
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37311-37315

© Research India Publications. http://www.ripublication.com

37311

Efficient 2D-DCT Architecture for Video Applications

R.Lalitha

Student, Department of ECE, MVGR College of Engineering, Vizianagaram, A.P.

Lalitha.raparthi235@gmail.com

Mr.P.Suryaprasad

Associate Professor, Department of ECE, MVGR College of Engineering, Vizianagaram, A.P.

suryaprasadp@yahoo.com

Abstract

This paper presents an efficient area and delay architectures

for the implementation of one Dimensional and two

Dimensional Discrete Cosine Transform (DCT). These are

supported to different lengths (4, 8, 16, and 32). DCT blocks

are used in the different video coding standards for the image

compression. The 2D- DCT calculation is made using the 2D-

DCT Separability Property, such that the whole architecture is
divided into two 1D-DCT calculations by using a transpose

buffer. Based on the existing 1D-DCT architecture two

different types of 2D-DCT architectures, folded and parallel

types are implemented. Both of these two structures use the

same Transpose buffer. Proposed transpose buffer Occupies

less area and high speed than existing transpose buffer. Hence

the area, low power and delay of both the 2D-DCT

architectures are reduced.

Keywords: DCT, HEVC, Transpose buffer, video

compression.

INTRODUCTION

Image compressing plays an important role in digital image

compression and also important for efficient video

Transmission and storage of images. The Discrete Cosine

Transform plays a main role in image or Video Compression

due to its de-correlation efficiency. There are different video

code standards to video compression such as JPEG, MPEG,

and AVC. The new H.265/High Efficiency Video Coding

(HEVC) standard [2,3] has been recently finalized to replace

H.264/AVC [7].The advantage of HEVC is to reduce the half
bit rate with same video quality compared than previous video

code standard i.e advanced video code standard (H.264). The

advantage of HEVC is that it supports DCT of different sizes

such as 4, 8, 16, and 32 [9]. The proposed DCT architectures

are supported to HEVC. Discrete Cosine Transform divides

the image into different parts (or spectral sub bands). DCT is

mainly used in the lossey image compression.

EXISTING ARCHITECTURES FOR INTEGER DCT

COMPUTATION

In this paper the one dimensional (general, reusable of four

point, eight point, sixteen point, thirty-two point), and two

dimensional DCT [10] architectures are implemented (4point

and 8point) and mainly concentration is given on area and

delay efficiency of two dimensional DCT architectures.

A.1D DCT architectures

Discrete Cosine Transform architecture [8] consists of mainly

three blocks. They are input adder unit (IAU), shift adder unit

(SAU), output adder unit (OAU). IAU consist the butterfly

structure [7]. Inputs (x0, x1, x2…..xn) are applied to input

adder unit by using below equation:

Fig.1. shows the proposed architecture of four-point

integer DCT.

i) General Architecture for DCT

General architecture for DCT is shown in Fig. 2. The N point

DCT Architecture [4] consists of IAU, N/2 point DCT, N/2

SAU blocks and OAU block. Inputs (x0,x1……x(n-1)) are

applied to IAU, it generates the (a0,a1…..a(N/2-1) and

b0,b1…b(N/2-1) . (a0, a1….a (N/2-1)) applied to N/2 point

DCT block. This block produces the even terms of the output.

SAU and OAU blocks compute the odd terms of the output.

For example in 16 point DCT, 8 point DCT calculates the

(y0,y2,y4,y6,y8,y10,y12,y14) and lower SAU and OAU

calculates the (y1,y3,y5,y7,y9,y11,y13). Again 8 point DCT

contains the 4point DCT and 4 SAU and OAU blocks. These

calculate the (y0, y2, y4, y6, y8, y10, y12, y14). But this is not

reusable so implemented the reusable architecture of DCT. It

supports any lengths with the same throughput of processing

irrespective of Transform size.

mailto:suryaprasadp@yahoo.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37311-37315

© Research India Publications. http://www.ripublication.com

37312

Fig. 1. Architecture of four-point integer DCT. (a) Four-

point DCT architecture. (b) Structure of SAU

Fig. 2. Generalized architecture for integer DCT of lengths

N = 816, and 32,

ii). Reusable Architecture for DCT

The Reusable Architecture of DCT consists of N/2 point

upper and lower DCT and control the input to upper (N/2)-

point DCT unit is fed through (N/2) 2:1 MUXes that selects

either [a (0), ..., a (N/2 − 1)] or [x(0), ..., x(N/2 − 1)],

depending on whether it is used for N-point DCT computation

or for the DCT of a lower size. The lower (N/2)-point DCT

unit takes the inputs [x(N/2), ..., x(N − 1)] when it is used for

the computation of DCT of N/2 point or a lower size,

otherwise, the input is reset by (N/2) AND gates to reset this

(N/2)-point DCT unit. The output of this (N/2)-point DCT unit

is multiplexed with that of the OAU. The N AND gates in

front of Input adder unit are used to disable the IAU, SAU,

and OAU when the architecture is used to compute (N/2)-

point DCT computation or a lower size. The input of the

control unit, mN is used to decide the size of DCT

computation.

For example, if N = 32, m32 is a 2-bit signal that is set to

{00}, {01}, {10}, and {11} to compute four-, eight-, 16-, and

32-point DCT, respectively. The control unit generates sel-1

and sel-2, where sel-1 is used as control signals of N MUXes

and input of N AND gates before IAU. Sel-2 is used as the
input m(N/2) to two lower size reusable integer DCT units in a

recursive manner. The control units for N = 16 and 32, are

shown above in Fig. For N = 8, m8 is a 1-bit signal that is used

as sel-1 while sel-2 is not required since four point DCT is the

smallest DCT. This structure can compute one 32-point DCT,

two 16-point DCTs, four eight point DCTs, and eight four-

point DCTs, with same throughput.

B. 2D-DCT Architectures

By using the row-column decomposition technique, an N

point 2D-DCT could be computed in two stages [6]. In first

stage 1D-DCT is calculated the input matrix of each column

and the result is formed as intermediate output matrix. In

second stage 1D-DCTis calculated for every row of the

intermediate output matrix.

Two different types of architectures are used to compute the

2D-DCT. They are folded architecture and full parallel

architecture. These consist of transposition buffer to relate the

two 1D-DCT’s.

i)Folded architecture

Folded structure is shown in Fig .4. This architecture contains

one 1D - DCT unit and a transposition buffer. For the
calculation of first stage, the 1D-DCT unit takes the columns

of input matrix and result is stored in transposition buffer.

Fig. 3 Reusable architecture of integer DCT. (a) Reusable

architecture for N = 8, 16, and 32. (b) Control unit for N =

16. (c) Control unit for N = 32.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37311-37315

© Research India Publications. http://www.ripublication.com

37313

second stage, content of the transposition buffer is selected by

using the multiplexers and fed as input to the 1D-DCT. These

multiplexers select either rows or columns from the buffer.

ii) Full parallel architecture

Full parallel architecture is shown in Fig. 5. This Architecture

contains the two 1D-DCT units and transposition buffer. The

first 1D-DCT unit takes the input as column wise or row wise.

It calculates the intermediate output columns and stored in

buffer. Second 1D-DCT unit takes the input from the buffer,

calculates rows for 2D-DCT output. After DCT perform the

inverse DCT operation in video encoder [5].

C) Transposition Buffer

Transposition buffer structure is shown in Fig. 6. Folded and

parallel 2D-DCT Architectures used the same buffer structure

and buffer is shown below. This buffer contains the AND

gates, registers, Multiplexers. Registers are arranged in a row

and column wise. For example, 4 X 4 buffer consists of 16

register cells, 4 Multiplexers, 4 AND gates, 8 X 8 buffer

consists of 64 register cells and 8 multiplexers, 8 AND gates,

16 X 16 transpose buffer have 256 register cells and 16

multiplexers. In the same way 32 X 32 buffer have 32

multiplexers and 704 register cells. This buffer stores the N

values in register of any column by enabling the column

registers using one of the enable signal. AND gates are used

to reset the Register cells by using clock and enable signal.

Multiplexers are used to select the content of one of the row

of registers.

MODIFIED TRANSPOSITION BUFFER

The modified buffer is as shown in Fig. 7. This buffer consists

of counter, multiplexers and registers or register cells. In this

transposition buffer AND gates are removed hence area and
delay are reduced of the buffer compared than traditional

transposition buffer. In the existing transpose buffer structure,

Enable signal is used to activate all register cells hence delay

is high, but in the modified transposition buffer structure, a

counter is used. This counter gives the clock pulses to all cells

so delay is reduced. In the modify buffer structure, up counter

is used, by this the register cells are loaded with all values

automatically with no delay. The counter is powered by a

clock for every one tick of clock and the registers values are

shifted. The Multiplexer selects the input lines from the

register cell rows.

Fig.4. Folded architecture.

Fig.5 Parallel architecture.

Fig.6. Transpose buffer architecture.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37311-37315

© Research India Publications. http://www.ripublication.com

37314

RESULTS

The 1D-DCT and 2D-DCT architectures are coded in Verilog

and synthesized by using Xilinx ISE14.2 Synthesis tool and

ISIM simulator. The performance of these architectures are

compared in terms of occupy slices; look up tables, number of

registers and delay and computation time. The Fig. 8 shows

the simulation waveforms of 2D DCT architectures. The

synthesis report for existing transpose buffer shown in Fig .9

and proposed buffer synthesis report shown in Fig. 10. In the

synthesis report, the number of slices, flip-flops. Look up

tables, and input-output pins are estimated. Table I shows the

result of 1D-DCT Architecture. Table II shows the
comparison results of Transpose buffer. Table III shows the

results of 4 point 2D-DCT and Table IV shows the results of 8

point 2D-DCT Architecture

Fig. 7: proposed transposition buffer.

Fig. 8: Simulation waveforms for folded and parallel

structure

Fig. 9: Synthesis report of existing buffer.

Fig. 10: Synthesis report of Modified paper buffer.

TABLE.1. Area, Time, and Power Complexities of 1D-

DCT architectures of Integer DCT for Various Lengths.

Architectur

e type

N(point

)

AREA Dela

y

(ns)

Adders

/

sub

tractor

s

Power

Consumptio

n

(Watts)

Computatio

n time

(ns)
LUT’

s

Slice

s

Reference

Algorithm

4 240 136 16.49 40 0.097 2.84

8 928 505 25.01 64 0.143 3.25

16 1854 3505 25.57 256 6.402 3.67

32 12995 7006 32.98 843 25.53 3.9

Existing

Algorithm

before

pruning

4 185 120 16.00 35 0.081 2.95

8 307 211 24.82 50 0.122 3.34

16 1800 3041 22.11 241 4.517 3.92

32 10177 5416 30.24 837 19.63 4.48

Existing

Algorithm

before

pruning

4 135 103 15.08 30 0.042 2.93

8 238 222 21.65 50 0.108 3.31

16 1415 2405 22.00 230 2.858 3.92

32 5402 2976 28.70 703 17.63 4.45

TABLE.2. Area, delay, computation time of proposed and

existing architectures of transpose buffer.

Transpose

buffer

Area Delay

(ns)

Clock

frequency

(MHZ)

Computation

time

(ns)
LUT’s Slices

4 point

Existing

buffer

608 343 6.18 469.72 3.10

4 point

Proposed

buffer

157 275 5.88 469 2.50

8point

Existing

buffer

1200 600 9.10 600.80 6.12

8point

Proposed

buffer

375 400 6.15 589.75 4.20

TABLE.3. Area, delay, computation time of 2D DCT 4

point proposed and existing architectures.

4-point Architect

ure type

AREA Dela

y

(ns)

Clock

frequen

cy

(MHZ)

Adde

rs/

sub

tracto

rs

Power

Consumpt

ion

(Watts)

Computat

ion time

(ns) LUT

’S

Slic

es

Folded

architectu
re

Existing 698 415 21 404 116 4.447 2.97

proposed 610 390 17 300 76 3.161 2.8

Parallel
Architect

ure

Existing 706 419 17.8 449 115 4.455 2.544

proposed 550 378 17 414 116 3.211 2.50

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 17 (2015) pp 37311-37315

© Research India Publications. http://www.ripublication.com

37315

TABLE.4. Area, delay, computation time of 2D DCT 8

point proposed and existing architectures.

8-point Architecture

type
AREA Delay

(ns)
Clock

frequency

(MHZ)

Adders/
sub

tractors

Power
Consumption

(Watts)

Computation
time

(ns) LUT’S Slices

Folded
architecture

Existing 6212 3618 20.59 389 808 9.562 2.97

proposed 5633 3018 19.19 372 807 7.013 2.8

Parallel
Architecture

Existing 3618 6212 19.09 400 808 9.567 2.544

proposed 2853 1809 18.44 389 807 7.016 2.50

CONCLUSION

In this paper implement the efficient area, delay and power

architectures for 2D DCT of different lengths. Existing

Reusable architecture involves less area, delay and power than

the general architecture of N point DCT and DCT that can
compute the DCT of lengths 4, 8, 16, and 32 with throughput

of 32 output coefficients per cycle. Two different architectures

are implemented for 2D DCT. Transpose buffer plays

important role in folded and parallel structures to match the

rows and columns of intermediate output. By replacing the

AND gates with up counter in proposed structure, reduce the

area and delay, power. From the synthesis result it is found

that proposed transposition buffer involves less area and delay

than the existing transpose buffer.

REFERENCES

[1]. Pramod kumar, Meher, Sang Yoon Park”Efficient

Integer DCT Architecture for HEVC” IEEE

transactions on circuits and systems for video

technology, vol. 24, no. 1, January 2014.

[2]. B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-K.

Wang, andT. Wiegand, High Efficiency Video Coding

(HEVC) Text Specification Draft 10 (for FDIS and

Consent), JCT-VC L1003, Geneva, Switzerland, Jan.

2013.

[3]. G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand,
“Overview of the high efficiency video coding

(HEVC) standard,” IEEE Trans. CircuitsSyst. Video

Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[4]. Ahmed, M. U. Shahid, and A. Rehman, “N Point DCT

VLSI Architecture for Emerging HEVC Standard,” in

Proc. VLSI Design, vol. 2012, Article 752024, pp. 1–

13, 2012.

[5]. J.-S. Park, W.-J. Nam, S.-M. Han, and S. Lee, “2-D

large inverse Transform (16x16, 32x32) for HEVC

(high efficiency video coding),” J. Semicond.

Technol. Sci., vol. 12, no. 2, pp. 203–211, Jun. 2012.

[6]. S. Shen, W. Shen, Y. Fan, and X. Zeng, “A unified

4/8/16/32-point integer IDCT architecture for multiple

video coding standards,” in Proc. IEEE Int. Conf.

Multimedia Expo, Jul. 2012, pp. 788–793.

[7]. A. Fuldseth, G. Bjøntegaard, M. Budagavi, and V.

Sze. (2011, Nov.). JCTVC-G495, CE10: Core

Transform Design for HEVC: Proposal for Current

HEVC Transform [Online]. Available:

http://phenix.int-evry.fr/ jct/doc end user/documents/7

Geneva/wg11/JCTV%C-G495-v2.zip

[8]. N. Boullis and A. Tisserand, “So optimizations of

hardware multiplication by constant matrices,” IEEE

Trans. Comput., vol. 54, no. 10, pp. 1271–1282, Oct.

2005.

[9]. W. Cham and Y. Chan, “An order-16 integer Cosine

Transform,” IEEE Trans. Signal Process., vol. 39, no.

5, pp. 1205–1208, May 1991.

[10]. N. Ahmed, T. Natarajan, and K. Rao, “DiscreteCosine

Transform,” IEEE Trans. Comput., vol. 100, no. 1, pp.

90–93, Jan. 1974.

http://phenix.int-evry.fr/

