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Abstract 

This paper presents the advanced sonar sensor model capable 

of building an underwater terrain map based on the Bayes 

filter in the manner of the occupancy grid. The proposed sonar 

sensor model basically considers the losses of received 

ultrasound intensity according to the underwater absorption 

and reflection on a terrain surface. The Bayes filter including 
the advanced sonar sensor model is applied to build an 

occupancy grid map. The underwater sonar data is acquired 

by the pencil beam type’s sonar sensor mounted on the 

unmanned surface vehicle (USV). The experimental results 

show underwater terrain maps before and after applying the 

proposed method. The depth standard deviations of the terrain 

grid maps are calculated to evaluate the performance of this 

approach. With the proposed sonar sensor model, the depth 

standard deviation average of underwater grid map is 

decreased by almost 35 percent. 
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Introduction 

Unmanned surface vehicles (USV) that perform operations on 

the surface of the water are robots that are generally used for 

specific purposes such as environment exploration and 

monitoring, military reconnaissance, and so on. Recently, the 

aquatic ecosystems need to be monitored due to rapid changes 

caused by pollution and environmental damage including the 

Korean river restoration project. Therefore, a sustainable 

information system for environmental monitoring and 

surveillance is required. This has increased the need for low-

cost multipurpose USVs that perform underwater terrain 

monitoring and environment surveillance [1]. 

Since June 2005, Google has been providing the public with 

GoogleEarth, a service that provides satellite imagery, maps, 

terrain information, and 3D building information for the entire 

globe [2]. This type of data can support various video 
mapping services for diverse purposes. However, an 

information system for local underwater terrain such as in 

specific ponds, dams, and rivers, as well as information on 

facilities that can be used for agricultural, fishery, and 

commercial purposes, has not yet been established because of 

the macroscopic resolution. The three dimensional underwater 

mapping techniques should be also required to find human 

bodies and recognize shapes of structures in invisible 

underwater environments like when the Sewol ferry disaster 

happened [3]. 

Even from the disaster prevention and flooding relief 

perspective, fast underwater search operations are essential 

during cases of drowning. This is because the analysis of an 

underwater object’s contour can prevent accidents caused by 
the unplanned entry of a rescue worker and during the process 

of identifying the location of the drowning person. Therefore, 

there is a need to develop survey equipment that is easy to 

use. 

Many changes are required as a result of the rapid 

development of science and technology, as well as the 

development of information technology in terms of social 

security and national defense. Furthermore, in an era when the 

trend of valuing human life is spreading in connection with 

the development of society and there is a widespread 

phenomenon of avoiding difficult tasks, it can be said that the 

development of unmanned systems is one of the best 

directions to take in strengthening the national defense while 

responding to the changes in society [4-6]. 

Research on the three-dimensional mapping of underwater 

terrain using sensors is an important factor in solving the 
aforementioned issues, and the most common sensors used 

underwater are ultrasonic sensors. Jakuba and Yoerger 

developed an unmanned underwater vehicle called the 

Autonomous Benthic Explorer (ABE), which mounted the 

Simrad Mesotech SM2000 ultrasonic sensor, and used it to 

create the feature maps of the Explorer Ridge and Lost City 

[7]. Langer and Hebert proposed a method for reconstructing 

an elevation map of Juan de Fuca Ridge’s submarine 

topography using backscatter images of the ultrasound data 

[8]. Fairfield’s research team introduced a three-dimensional 

simultaneous localization and mapping (SLAM) technique 

that uses ultrasonic sensors to navigate a submersible during 

the exploration of the underwater cave Zacaton Cenote [9]. 

Williams proposed a method for using ultrasonic sensors to 

extract the noticeable natural landmarks and then using the 

collected data to track the position of the submersible [10]. 
Table 1 lists the major studies on creating ultrasonic sensor-

based underwater terrain maps. 

This paper proposes a method for building an efficient 

submarine topographic map using ultrasonic sensors mounted 

on a USV. In particular, the accuracy and efficiency of the 

program was achieved though the development of a 

cartographic technique for creating an occupancy grid map 
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based on Bayes’ theorem, which considers the output loss of 

the ultrasonic sensors that can occur in an underwater 

environment. The effectiveness of the underwater terrain 

mapping model proposed in this study was verified through 

experiments conducted in an actual lake environment. Section 

2 explains the occupancy grid mapping using a Bayes filter. 

Section 3 explains the characteristics of ultrasonic sensors and 

the underwater ultrasonic sensors in consideration of the 
external loss function. Section 4 presents the results of the 

experiment, and finally, section 5 examines the efficacy of the 

algorithm based on the results of the experiment. 

 

TABLE.1. Major Studies on Building Ultrasonic Sensor-

based Underwater Terrain Maps 

 

Research Sonar 

Beam 

Shape 

Map Resolution / 

Coverage (m) 

Application 

[7] Pencil Grid 2/2000 Terrain survey 

[8] Wide Grid 0.25/112 Terrain survey 

[9] Pencil Grid 0.5/350 SLAM 

[10] Pencil Point - /40 Terrain based 

localization 

[11] Wide Point - /200 Terrain based 

SLAM 

[12] Wide Point - /1000 Terrain based 

SLAM 

 

 

Occupancy Grid Map 
Occupancy grid mapping is one of the methods for the 

environmental map building using sensor data for an uncertain 

distance mixed with noise. The environment through which 

the robot moves is divided into three-dimensional grids, and 

the terrain map is built by continuously updating the object’s 

occupation probability within each grid using the distance 

sensor data [13, 14]. 

 

A. Grid Map Building 

The probability of an occupancy grid map can be expressed as 

(1): 

t:1t:1 z,x|mp  (1) 

In (1), m represents the grids that form the map, and consists 

of N cells, as in m1, m2, …, mi, …, mN, where mi, an i-th cell, 

is the occupational probability of an object. The occupancy 

status of the grid is presented as a probability value between 0 
and 1, and this probability is indicated as p(mi). In (1), x1:t 

indicates the location of the robot (USV). The directional 

angle of the robot, and the x and y coordinates, are used to 

indicate the location of the robot in this study. The data are 

calculated as GPS values. x1:t refers to all the robot positions 

from time step 1 to t, whereas z1:t is all the ultrasonic sensor 

distance measurements from time step 1 to t. In other words, 

the occupation probability of the current grid can be 

calculated through the position of the robot from the start of 

the operation to its current location, along with its 

corresponding ultrasound distance measurement. 

Generally, a complicated calculation is required to solve (1). 

Therefore, to simplify the calculation, it was assumed that all 

the grids were independent of each other. When the 

occupancy grids are assumed to be independent, (1) can be 

simplified as follow: 
N

1i

t:1t:1it:1t:1 z,x|mpz,x|mp  (2) 

 

B. Occupancy Probability Calculation 

Each grid is assumed to be independent of the others, and only 

the occupancy probability of each cell is calculated. The 

Bayes filter is applied to (2) in order to represent the equation 

as a regression equation applicable as an algorithm. A 

summarization of (2) under the condition of x1:t and z1:t-1 is as 

follow: 

t1-t:1t:1it:1t:1i zz,x|mpz,x|mp ,
 (3) 

In (4), the Bayes filter is applied to the equation above as 
follow: 

1t:1t:1t

1t:1t:1itit
t1-t:1t:1i

z,x|zp

z,x|mpx,m|zp
z,z,x|mp

 (4) 

In the following equation, the Bayes filter is applied again to 

the robot’s state variables and the probability of the sensor 

value prediction according to a grid of (4): 

ti

tttti
tit

x|mp

x|zpz,x|mp
x,m|zp

 (5) 

Here, p(mi|xt) is a probability that indicates the occupancy of 

each grid in accordance with the state of the robot. However, 

the occupancy of each grid is independent of the robot’s state 

variables because the robot cannot gain any information 

regarding the environment without receiving sensor values. 

Therefore, the probability regarding the state of the cell can be 
expressed as follows: 

1t:1t:1t

1t:11-t:1i

i

tttti
t:1t:1i

z,x|zp

z,x|mp

mp

x|zpz,x|mp
z,x|mp

  (6) 

Using odds will simplify the calculation when creating a 

regression equation using the Bayes filter, and consequently, 

the application of the log odds ratio produces the following 

equations: 

i

i

1t:11-t:1i

1t:11-t:1i

tti

tti

t:1t:1i

t:1t:1i

mp

mp1

z,x|mp1

z,x|mp

z,x|mp1

z,x|mp

z,x|mp

z,x|mp

  (7) 

i0i1t

tti

tti
itt:1t:1i mlml

z,x|mp1

z,x|mp
logmlz,x|mOdds

  (8) 
In other words, the log odds ratio of the current t step in 

relation to a grid mi can be calculated through the log odds 

ratio in relation to mi at the t-1 step, the log odds ratio in 
relation to mi at the initial step, and from the sensor model. 

The following section explains the underwater ultrasonic 

sensor model in detail. 

Underwater Ultrasonic Sensor Model 

 

A. Definition of Sensor Model 

The expression log(p(mi|xt, zt))/(1-p(mi|xt, zt)) must be 

interpreted in order to calculate (8), which was obtained by 

applying the log odds ratio in the previous section. Fig. 1 

shows that probability p(mi|xt, zt) can belong to an occupied 

area or an empty according to the location of cell i depending 

on the measurement conditions. Pocc is used to calculate 

probability p(mi|xt, zt) when cell i belongs to an occupied area, 

and Pemp is used when it is an empty area. Pocc and Pemp can be 

expressed as follows: 
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confidenceiiem pem p

confidenceiioccocc

pθprpp

pθprpp

 (9) 
Pocc(ri) in (9) is a probability calculated based on the distance 

from the location of the sensor to cell i when cell i is within 

the occupied area, and Pemp(ri) is the probability calculated 

based on the distance from the location of the sensor to cell i 

when cell i is within an empty area. p(θi) is the probability 

calculated based on the angle of cell i to the center of the 

sensor measurement direction. pconfidence is the reliability of the 

sensor data regarding the measurement conditions. 

 

X

Y

W

iθ

jθ

ir

jr

 
 

Fig.1. Sensor footprint shape and its variables 

 

B. Occupancy Probability Calculation 

The sensor model value in (9) depends on the probabilities 

with respect to distance ri, angle θi, and  pconfidence. This section 

explains the probabilities with respect to distance ri and angle 

θi, and the next section explains pconfidence. 

R in Fig. 2 is the distance from the sensor position to the 

location of an object recognized by the sensor [15]. The range 

of ±ε from R, which is the distance recognized by the sensor, 

is recognized as an occupied area, and the range below R-ε 

(i.e., below Rmin) is an empty area. The center of the sensor 

measuring direction with a θ value of 0 in Fig. 3 has a 

probability of 1, and the probability finally decreases to 0 as 
the object becomes further away from the center. This 

equation is expressed as follows: 

WθW
W

θ
1θp

Rr0
2R

r
rp

RrR
ε2

Rr
1rp

2

i

m ini2

m in

2

i
iem p

m axim in

2

i
iocc

 (10) 

Here, W is the value of the angle from the center of the sensor 

measurement direction to the end of the maximum angle. 

Therefore, W is the same as the maximum value of θ. 
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Fig.2. Occupancy probability according to the distance 
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Fig.3. Occupancy probability according to the angle 

 

C. Reliability of Sensor Data 

The reliability of the sensor data indicates the reliability of the 

distance data measured by the sensor in a numerical way. 

When the intensity of the ultrasound used in the actual 

measurement is defined as IEvidence, and the ideal intensity of 

the ultrasound theoretically expected is defined as 

IAcoustic_Pressure, then the reliability of the sensor can be 
expressed as follows: 

ressureAcoustic_P

Evidence
confidence

I

I
p

 (11) 

Evidence, the intensity of the ultrasound used in the actual 

measurement, is the same as the integral values with respect to 
the measurement intensity by distance shown in Fig. 4. IEvidence 

is expressed mathematically as shown below: 
αR

αRi

iEvidence ESI

 (12) 
 

E

SRαR αR  
 

Fig.4. Strength profile of single beam according to the 

distance 

 

In calculating  IAcoustic_Pressure, the ideal theoretical value of the 

measured intensity, losses such as the loss due to the water 

absorption (i.e., absorption loss), and collisions with the 
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underwater terrain (i.e., reflection loss) must be considered. 

Sections 1 and 3 in Fig. 5 show areas where the intensity of 

the ultrasound is weakened as a result of water absorption, and 

this loss is called absorption loss. In contrast, section 2 

indicates an ultrasound loss due to collisions with the 

underwater terrain, and this is called the reflection loss. The 

directional pressure loss is neglected due to the narrow beam 

width of a sonar return. This process can be expressed as 
follows: 

rp,FFFessureAcousticPr AbsorptionReflectionAbsorption  (13) 

 

 
 

Fig.5. Underwater strength losses of sound waves 

according to the absorption and reflection 

 
The reflection loss is affected by the material of the reflection 

surface in collision. Table 2 lists the coefficients of reflection 

loss by material. 

 

TABLE.2. Reflection Coefficient, C 

 

Material Impedance, z(Rayles) C 

Air 415 -1 

Fresh water 1,480,000 0.04 

Salt water 1,540,000 0 

Wet fish flesh 1,600,000 0.02 

Wet fish bone 2,500,000 0.24 

Rubber 1,810,000 0.08 

Granite 16,000,000 0.82 

Quartz 15,300,000 0.81 

Clay 7,700,000 0.67 

Sandstone 7,700,000 0.66 

Concrete 8,000,000 0.68 

Steel 47,000,000 0.94 

Brass 40,000,000 0.92 

Aluminium 17,000,000 0.83 

 

The resistance loss is divided based on the driving frequency 

of the ultrasound. A value of 0.6 [dB/m] (approximately 

12.9% per meter) is reduced at 1000 kHz (~10 m), and 0.2 

[dB/m] (approximately 4.5% per meter) is reduced at 675 kHz 

(10~100 m) [16]. The reflection loss and resistance loss are 
expressed as follows: 

pCpF

675kHz  atp10

1000kHz  atp10
rp,F

Reflection

0.02r

0.06r

Absorption  (14) 

C in Freflection is the loss factor, and can be found in Table 2. A 

summary of (13) and (14) is as follows: 

at675kHzp10C

at1000kHzp10C
essureAcousticPr

0.04r

0.12r

 (15) 
A final summary of (11), (12), and (15) for calculating the 

reliability is as follows: 

675kHz at
p10C

ES

P
0.01r

βR

αRi

i

confidence

 (16) 
Probability p(mi|xt, zt) is obtained through this method to 

update the sensor model. The following section introduces the 

experiments and compares the results before and after the 

application of the sensor model. 

 

 

Experimental Results 

The experiment was conducted at ECHO Park in Los Angeles, 

CA, USA. An ultrasonic sensor was mounded on the front of a 

boat, and data regarding the distance and angle from the 

surface to the underwater terrain along the travel path were 

collected by manually operating the boat. A comparison of the 

collected data was conducted before and after applying the 
Bayes filter, and the excellence of the sensor model proposed 

in this study was verified. 

 

A. Equipments 

The sonar sensor (Imagenex Model 881L) used in this study 

has a pencil shaped beam with three operating frequencies. 

The experiment was conducted at 675 kHz. The beam-width 

at 675 kHz was 1.8°×20°, and the maximum measurable 

distance was 1000 m. The weight underwater was 

approximately 0.6 kg, and the price of the equipment was 

around KRW 10 million (about USD 10,000). Figure 6 and 7 

show the sonar sensor of pencil type and USV respectively. 

 

  
 

Fig.6. 881L-GS Imaging Sonar Sensor of Imagenex and 

pencil type beam 

 

 
 

Fig.7. Unmanned surface vehicle used in this study 
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B. Experiments 

The experiment was conducted manually as a step size of 2.4° 

and a scan speed of 0.013 s/degree. The robot including the 

GPS receiver was driven in a grid pattern as shown in Fig. 8. 

The experiment was conducted by using an uniform travel 

path. As shown in Fig. 8, only data from the straight sections 

were collected during the experiment, and the data from the 

corner sections were discarded. The route and data collected 
during the rotation of the USV were not used for evaluating 

the performance of the proposed sensor model because these 

data sets could cause errors. Figure 9 shows the picture of 

experimental environment. 

 

  
 

Fig.8. Top view of USV’s moving route without the non-

straight paths 

 

 
 

Fig.9. Picture of experimental environment 

 
C. Results 

Table 3 lists 3D shapes of the underwater terrain before and 

after applying the proposed method using the data collected in 

the experiment. From the raw sonar data zoomed in, it is 

known that the ECHO park lake has been tilted slightly 

toward the center of the lake (left part of Fig. 8). In addition, 

wrong measurements indicating the lower of the terrain 

bottom are shown frequently (blue dots). An examination of 

the underwater terrain shapes at 0°, 30°, 50°, 70°, and 90° 

before filtering the data through the proposed underwater 

sonar sensor model shows indications of multiple points 

distributed uncertainly in the depth direction. These 

unnecessary points were due to inaccuracies in the sensor, and 

require filtering. The underwater terrain after applying the 

proposed sonar sensor model shows a significant reduction in 

these unnecessary points. Furthermore, the depth standard 
deviations were noticeably reduced after the application of the 

advanced sonar sensor model. The averages of depth standard 

deviation in the raw sonar data and the grid map result are 

0.7115m and 0.464m respectively. Hence, the underwater 

terrain appears to be reducing the depth standard deviation by 

almost 35%. The coverages of underwater terrain are 231m2 

and 135m2 respectively. The grid map built by the proposed 

sonar sensor model covered only 58.44% of the terrain of raw 

sonar data. 

 

TABLE.3. Raw Data of Sonar Sensor and Grid Map 

Result after Applying the Proposed Sonar Sensor Model 

 

View angle Raw sonar data Grid map result 

90° 

  
70° 

  
50° 

  

30° 

  
0° 

  
zoom in 

 

 

 

TABLE.4. Evaluation Results according to the depth 

standard deviation and coverage 

 

 Raw sonar data Grid map result 

 

  
Depth  

standard  

deviation  

average 

0.7115m 0.464m 

Coverage 231m2 135m2 
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Conclusion 

The advanced sonar sensor model capable of building an 

underwater terrain map based on the Bayes filter in the 

manner of the occupancy grid was presented in this paper. The 

proposed sonar sensor model basically considered the losses 

of received ultrasound intensity according to the underwater 

absorption and reflection on a terrain surface. The Bayes filter 

including the advanced sonar sensor model was applied to 
build the occupancy grid map. The previous section confirmed 

that the underwater terrain appeared to be more even after 

applying the proposed Bayes filter compared to before its 

application. Furthermore, a more accurate underwater 

topographic map was produced as a result of a significant 

reduction in the depth standard deviations. Therefore, it could 

be said that the proposed sensor model is suitable for creating 

underwater topographic maps. However, because a small 

number of correct data values were also filtered when filtering 

the unnecessary data, the coverage was so weak to represent a 

full terrain from the point cloud of sonar data. This part 

requires modification as the future work. 

 

 

Acknowledgement 

This work was supported by the research grant (2014-0643) of 
the Kongju National University in 2014. 

 

 

References 

 

[1] J.E. Manley, Unmanned surface vehicles, 15 years of 

development, Proc. of Oceans 2008, Quebec City, 

QC, 2008, 1-4. 

[2] http://www.google.com/earth/ 

[3] http://www.koreaherald.com/view.php?ud=20140501

000824 

[4] The Navy Unmanned Undersea Vehicle(UUV) 

Master Plan, US Navy, 2004. 

[5] Defense Robot Master Plan, Korea Agency for 

Defense Development, 2005. 

[6] Report on Unmanned System for the Sea, Korea 
Agency for Defense Development, 2006. 

[7] M. Jakuba and D. Yoerger, High-resolution 

multibeam sonar mapping with the Autonomous 

Benthic Explorer(ABE), Proc. the 13th Unmanned 

Untethered Submersible Technology Conference, 

Durham, NH, 2003. 

[8] D. Langer and M. Hebert, Building Qualitative 

Elevation Maps From Side Scan Sonar Data For 

Autonomous Underwater Navigation, Proc. of the 

IEEE International Conference on Robotics and 

Automation, Sacramento, CA, 1991, 2478-2483. 

[9] N. Fairfield, G.Kantor, and D. Wettergreen, Real-

time SLAM with octree evidence grids for 

exploration in underwater tunnels, Journal of Field 

Robotics, 24(1-2), 2007, 3-21. 

[10] S. B. Williams, P. Newman, J. Rosenblatt, G. 
Dissanayake, and H. Durrant-Whyte, Autonomous 

underwater navigation and control, Robotica, 19, 

2001, 481-496. 

[11] P. Newman, J. Leonard, and R. Rikoski, Towards 

constant-time slam on an autonomous underwater 

vehicle using synthetic aperture sonar, Proc. of 11th 

Int. Symp. On Robotics Research, Sienna, Italy, 

2005, 409-420. 

[12] I. T. Ruiz, S. Raucourt, Y. Petillot, and D. M. Lane, 

Concurrent Mapping and Localization Using 

Sidescan Sonar, IEEE Journal of Oceanic 
Engineering, 29(2), 2004, 442-456. 

[13] Yun-Kyu Choi and Se-Jin Lee, Development of 

Advanced Sonar Sensor Model using Data 

Reliability and Map Evaluation Method for Grid 

Map Building, Journal of Mechanical Science and 

Technology, 29(2), 2015, 485-491. 

[14] Jong-Hwan Lim and Chul-Ung Kang, Grid-Based 

Localization of a Mobile Robot Using Sonar Sensors, 

Journal of Mechanical Science and Technology, 

16(3), 2002, 302-309. 

[15] Se-Jin Lee, Dong-Woo Cho, and Jong-Hwan Lim, 

Effective Localization of Mobile Robots Using a 

Sonar Sensor Ring, International Journal of Robotics 

and Automation, 25(3), 2010, 186-194. 

[16] http://www.nrl.navy.mil/content.php?P=03REVIEW

212 


