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Abstract 

In this paper, we investigate image and speech recognition 

system flows and propose a data-path for both of recognition 

engines, reducing the hardware cost and power consumption 

of the recognition System-on-Chip (SoC). Implementation 

results demonstrate 6.5% of area and 25.5% of power 

reductions in data-path, compared to the dedicated data-path 

designs using 90nm CMOS technology. The proposed 

architecture provides sharing of the integrated SRAM and the 

control logic in the recognition engines, reducing the area cost 

and power consumption. 
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Introduction 

Smart phones and mobile internet devices (MIDs) have gained 

widespread popularity by placing compute power and novel 

applications conveniently in the hand of end users. Moreover, 

emerging smart interfaces based on image recognition, 

motion/gaze tracking are quickly entering the mobile domain. 

For instance, Mobile Augmented Reality is an upcoming 

application [1] that enables users to point their handheld 

cameras to an object and the device recognizes the objects and 

overlays relevant metadata on the object. Automatic speech 
recognition is particularly attractive as an input method on 

hand-held devices enabling users to make voice calls, dictate 

notes and initiate searches. 

In designing hand-held devices, area and power cost should be 

reduced while providing the desired functionality and 

performance. Sharing resources for the different applications 

or tasks is the simplest and efficient way to reduce the cost 

[2]. Sharing resources among different applications is required 

to keep the following things in key focus: (1) need to specify 

the common operation, (2) need to ensure the data types in the 

common operation, and (3) need to provide a control flow for 

shared resources. In particular, the application space such as 

accuracy, execution time, and throughput should be satisfied 

for the recognition applications. 

In this paper, we investigate image and speech recognition 

system flows and propose a data-path for both of recognition 
system, achieving 6.5% of area and 25.5% of power 

reductions compared to the dedicated accelerator designs, 

providing the opportunity to share the integrated SRAM and 

control logic, reducing area and power consumption of the 

recognition accelerators. We assume that the GMM and MAR 

workload are not computed simultaneously in order to reuse 

the proposed data-path for both of workload. In this case, we 

can share the control logic, which is almost the half of the 

dedicated hardware accelerator, and integrated SRAM, which 

should be separated SRAMs for each hardware accelerator 

[6]. 

The rest of this paper organized as follows. Section 2 

describes recognition workloads of interest, focusing on the 

computation intensive steps which should be accelerated by 

adopting hardware accelerators. We propose a data-path for 

the accelerator in Section 3 and discuss the implementation 

results including the performance impact on the system in 

Section 4. Finally, we conclude in Section 5 by outlining the 
direction for future works on this topic. 

 

 

Recognition Engines 

In this section, we present the recognition workload of 

interest, mobile augmented reality and speech recognition 

flows focusing on the computation intensive steps which 

should be accelerated in order to reduce user response time. 

Recognition engine enables the real-time operation of 

recognition application on hand-held platform by accelerating 

the computing intensive part in recognition workload on the 

dedicated hardware along with embedded processor. 

 

A. Mobile Augmented Reality (MAR) 

Mobile Augmented Reality is an upcoming application that 

enables users to point their handheld cameras to an object and 
the device recognizes the objects and overlays relevant 

metadata on the object. In order to achieve the usage model, it 

is required to compare query image against a set of pre-

existing images in a database for a potential match, 

performing following three major steps (see Figure 1).  

 

 
 

Fig.1. System flow of the mobile augmented reality 

 

 

i. Interest-point detection identifies interest points in query 

image. 

ii. Description generation creates descriptor vectors for 
interest points. 

iii. Match against DB image: compares descriptor vectors of 

the query image against descriptor vectors of the DB 

images. 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 38066-38069 

© Research India Publications.  http://www.ripublication.com 

38067 

According to our analysis on the MAR workload, match 

process is the most computing intensive function, increasing 

the execution time of the MAR on handheld device [3]. In 

order to match two images (query and database), we use a 

brute force match algorithm that exhaustively compares a pair 

of interest point descriptor vectors from each image based on 

the Euclidean (a.k.a. L2) distance. Figure 2 describes how a 

query image from the camera is matched against a candidate 
image from the data-base. One descriptor represents one 

interest point. It should be noted that several other match 

algorithms are available, such as ANN match [4], but the 

brute force match is simple to implement from a hardware 

acceleration perspective. The key function is a simple loop, 

assuming 64 elements per descriptor. For each descriptor of 

the query image, calculating distances for all descriptors of a 

database image gives us the minimum and second minimum 

values of sum. This requires computation of the Euclidean 

distance square for every pair of descriptor vectors given by 
64

1

2)(
i

ii DQsum

 (1) 

, where the Qi and Di are the i-th descriptor vectors in query 

image and DB image, respectively. 

 

 
 

Fig.2. Brute force match of descriptor vectors between a 

query image and a database image 

 

 
B. Speech recognition 

Automatic speech recognition (ASR) is particularly attractive 

as an input method on hand-held systems enabling users to 

make voice calls, dictate notes and initiate searches. Future 

usage case projections for ASR on embedded systems include 

natural language navigation, meeting transcription, and web 

search, just to name a few. These applications are built on 

large vocabulary, continuous speech recognition (LVCSR) 

systems. The most widely researched LVCSR software is 

CMU Sphinx 3.0 [5]. 

Figure 3 illustrates the basic flow of Sphinx3, which requires 

three steps: (1) acoustic front-end, (2) GMM scoring, and (3) 

back-end search. Sphinx3 uses hidden Markov models 

(HMMs) as statistical models to represent sub-phonemic 

speech sounds. One key step of an HMM based ASR system 

is a Gaussian mixture probability density function evaluation 
which computes Gaussian mixture model (GMM) scores. 

GMM scoring consumes 82% of total execution time in 

Sphinx3 on Intel Atom based platform [6]. This GMM 

requires computation of the sum of weighted squares of 

distances between audio feature vectors and the mean values 

in the Gaussian table, followed by score generation. The 

computation intensive one is the sum of weighted squares of 

distances given by 
39

1

2)(
i

iii VMXsum

 (2) 

, where Xi, Mi and Vi are the i-th audio feature vector, the 

mean and variance value in the Gaussian table, respectively. 

 

 
 

Fig.3. System flow of speech recognition (GMM) 

 

 

Data-Path in Recognition Engines 

In order to improve energy efficiency and execution time for 

the recognition based embedded system, we proposed and 

implemented a recognition server (CogniServe) based on 

heterogeneous architecture with hardware accelerators for the 

two recognition algorithms described in Section 2, image and 

speech recognition [6]. For the speech recognition, a GMM 

accelerator was proposed, calculating the sum of weighted 

square of the distances between audio feature vectors and the 

mean values in the Gaussian table, followed by score 

generation. For the image recognition, we designed two 

hardware accelerators: (1) a Match accelerator which 

computes distance calculations for matching descriptors from 
a query image to descriptors from a set of database image and 

(2) a Hessian accelerator that identifies the interest points in 

an input image. In this paper, we propose the hardware 

architecture which enables the sharing computing resources 

for both of recognition applications of our interest. Therefore, 

we focus on the GMM accelerator and the Match accelerator 

since they have the similar operations as shown in equation 

(1) and (2). 

Figure 4 (a) and (b) show the data-path for MAR and GMM 

accelerators, respectively. The differences between two 

accelerators are (1) the GMM accelerator requires one more 

multiplication in addition to the Euclidean distance calculation 

between two variables, (2) the number of calculation units is 

64 and 39 in the Match and GMM accelerators, respectively, 

and (3) types of input data (the Match accelerator takes 8bit 

data and the GMM accelerator takes 32bit data). Based on 
these observations, we propose a computation unit for both 

GMM and Match acceleration as shown in Figure 4(c). Four 

8bit adders in the Match are used to implement one 32bit 

adder for the GMM. For the square computation for the MAR 

processing, one 32×32 and one 64×32 multipliers are used for 

concurrent calculation of four squares. Thus, four Euclidean 

distance square for MAR are calculated concurrently when 
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MAR data-path is activated, and one GMM scoring is 

computed when GMM data-path is activated. Therefore, 

initiating 16 elements of the proposed data-path in parallel 

(see Figure 4(c)) completes the computation of 64 Euclidean 

distance for MAR workload and the computation of 16 GMM 

scoring. 

In order to complete the computation in equation (1) and 

equation (2), the accumulation of the results from the multiple 
instances of the data-paths are required. As described in our 

previous researches in [3][4], the accelerators have five-stage 

pipeline to compute the Euclidean distance calculation and 

GMM scoring. In the pipeline, two pipeline stages accumulate 

the result from the multiple data-paths. In this paper, we focus 

on the cost analysis of the data-paths because the 

accumulation stages are same to both of workload. 

 

 
 

Fig.4. Data-Paths for MAR and GMM accelerators 

 

 

Implementation 
The data-paths were implemented using Verilog HDL and a 

logic description of our design was obtained by using the 

synthesis tool from the Synopsys Design Compiler using 

90nm technology. 

For the practical usage for recognition workloads, 64 

instances of the data-path (see Figure 4(a)) and 39 instances of 

the data-path (see Figure 4(b)) in parallel could provide 

feasible execution time for MAR and Sphinx workloads, 

respectively [6]. In our design, we only compute 16 

calculations of GMM scoring in parallel in order to share the 

data-path, SRAM, and control logic with the Match 

accelerator. Figure 5 summarizes the area and power 

consumption of data-paths which are required to complete 

entire computing. In this work, we extracted the physical 

characteristics by using the Synopsys Design Compiler, which 

has limitations such as not including the interconnection area 
in detail and dynamic power consumption with actual 

switching information under actual workloads. For the more 

precise comparison, the analysis should be performed by 

using area information obtained from layout and dynamic 

power consumption from the Synopsys Prime Time. However, 

we believe that our analysis provides a feasible comparison in 

terms of physical characteristics of our proposal. In case of 

dedicated design, 64 MAR and 16 GMM data-paths costs 

0.88mm2 and 16 instances of shared data-path (MAR+GMM) 

occupies 0.82mm2, reducing 6.5% of area cost in data-path. In 

terms of power consumption, dedicated accelerator designs 

consume 198mW and the proposed design consumes 158mW, 

reducing 25.5% of power. The accelerators employ SRAM as 

a staging buffer in the address space, without which all 

subsequent values would need to be read from DRAM on at 
the time. Our approach also provides the opportunity to share 

SRAM and control logic, reducing the area and power 

consumption of the integrated memory. 

 

 
 

Fig.5. Area and power benefit of our proposal 

 

In case of MAR, the operating frequency of the proposed 

data-path is reduced to almost half of the dedicated MAR 

accelerator. However, 400MHz -- which is our target 

frequency of the hardware accelerator along with a processor -

- operation of the MAR accelerator provides reasonable user 

response time which is in milliseconds [3]. In case of the 

GMM scoring, only 16 calculations are processed in parallel 

in our design, requiring three iterations to finish the 

computations of entire 39 elements. Our initial analysis 

reveals that iterating three times for GMM calculation does 

not reduce the recognition time by adopting the grouping 
factor (N). In GMM calculation, instead of iterating over all 

senones for the current feature vector, the control unit loads 

and processes N feature vectors before loading the next 

senones. The N score’s are written to system memory before 

the M, V, LRD and W data in the SRAM are reloaded (LRD: 

logarithmic reciprocal determinant, W: database vectors). 

Since the Gaussian table for the thousands of senones 

accounts for the vast majority of memory traffic, this audio 
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frame grouping technique can reduce memory bandwidth to 

1/N of the original algorithm. Complexity of the control logic 

for this optimized processing order is the same as for the 

original algorithm. The only downside is an extra initial delay 

of N audio frames. In our default sampling granularity of 

10ms per audio frame, N=8 will cause an initial delay of 

80ms, which is hardly perceivable to the human being. This 

grouping technique was proposed by Mathew [7] and used in 
a number of GMM software optimizations and hardware 

accelerators [8, 9, 10]. 

 

 

Conclusion 

In this paper, we investigated recognition algorithms and 

presented an opportunity to share the computation resources 

on MPSoC design by proposing the unified data-path, 

reducing area and power consumption. We plan to continue 

studying additional recognition workload and further refining 

the computation unit in order to reduce the hardware cost in 

MPSoC. We expect that sharing resources among different 

applications on embedded systems will bring forth a new 

spectrum of optimizations for emerging digital systems. 
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