | | | | | | 9 | Provisional | 3 | 4 | 5 | 5 | 5 | 1 | 17.8 | 165 | 0.93 | 1 med | | 19 | | 3 | 4 | ٦ | ٦ | ٦ | 4 | 1 / .0 | 10.5 | 0.93 | rmea | | | patent of the | | | | | | | | | | | | | RK # 20213, | | | | | | | | | | | | | IPC B 65 G | | | | | | | | | | | | | 47/52, | | | | | | | | | | | | | published | | | | | | | | | | | | | 25.06.2008 | | | | | | | | | | | Technological level criterion, K_1 , characterizes a new engineering design on trhe basis of obtained patents for roller supports in relation to existing $$K_1 = (1 - \psi) + r = 0.8r$$, (5) where ψ is the parameter that corresponds to the level of recall factor $\psi=0,2$; r is the invention recall factor for the designed roller. Criterion of technical competitivity - K_2 characterizes the new patented engineering design in relation to existing objects made abroad $$K_2 = (1 - \psi) + r = 0.8 + r,$$ (6) In developed provisional patents (Table 4), Invention Recall Factor is r = 0.9, therefore. $K_1 + K_2 = 0.8 + 0.9 = 1.7$. From the point of view of engineering prediction, criteria of technological level and competitivity correspond to the top indicators. Basing on morphological classification and GDT, patents are tested for the so-called "viability". The essence of information transformation is that patents and inventors' certificates are matched against GDT and for each characteristic an adequate position is found, then the score in points, also rates corresponding to these positions can be calculated. Roller supports with self-aligning units in relation to the pole of the part - roller axis at the maximum load were used in inventions of the Moscow State Technical University n.a. N.E. Bauman and the State Design Institute "Soyuzprommehanizatsiya". Roller supports with self-aligning bearing units are very promising, especially for transportation of heavy loads and when used in conveyors that operate in harsh conditions. Table 5 below shows categories of patents for roller supports by the level of their viability. Table 5. Categories of patents by the level of their viability | Semantic assessment | Category of | Roller support | | | | | Total | |---------------------|-----------------|----------------|----|------|----|---|-------| | of viability | viability level | | d | esig | n | | | | | | K1 | K2 | K3 | K4 | | | | Very promising | I | - | 5 | 4 | 4 | 7 | 20 | | Promising | II | 4 | 5 | 10 | 8 | 5 | 32 | | Little promising | III | 9 | 10 | 14 | 6 | - | 39 | | Unpromising | IV | 12 | 2 | 2 | 3 | 1 | 20 | Examples of roller supports designs can be found in the documents mentioned in this article. ## Discussion - 1. The shown number of patents is usually less than nominal. Based on calculation of the above number of patents we can: identify prevailing technology area; find potentially possible proportions of introducing competing groups; and identify alternative technology areas. - 2. Curves for the shown number of patents and the nominal number characterize the dynamics of generating new technical ideas. - 3. With that, accrued curves of shown patents and their submission serve for defining generalized recall factor and characterize viability of this design. - 4. On the basis of predictive assessment we see it is practicable to: identify patents in promising areas of machinery development; make decision about formulation of new research and development in order to create patent-clean domestic inventions. Currently, authors are working on the expansion of patent databases, including more domestic and foreign patents. Further, it is planned to conduct more extensive research with larger time coverage. ### **Conclusions** - 1. Promising designs of roller supports have been shown. They cover patent search by world's developed countries since the 20-ties of the last century until present. - 2. Basing on engineering prediction, a principle has been developed for increasing bearing capacity of roller supports for belt conveyors that operate in harsh conditions. - Use of ISO and FEM international standards in development of GDT make it possible to improve following design indicators: functional specifications, design, ergonomics, patent law, and indicators of reliability, unification and economical use of energy. ## References - 1. Ayres, R., (1976). Scientific and technical forecasting and long-term planning. Moscow: Nedra, pp: 151. - 2. Bright, J., (1973). Process of implementation of scientific and technical innovations the help in understanding of a being of scientific and technical forecasting. In the Guide to Practical Technological Forecasting, Eds., Bright, J. and M. Sheman. New Jersey: Prentice-hall Inc., Englewood cliffs, pp. 13-25. - 3. Chubarov, L.A., Popov, V.V., (2004). Present state and main directions of development of transport of mining enterprises. Mining informational and analytical bulletin, #1, pp: 291-294. - 4. Dikson, P., (1971). Think tanks. New York: Athen, pp: 450. - 5. Dzhienkulov, S.A. and Sarguzhin, M.Kh., (1994). Calculation of perspective belt conveyors. Textbook for teachers and students of technical universities. Almaty: RPC, pp.352. - 6. Dzhienkulov, S.A., Omarov, K.A., (1999). Special types of conveyors. Monograph. Almaty: KazGASA publishing, pp:161. - 7. Dyakov, V.A., Shahmeyster, L.G. and Dmitriev, V.G., (1982). Belt conveyors in mining industry. Moscow: Nedra, pp: 350. - 8. Fusfeld, A., (1973). New method of forecasting function of technical development. In the Guide to Practical Technological Forecasting, Eds., Bright, J. and M. Sheman. New Jersey: Prentice-hall Inc., Englewood cliffs, pp: 66-80. - 9. Glazier, Ph., (1973). Diversified forecasting of optimum approach to a technical problem. In the Guide to Practical Technological Forecasting, Eds., - Bright, J. and M. Sheman. New Jersey: Prentice-hall inc., Englewood cliffs, pp. 258-286 - Jerardan, L., (1973). Research of alternative pictures of the future. Method of drawing up scenarios. In the Guide to Practical Technological Forecasting, Eds., Bright, J. and M. Sheman. New Jersey: Prentice-hall inc., Englewood cliffs, pp: 206-221. - 11. Lihua, ZHAO, Yin, LIN. 2011. Typical failure analysis and processing of belt conveyor: Procedia Engineering 26 (2011) 942 946 - 12. Radkevich, Ya.M., Timiryazev, V.A. and Ostrovki M.S., (2001). Analytical method of estimation of quality of manufacturing the parts of belt conveyors. Mining informational and analytical bulletin, #12, pp:8-11. - 13. Shayakhmetov, E.Y. and B.A.Manezhanov, (2009). Study of complex mechanization of production in Kazakhstan, further ways of development.In the Proceedings of the III International Scientific Conference of Young Scientists. Innovation development and relevance of science in modern Kazakhstan, Part 4: Natural and technical sciences. Almaty, pp: 294-298. - 14. Shirong, Zhang, Xiaohua, Xia, (2011). Modeling and energy efficiency optimization of belt conveyors: Applied Energy 88 (2011) 3061–3071 - 15. Temirtasov, O.T., B.A.Manezhanov and E.Y.Shayakhmetov, (2013). ISO and FEM standards, the basis for predicting the perspective of engineering development of both technology and engineering science. In the Proceedings of the 2013 International Scientific-Practical Conference: Industrial and Innovative Development of Transport, Transportation Equipment and Engineering. Almaty, pp: 298-302. - 16. Temirtasov, O.T.,(2009). Engineering predicting the perspective of developing roller supports in conveyor systems. Oskemen: Branch of the Scientific Center of Scientific and Technical Information in the RK, pp:50. - 17. Tarasov, Yu.D., (2008). Modernization of equipment of belt conveyors, providing increase in their technical and economic indicators. Mining informational and analytical bulletin, #S9, pp:178-186. - 18. Timofeeva, N.M. (1974). Method of statistical treatment of patent arrays for predicting the prospects of competing areas of research. Learning the basics of prognostics. Leningrad: Shipbuilding, pp:71-76 - 19. Uhov, N.N., Mikhailov, S.K. and Belyakova E.I., (1980). Prediction of product quality. Leningrad: Nauka, pp:128. - **20.** Yantch, E., (1970). Predicting scientific and technical progress. Moscow: Progress, pp. 586. - 21. Zener, C., (1961). Mathematical Aid in Optimizing Engineering Design. Proceedings of the National Academy of Sciences, pp. 537-539.