
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38066-38069

© Research India Publications. http://www.ripublication.com

38066

Sharing Computation Resources for Large-Scale Recognition System-on-

Chip (SoC)

Seung Eun Lee

Department of Electronic Engineering, Seoul National University of Science and Technology,

232 Gongreung, Seoul, Korea, seung.lee@seoultech.ac.kr

Abstract

In this paper, we investigate image and speech recognition

system flows and propose a data-path for both of recognition

engines, reducing the hardware cost and power consumption

of the recognition System-on-Chip (SoC). Implementation

results demonstrate 6.5% of area and 25.5% of power

reductions in data-path, compared to the dedicated data-path

designs using 90nm CMOS technology. The proposed

architecture provides sharing of the integrated SRAM and the

control logic in the recognition engines, reducing the area cost

and power consumption.

Keywords: System-on-Chip (SoC), Hardware Accelerators,

Mobile Augmented Reality, Speech Recognition, Low-power

Design, Design Optimization

Introduction

Smart phones and mobile internet devices (MIDs) have gained

widespread popularity by placing compute power and novel

applications conveniently in the hand of end users. Moreover,

emerging smart interfaces based on image recognition,

motion/gaze tracking are quickly entering the mobile domain.

For instance, Mobile Augmented Reality is an upcoming

application [1] that enables users to point their handheld

cameras to an object and the device recognizes the objects and

overlays relevant metadata on the object. Automatic speech
recognition is particularly attractive as an input method on

hand-held devices enabling users to make voice calls, dictate

notes and initiate searches.

In designing hand-held devices, area and power cost should be

reduced while providing the desired functionality and

performance. Sharing resources for the different applications

or tasks is the simplest and efficient way to reduce the cost

[2]. Sharing resources among different applications is required

to keep the following things in key focus: (1) need to specify

the common operation, (2) need to ensure the data types in the

common operation, and (3) need to provide a control flow for

shared resources. In particular, the application space such as

accuracy, execution time, and throughput should be satisfied

for the recognition applications.

In this paper, we investigate image and speech recognition

system flows and propose a data-path for both of recognition
system, achieving 6.5% of area and 25.5% of power

reductions compared to the dedicated accelerator designs,

providing the opportunity to share the integrated SRAM and

control logic, reducing area and power consumption of the

recognition accelerators. We assume that the GMM and MAR

workload are not computed simultaneously in order to reuse

the proposed data-path for both of workload. In this case, we

can share the control logic, which is almost the half of the

dedicated hardware accelerator, and integrated SRAM, which

should be separated SRAMs for each hardware accelerator

[6].

The rest of this paper organized as follows. Section 2

describes recognition workloads of interest, focusing on the

computation intensive steps which should be accelerated by

adopting hardware accelerators. We propose a data-path for

the accelerator in Section 3 and discuss the implementation

results including the performance impact on the system in

Section 4. Finally, we conclude in Section 5 by outlining the
direction for future works on this topic.

Recognition Engines

In this section, we present the recognition workload of

interest, mobile augmented reality and speech recognition

flows focusing on the computation intensive steps which

should be accelerated in order to reduce user response time.

Recognition engine enables the real-time operation of

recognition application on hand-held platform by accelerating

the computing intensive part in recognition workload on the

dedicated hardware along with embedded processor.

A. Mobile Augmented Reality (MAR)

Mobile Augmented Reality is an upcoming application that

enables users to point their handheld cameras to an object and
the device recognizes the objects and overlays relevant

metadata on the object. In order to achieve the usage model, it

is required to compare query image against a set of pre-

existing images in a database for a potential match,

performing following three major steps (see Figure 1).

Fig.1. System flow of the mobile augmented reality

i. Interest-point detection identifies interest points in query

image.

ii. Description generation creates descriptor vectors for
interest points.

iii. Match against DB image: compares descriptor vectors of

the query image against descriptor vectors of the DB

images.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38066-38069

© Research India Publications. http://www.ripublication.com

38067

According to our analysis on the MAR workload, match

process is the most computing intensive function, increasing

the execution time of the MAR on handheld device [3]. In

order to match two images (query and database), we use a

brute force match algorithm that exhaustively compares a pair

of interest point descriptor vectors from each image based on

the Euclidean (a.k.a. L2) distance. Figure 2 describes how a

query image from the camera is matched against a candidate
image from the data-base. One descriptor represents one

interest point. It should be noted that several other match

algorithms are available, such as ANN match [4], but the

brute force match is simple to implement from a hardware

acceleration perspective. The key function is a simple loop,

assuming 64 elements per descriptor. For each descriptor of

the query image, calculating distances for all descriptors of a

database image gives us the minimum and second minimum

values of sum. This requires computation of the Euclidean

distance square for every pair of descriptor vectors given by
64

1

2)(
i

ii DQsum

 (1)

, where the Qi and Di are the i-th descriptor vectors in query

image and DB image, respectively.

Fig.2. Brute force match of descriptor vectors between a

query image and a database image

B. Speech recognition

Automatic speech recognition (ASR) is particularly attractive

as an input method on hand-held systems enabling users to

make voice calls, dictate notes and initiate searches. Future

usage case projections for ASR on embedded systems include

natural language navigation, meeting transcription, and web

search, just to name a few. These applications are built on

large vocabulary, continuous speech recognition (LVCSR)

systems. The most widely researched LVCSR software is

CMU Sphinx 3.0 [5].

Figure 3 illustrates the basic flow of Sphinx3, which requires

three steps: (1) acoustic front-end, (2) GMM scoring, and (3)

back-end search. Sphinx3 uses hidden Markov models

(HMMs) as statistical models to represent sub-phonemic

speech sounds. One key step of an HMM based ASR system

is a Gaussian mixture probability density function evaluation
which computes Gaussian mixture model (GMM) scores.

GMM scoring consumes 82% of total execution time in

Sphinx3 on Intel Atom based platform [6]. This GMM

requires computation of the sum of weighted squares of

distances between audio feature vectors and the mean values

in the Gaussian table, followed by score generation. The

computation intensive one is the sum of weighted squares of

distances given by
39

1

2)(
i

iii VMXsum

 (2)

, where Xi, Mi and Vi are the i-th audio feature vector, the

mean and variance value in the Gaussian table, respectively.

Fig.3. System flow of speech recognition (GMM)

Data-Path in Recognition Engines

In order to improve energy efficiency and execution time for

the recognition based embedded system, we proposed and

implemented a recognition server (CogniServe) based on

heterogeneous architecture with hardware accelerators for the

two recognition algorithms described in Section 2, image and

speech recognition [6]. For the speech recognition, a GMM

accelerator was proposed, calculating the sum of weighted

square of the distances between audio feature vectors and the

mean values in the Gaussian table, followed by score

generation. For the image recognition, we designed two

hardware accelerators: (1) a Match accelerator which

computes distance calculations for matching descriptors from
a query image to descriptors from a set of database image and

(2) a Hessian accelerator that identifies the interest points in

an input image. In this paper, we propose the hardware

architecture which enables the sharing computing resources

for both of recognition applications of our interest. Therefore,

we focus on the GMM accelerator and the Match accelerator

since they have the similar operations as shown in equation

(1) and (2).

Figure 4 (a) and (b) show the data-path for MAR and GMM

accelerators, respectively. The differences between two

accelerators are (1) the GMM accelerator requires one more

multiplication in addition to the Euclidean distance calculation

between two variables, (2) the number of calculation units is

64 and 39 in the Match and GMM accelerators, respectively,

and (3) types of input data (the Match accelerator takes 8bit

data and the GMM accelerator takes 32bit data). Based on
these observations, we propose a computation unit for both

GMM and Match acceleration as shown in Figure 4(c). Four

8bit adders in the Match are used to implement one 32bit

adder for the GMM. For the square computation for the MAR

processing, one 32×32 and one 64×32 multipliers are used for

concurrent calculation of four squares. Thus, four Euclidean

distance square for MAR are calculated concurrently when

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38066-38069

© Research India Publications. http://www.ripublication.com

38068

MAR data-path is activated, and one GMM scoring is

computed when GMM data-path is activated. Therefore,

initiating 16 elements of the proposed data-path in parallel

(see Figure 4(c)) completes the computation of 64 Euclidean

distance for MAR workload and the computation of 16 GMM

scoring.

In order to complete the computation in equation (1) and

equation (2), the accumulation of the results from the multiple
instances of the data-paths are required. As described in our

previous researches in [3][4], the accelerators have five-stage

pipeline to compute the Euclidean distance calculation and

GMM scoring. In the pipeline, two pipeline stages accumulate

the result from the multiple data-paths. In this paper, we focus

on the cost analysis of the data-paths because the

accumulation stages are same to both of workload.

Fig.4. Data-Paths for MAR and GMM accelerators

Implementation
The data-paths were implemented using Verilog HDL and a

logic description of our design was obtained by using the

synthesis tool from the Synopsys Design Compiler using

90nm technology.

For the practical usage for recognition workloads, 64

instances of the data-path (see Figure 4(a)) and 39 instances of

the data-path (see Figure 4(b)) in parallel could provide

feasible execution time for MAR and Sphinx workloads,

respectively [6]. In our design, we only compute 16

calculations of GMM scoring in parallel in order to share the

data-path, SRAM, and control logic with the Match

accelerator. Figure 5 summarizes the area and power

consumption of data-paths which are required to complete

entire computing. In this work, we extracted the physical

characteristics by using the Synopsys Design Compiler, which

has limitations such as not including the interconnection area
in detail and dynamic power consumption with actual

switching information under actual workloads. For the more

precise comparison, the analysis should be performed by

using area information obtained from layout and dynamic

power consumption from the Synopsys Prime Time. However,

we believe that our analysis provides a feasible comparison in

terms of physical characteristics of our proposal. In case of

dedicated design, 64 MAR and 16 GMM data-paths costs

0.88mm2 and 16 instances of shared data-path (MAR+GMM)

occupies 0.82mm2, reducing 6.5% of area cost in data-path. In

terms of power consumption, dedicated accelerator designs

consume 198mW and the proposed design consumes 158mW,

reducing 25.5% of power. The accelerators employ SRAM as

a staging buffer in the address space, without which all

subsequent values would need to be read from DRAM on at
the time. Our approach also provides the opportunity to share

SRAM and control logic, reducing the area and power

consumption of the integrated memory.

Fig.5. Area and power benefit of our proposal

In case of MAR, the operating frequency of the proposed

data-path is reduced to almost half of the dedicated MAR

accelerator. However, 400MHz -- which is our target

frequency of the hardware accelerator along with a processor -

- operation of the MAR accelerator provides reasonable user

response time which is in milliseconds [3]. In case of the

GMM scoring, only 16 calculations are processed in parallel

in our design, requiring three iterations to finish the

computations of entire 39 elements. Our initial analysis

reveals that iterating three times for GMM calculation does

not reduce the recognition time by adopting the grouping
factor (N). In GMM calculation, instead of iterating over all

senones for the current feature vector, the control unit loads

and processes N feature vectors before loading the next

senones. The N score’s are written to system memory before

the M, V, LRD and W data in the SRAM are reloaded (LRD:

logarithmic reciprocal determinant, W: database vectors).

Since the Gaussian table for the thousands of senones

accounts for the vast majority of memory traffic, this audio

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38066-38069

© Research India Publications. http://www.ripublication.com

38069

frame grouping technique can reduce memory bandwidth to

1/N of the original algorithm. Complexity of the control logic

for this optimized processing order is the same as for the

original algorithm. The only downside is an extra initial delay

of N audio frames. In our default sampling granularity of

10ms per audio frame, N=8 will cause an initial delay of

80ms, which is hardly perceivable to the human being. This

grouping technique was proposed by Mathew [7] and used in
a number of GMM software optimizations and hardware

accelerators [8, 9, 10].

Conclusion

In this paper, we investigated recognition algorithms and

presented an opportunity to share the computation resources

on MPSoC design by proposing the unified data-path,

reducing area and power consumption. We plan to continue

studying additional recognition workload and further refining

the computation unit in order to reduce the hardware cost in

MPSoC. We expect that sharing resources among different

applications on embedded systems will bring forth a new

spectrum of optimizations for emerging digital systems.

References

[1] Takacs, G. et. al, “Outdoors augmented reality on

mobile phone using loxel-based visual feature

organization,” in 1st ACM international conference

on Multimedia information retrieval, MIR ’08, pp.

427-434, 2008.

[2] Lee, S. E., “Sharing computation resources in image

and speech recognition for embedded systems,”

Communications in Computer and Information

Science, vol. 215, pp. 150-156, 2011.

[3] Lee, S.E. et. al., “Accelerating mobile augmented

reality on a handheld platform,” in IEEE

International Conference on Computer Design, pp.

419-426, 2009.

[4] ANN, http://www.cs.umd.edu/ mount/ANN
[5] CMU Sphinx: The carnegie mellon sphinx project,

http://cmusphinx.sourceforge.net/html/cmusphinx.ph

p

[6] Iyer, R. et. al, “Cogniserve: Heterogeneous server

architecture for largescale recognition,” in IEEE

Micro, vol. 31, no. 3, pp. 20-31, 2011.

[7] Mathew, B., Davis, A., Fang, Z., “A low-power

accelerator for the sphinx 3 speech recognition

system, ” in 2003 international conference on

Compilers, architecture and synthesis for embedded

systems, pp. 210-219, 2003.

[8] Ma, T., Deisher, M., “Novel ci-backoff scheme for

real-time embedded speech recognition,” in IEEE

International Conference on Acoustics Speech and

Signal Processing, pp. 1614-1617, 2010.

[9] You, K., Choi, Y.k., Choi, J., Sung, W. “Memory
access optimized vlsi for 5000-word continuous

speech recognition,” Journal of Signal Processing

Systems 63, pp. 95-105.

[10] Lin, E.C., Yu, K., Rutenbar, R.A., Chen, T.. “A

1000-word vocabulary, speaker-independent,

continuous live mode speech recognizer

implemented in a single fpga,” Proceedings of the

2007 ACM/SIGDA 15th international symposium on

Field programmable gate arrays, FPGA ’07, pp. 60-

68, 2007.

