
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37353-37358

© Research India Publications. http://www.ripublication.com

37353

An Accurate Effort Estimation using Least Effort Multipliers based on

Fuzzy Estimation Algorithm for Software Development

E.KARUNAKARAN,

Department of Computer Science and Engineering
Pondicherry Engineering College, Puducherry,

INDIA, ekaruna@pec.edu,

N.SREENATH

Department of Computer Science and Engineering

Pondicherry Engineering College, Puducherry,

INDIA, nsreenath@pec.edu

Abstract

Software companies are very keen in delivering accurate and

reliable software products to the end users especially by

minimizing software development effort. Software project

managers also have designed various estimation techniques

for improving the efficiency of the product by reducing the

cost. Hence, there arises a need for developing a hybrid

mechanism that enables accurate estimation of effort. This

paper presents an accurate Least Effort Multipliers based on

Fuzzy Estimation Algorithm (LEMFEA) that empirically

studies the impact of five effort multiplier factors like project

type (T), programmers skill (S), software language used (L),

database used (D) and criticality(C) of the software based on

fuzzy-based function point analysis. This fuzzy-based
estimation algorithm utilizes a fuzzy-based estimate to

identify the uncertainty of the software size with the aid of

triangular fuzzy set and then a function point analysis is

incorporated by the five effort multiplier factors with the

effort estimation for accuracy. Furthermore, experimentation

is carried with different project data sets and the result infers

that the proposed LEMFEA algorithm not only improves the

accuracy of effort estimation but also increases the reliability

of the software product. The proposed LEMFEA estimation

model is superior in estimating the efforts than any other

functional point analysis model available in the literature. In

addition, LEMFEA algorithm tolerates imprecision, offers

transparency in the prediction process and possess the

capability of adapting to changing environment depending on

the dynamic availability of new data.

Keywords: Estimation, Effort Estimation, Sizing the

software, COSMIC full function, fuzzy-based functional

point, Software Measurement, eXtreme software size Unit

(XU).

1. Introduction
Software effort estimation is one of the significant steps in

software project management process since the success or

failure of the software project highly depends upon the

accuracy of the effort and schedule estimates [1]. Effective

software project estimation process is one of the most

challenging activities in the software development since

proper project planning, monitoring and controlling cannot be

done efficiently without accurate and reliable estimates [2].

The criticalities associated with software effort estimation are,

i) effort estimation process must be done in earlier phase of

software planning and development, ii) although number of

methods and metrics are available for effort estimation, when

the size of the software grows exponentially, all those existing

methods fail to produce accurate effort estimation and iii)

software effort estimation process lacks with reliable and

secure methods which are invulnerable to attacks and failures

[3].

2. Related Work

Researchers have proposed number of techniques for accurate
estimation of cost and effort involved in software project by

considering the system security [4]. In many of the previous

research works, authors have proved that the improvement of

the accuracy of the highly dependent on software estimation

and also the fuzzy-based function point analysis is

incorporated to overcome the unpredictability and riskiness in

effort estimation [5]. Some of the software estimation

approaches are detailed below.

In [6], authors presented a fuzzy-based function point analysis

method for handling ambiguous and linguistic inputs for

estimating the effort and cost involved in software project. In

contrast, the homogeneous data sets were considered for

software effort estimation in [7] which results in accurate and

reliable software estimates. In this work, the comparative

analysis is done by considering both homogeneous and

irrelevant or disordered data sets to prove the significance of

the ordered set of input data for effort estimates. In reference

[8] authors have proposed a novel fuzzy-based framework for

managing imprecision and uncertainty problem in effort

estimation process.

Similarly, in [9] authors have investigated a hybrid

methodology by integrating neuro-fuzzy and SEER-SEM

techniques that can effectively functions with various other
algorithmic models for effort estimation. Further, the work

presented in reference [10], is Enhancing Software Sizing

Adjustment Factors which effectively estimates the software

efforts by predicting size of the software. Moreover, in [11],

authors contribute an enhanced analogy-based approach based

on extensive dimension weighting and this method shows

experimentally evaluated results for project efforts. Recently,

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37353-37358

© Research India Publications. http://www.ripublication.com

37354

a work suggested by the researchers in [12] proves that the

change in standard function points analysis may improve the

accuracy in effort estimation by reducing the ambiguity.

Recently, in work [13], authors demonstrated that effort

estimation can be performed by incorporating soft computing

technique to handle uncertainty in input dataset. The main

limitation associated with all the aforementioned existing

works is that, they all focus of eliminating uncertainty and

complexity involved in input data with least concentration

with development process involved in effort estimates. Many

of the existing research works concentrates in accuracy issue

than the other performance related issues like security.

2. Extract of the Literature

From the literature review conducted, the following

shortcomings are identified as below:

a) Generally, the similarities between these studies

focus on the data sets or the initial phase of the

estimation but do not concentrate on the development

phase of the effort.

b) Most of the methods use the fuzzy logic to handle

imprecision in the data sets but does not focus on

performance factors.

These limitations induced us in proposing a Least Effort

Multiplier based Fuzzy Estimation Algorithm for effort

estimation.

3. Proposed Work

3.1 LEMFEA Algorithm and Model

The proposed Least Effort Multiplier based Fuzzy Estimation

Algorithm (LEMFEA) is an enhanced version of FFPA-PSR

(fuzzy-based function point analysis with performance
metrics, security, and reliability factors) algorithm that has

been proposed for improving the accuracy of the software

effort estimation. The proposed LEMFEA algorithm uses

fuzzy logic to frame rules based on the classification of the

attributes like project type (T), programmers skill (S),

software language used (L), database used (D) and

criticality(C) required for the estimation. The performance

factors are mainly integrated for enabling the estimation

model to estimate effort in an accurate and automated way.

Since, accurate effort is considered to be more significant

because inaccurate and insecure estimation of software effort

estimation leads to drastic deviation in the expected and actual

budget.

3.1.1 Least Effort Multiplier based Fuzzy Estimation

Algorithm (LEMFEA)

Step 1: Elucidate the requirement specification of the project

to be estimated.

Step 2: Initialize the function points for analysis.

Step 3: Classify the identified function point using least

multiplier factors and integrate them.

Step 4: Use triangular membership function for estimating the

impact of utilised five least multiplier factors.
Step 5: Analyse the fuzzy rule generated using cross over

mechanism.

Step 6: Modify and enhance the Value Adjustment Factor

(VAF) with respect to least multiplier factors.

Step 7: Manipulate the fuzzy function point through

Unadjusted Function Point (UFP) and Value Adjustment

Factor (VAF).

Step 8: Determine the performance metrics by estimating the

precision value.

Step 9: Modify the precision value based on the estimation.

Step 10: Calculate the enhanced effort estimation based on the

fuzzy-based function point analysis.

Step 11: Examine the accuracy of LEMFEA through real time

data.
Step 12: The model is implemented if the results are superior

with these fuzzy rules. Else, Create new fuzzy rules.

Fig. 1 Block diagram of the proposed LEMFEA system

The input of the developed model is the software size with the

five least multiplier factors and the output is the estimated

effort. This model incorporates four different entities for effort

estimation viz., i) Fuzzy Inference System, ii) Least Multiplier

Factor Integrator, iii) Precision Calculator, iv) Adaptive FPA

Calculator and v) Effort Estimator. Further, Fig. 1 depicts the

block diagram for the proposed LEMFEA algorithm.

i) Fuzzy Inference System

Software development process is a complex process that

necessitates the interaction of factors of function point

analysis like External inputs, External interfaces, External

inquiries, External outputs and Internal logical files. Further,

based on the experience in the software development process,

it is inferred that least amount of multipliers are enough for

effort estimation. The significant factors that are identified to

influence the software development process significantly are

Type of the software, Programmers skill, Language or tool

used, Database used and Criticality of the software

respectively designated as T, P, L, D and C. Furthermore,

these five factors are represented by the five tuples <T, P, L,

D, C>. In addition, the other factors are either included in any
one of these five factors or it has negligible impact in the

software development process. Finally, the ratings of these

factors are designated as „TOLERABLE‟, „SIGNIFICANT‟

and „SENSITIVE‟. In order to handle the dependencies and

precision of the factors, they are fuzzified to improve the

accuracy []. But, this fuzzification is difficult to achieve.

Thus, fuzzy if –then rules are generated to tackle this

situation. The fuzzy rules used are:

IF complexity of development is MINIMUM and the assigned

weight is also MINIMUM, THEN the fuzzy function point is

TOLERABLE;

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37353-37358

© Research India Publications. http://www.ripublication.com

37355

IF complexity of development is MODERATE and the

assigned weight is also MODERATE, THEN the fuzzy

function point is SIGNIFICANT;

IF complexity of development is MAXIMUM and the

assigned weight is also MAXIMUM, THEN the fuzzy

function point is SENSITIVE;

The outputs of each fuzzy rule are normalized by

defuzzification that converts fuzzy output into crisp solutions

(Fout) for required output by using the following equation (1).

 (1)

Where,

Fin - Mean expected value of input factor.

Vin - Impact factor of each input factor on a

six-point scale (0-5)

ii) Least Multiplier Factor Integration

In the next step, the outputs of the crisp solutions are

integrated with the least multiplier factor. The multipliers

values that are considered in this LEMFEA algorithm is

directly taken from the research work [14], which has been

derived from twenty different real time project data. Further,

the impact of each multiplier is analyzed using table 1 that

gives the multiplier values for different software types and the

programmer‟s skill to decide the effort required to develop the

software. Furthermore, table 2 gives the multiplier values for

different software types with respect to a software language or

tool used for developing the software. It also shows the effort

estimation multiplier values between some of the software

used (MIS, WEB, TELECOMMUNICATION) and the

languages like VB, JAVA, C, PHP, VC++ and.NET.

Similarly, table 3 and 4 presents the multiplier value that

provides the complexity function weights between database

with software type and also analyses criticality with software

types respectively.

Table 1: Effort multiplier values (Software Type Vs

Programmer’s Skill)

Developer \ Software Used Beginner Skilled Expert

MIS 2.0 1.1 0.6

WEB 3.2 1.5 1.0

TELE 3.5 2.1 1.3

Table 2: Effort multiplier values – (Software Type Vs

Software or tool Used)

Software Used VB JAVA C PHP VC++ .NET

MIS 1.0 1.3 1.5 1.4 1.7 1.2

Web 1.2 1.5 2.1 1.4 2.2 1.7

Tele Comm. 2.2 1.9 2.0 1.7 2.0 1.9

Table 3: Effort multiplier values – (Software Type Vs

Database Used)

Database Used Oracle Access MySql

MIS 1.0 0.75 0.9

Tele Comm. 1.3 1.4 1.2

Web 1.25 1.35 1.2

Table 4: Effort multiplier values – (Software Type Vs

Criticality of the project)

Criticality Catastrophic Moderate Least Significant

MIS 1.0 0.75 0.9

Tele Comm. 1.3 0.7 0.3

Web 1.2 0.85 0.6

The least multiplier factors are integrated together with the

fuzzy crisp value to obtain Fuzzy integrator value (Fint) by

using the equation (2).

Fint = Fout* Als (2)

where, Fout and Als represents fuzzy output and

least multiplier output respectively.

iii) Precision Calculation

The performance of any software system depends on the 5

important factors like speed, accuracy and latency. Hence, the

precision value is estimated through equation (3).

). (3)

where,

Pf - Performance factor

Cf - factor of complexity

iv) Adaptive FPA Calculator

The effort required for estimating effort (EEF) depends on the

multiplication of two factors called Unadjusted function

points (UFP) and value adjustment factor (VAF) as depicted

in equation (4).

EEF = UPF * VAF (4)

Once the precision and functional point count are estimated,

then the enhanced or change in effort estimation (ECEF) is

calculated using equation (5).

ECEF = EEF + FPValue (5)

v) Effort estimation

Finally, based on the value of ECEF, the effort estimation of

the software project is assured.

This estimated effort depends on a five point scale of

influence that depends on the role of each factor considered

for effort estimation as given below:

0-Very Low

1-Low
2-Normal

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37353-37358

© Research India Publications. http://www.ripublication.com

37356

3-High

4-Very high

4. Results and Discussions

The proposed LEMFEA estimation technique is developed in

Java script under windows environment and validated with

real project data sets. The effort estimation data of twenty

implemented software projects of 2014 is used for testing. At

the same time, the proposed LEMFEA estimation technique is

compared with COCOMO-II, Calibrated COCOMO-II [15-

18]. The comparative results for estimated efforts are
presented in Fig.2.

Fig. 2: Effort estimation chart

Fig.3: Effort estimation chart based on PRED

From Fig.3, it is transparent that the proposed LEMFEA

algorithm estimates effort values that are very closer to the

real value estimations. It also infers that the accuracy of the

LEMFEA algorithm is maximum, but practically it is proved

based on the popularly known performance evaluation metrics

like Mean Magnitude Relative Error (MMRE) and Prediction

rate (PRED). The Mean Magnitude Relative Error (MMRE)

and Prediction rate (PRED) are calculated based on the ratio

of actual number of observations to the number of

estimates[19-21] generated by the model as presented through

Fig.3 and Fig.4 respectively.

Fig. 4: Effort estimation chart based on MMRE

Further, the Mean Magnitude Relative Error (MMRE) is

calculated based on the Mean Relative Error factor estimated

by the ratio of deviation between the Real Effort and

Calculated Effort to the Real Effort estimated. Furthermore,

the Prediction Accuracy (PRED) is also manipulated through

equation (6) as,

PRED = ∕ (6)

Where, „ ‟ denotes the number of projects estimated and „ ‟
indicates the maximum number of instances of all estimates.

From Fig.3, it is evident that the PRED value of the proposed

LEMFEA technique is comparatively maximum when

compared to the benchmark estimation techniques like

COCOMO-II, Calibrated COMO-II. From Fig.4, it is evident

that the MMRE value of the proposed LEMFEA technique is

comparatively minimum when compared to the benchmark

estimation techniques like COCOMO-II and Calibrated

COCOMO-II.

Likewise, the proposed estimation technique is compared with

the existing models in terms of accuracy that predicts a lower
MMRE value and higher prediction value. This analysis based

on accuracy is depicted through Fig.5.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

COCOMO-II Calibrated
COCOMO-II

Proposed
LEMFEA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

COCOMO-II Calibrated
COCOMO-II

Proposed
LEMFEA

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37353-37358

© Research India Publications. http://www.ripublication.com

37357

Fig.5 : Effort estimation chart based on Accuracy

Fig.5, proves that accuracy value of estimation (expressed in

percentage) of the proposed LEMFEA technique is highly

superior to the compared benchmark estimation techniques

like COCOMO-II, and Calibrated COCOMO-II. Furthermore,

the estimation models are incorporated for effort estimation

either through training or through testing. Fig.6 presents the

comparative analysis of estimation through training and

testing respectively. It also portrays that, the proposed

LEMFEA technique is comparatively minimum in terms of

MSE, MAE and RMSE but possesses high VAF than the

compared benchmark estimation techniques like COCOMO-II

and Calibrated COCOMO-II. In addition, the proposed

estimation model is also validated through chi-square test and

the evaluation reveals that COCOMO II model and the

calibrated COCOMO II model as worst fit as presented in

table 5.

Fig. 6 : Effort estimation chart based on VAF, MSE, MAE

and RMSE based on training

Table 5 Chi-Square based fitness validation for the

estimation models

 Model I

(COCOMO

II)

Model II

(Calibrated

COCOMO II)

Model III

Proposed

(LEMFEA)

χ

2

1.12 1.34 1.87

μ 1.39 1.67 1.96

σ 1.1 1.3 1.6

Table 6 Performance Comparison based on percentage of

improved accuracy

Model Accuracy Improved accuracy (in

%)

COCOMO II 85.12 6.72

Calibrated COCOMO

II

95.67 9.34

Proposed (LEMFEA) 98.65 12.33

Finally, Table 6 shows the performance comparison based on

percentage of improved accuracy. In addition, the choice of

factors like project type (T), programmer‟s skill (S), software

language (L), database used (D) and criticality(C) of the

software has greater influence on the accuracy of the proposed

LEMFEA estimation model. It also improves the accuracy of

estimation by an average of 9.34 % than the function point

model like COCOMO-II and Calibrated COCOMO-II, while

it improves the accuracy by 12.33% than the existing

functional point‟s model.

5. Conclusion

This paper has presented automated hybrid tool called

LEMFEA estimates the effort involved in software project in

an accurate and reliable way. The proposed hybrid model is

evaluated by means of integrated datasets with ten different

project domains. The proposed hybrid model shows better

results than the existing models in terms of accuracy in effort

estimation, reliable and secures estimation factors which may

be utilized in highly critical applications. This model is highly

efficient to handle uncertainty in input data set for effort
estimation which is obtained due to incomplete requirement

information for software project. The proposed model

efficiently estimates the effort within the time and budget

frame which is one of the much needed requirements of the

software organizations. Our future plan of research is to extent

this work for assessing risks involved in software project

development.

References

[1] J. F. Vijay and C. Manoharan, “Initial hybrid method

for analyzing software estimation, benchmarking and

risk assessment using design of software,” Journal of

Computer Science, vol. 5, no. 10, pp. 717–724, 2009.

82

84

86

88

90

92

94

96

98

100

COCOMO-II Calibrated
COCOMO-II

Proposed
LEMFEA

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37353-37358

© Research India Publications. http://www.ripublication.com

37358

[2] X. Huang, D. Ho, J. Ren, and L. F. Capretz, “A soft

computing framework for software effort

estimation,” Soft Computing, vol. 10, no. 2, pp. 170–

177, 2005.

[3] J. Sedlackova, “Security factors in effort estimation

of software projects,” Information Sciences and

Technologies Bulletin of the ACM Slovakia, vol. 3,

no. 2, pp. 12–17, 2011.

[4] V. V. Manoj and R. S. Kumar, “A novel interval

type-2 fuzzy software effort estimation using Takogi-

sugeno fuzzy controller,” International Journal of

Modern Engineering Research, vol. 2, no. 5, pp.
3245–3247, 2012.

[5] M. Azzeh, D. Neagu, and P. I. Cowling, “Analogy-

based software effort estimation using Fuzzy

numbers,” Journal of Systems and Software, vol. 84,

no. 2, pp. 270–284, 2011.

[6] I. Attarzadeh and S. Hockow, “Improving the

accuracy of software cost estimation model based on

a new fuzzy logic model,” World Applied Sciences

Journal, pp. 177–184, 2010.

[7] H. K. Verma and V. Sharma, “Handling imprecision

in inputs using fuzzy logic to predict effort in

software development,” in Proceedings of the IEEE

2nd International Advance Computing Conference

(IACC ‟10), pp. 436–442, Patiala, India, February

2010.

[8] M. A. Ahmed and Z. Muzaffar, “Handling

imprecision and uncertainty in software development

effort prediction: a type- 2 fuzzy logic based

framework,” Information and Software Technology,

vol. 51, no. 3, pp. 640–654, 2009.

[9] W. L. Du, D. Ho, and L. F. Capretz, “Improving

software effort estimation using neuro-fuzzy model

with SEER-SEM,” Global Journal of Computer
Science and Technology, vol. 10, no. 12, pp. 52–64,

2010.

[10] H. Moussa, G. H. Galal-Edeen, and A. Kamel,

“Enhancing software sizing adjustment factors,” in

Proceedings of the 4th International Conference on

Intelligent Computing and Information Systems

(ICICIS ‟09), pp. 438–444, ACM, Cairo, Egypt,

2009.

[11] M. Aver and S. Biffi, “Increasing the accuracy and

reliability of analogy-based cost estimation with

extensive project feature dimension weighting,” in

Proceedings of the International Symposium on

Empirical Software Engineering, pp. 2165–2170,

2004.

[12] M. A. Al-Hajri, A. A. A. Ghani, M. N. Sulaiman, and

M. H. Selamat, “Modification of standard function

point complexity weights system,” Journal of

Systems and Software, vol. 74, no. 2, pp. 195–206,

2005.

[13] M. Senthil Kumar and B. Chidambara Rajan,

“Impact of performance metrics in software effort

estimation using function point analysis,”

Information, pp. 2253–2266, 2014.
[14] E.Karunakaran and N.Sreenath, “A Method to Effort

Estimation for XP Projects in Clients Perspective”,

International Journal of Applied Engineering

Research, ISSN-0973-4562, Vol.10,No.7, 2015,

pp.18529-18550.

[15] Banker, R., H. Change, and C. Kemerer, “Evidence

on Economies of Scale in Software Development,”

Information and Software Technology, vol. 36, no. 5,

1994, pp.275-828.

[16] Shepperd, M. & Schofield, M, “Estimating Software

Project Effort Using Analogies, IEEE Transactions

on Software Engineering, vol. 23, no. 12, 1994, pp.

736-743.

[17] Selby, R., “Empirically Analyzing Software Reuse in
a Production Environment,” in Software Reuse:

Emerging Technology, W. Tracz (Ed.), IEEE

Computer Society Press, 1988, pp.176-189.

[18] Xiao Xiao and Tadashi Dohi. “Wavelet Shrinkage

Estimation for Non-Homogeneous Poisson Process

Based Software Reliability Models,” IEEE

Transaction on Reliability vol.62, no.1, March 2013.

[19] S.Basu and N.Ebrahimi. ”Bayesian software

reliability models based on martingale processes.

Technometrics,” 2003, vol.45, no.2 pp.150-158.

[20] AGandy, U.Jensen. “A non-parametric approach to

software reliability,” Appl. Stochasti Models

Business Ind., 2004 vol.20, no.1, pp3-15.

[21] S.P. Wilson and F.J.Samaniego. “Nonparametric

analysis of the order-statistic model in software

reliability,” IEEE Transactions on Software

Engineering, 2007, vol.33, no.3, pp 198-208.

