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Abstract  

This paper presents an efficient area and delay architectures 

for the implementation of one Dimensional and two 

Dimensional Discrete Cosine Transform (DCT). These are 

supported to different lengths (4, 8, 16, and 32). DCT blocks 

are used in the different video coding standards for the image 

compression. The 2D- DCT calculation is made using the 2D- 

DCT Separability Property, such that the whole architecture is 
divided into two 1D-DCT calculations by using a transpose 

buffer. Based on the existing 1D-DCT architecture two 

different types of 2D-DCT architectures, folded and parallel 

types are implemented. Both of these two structures use the 

same Transpose buffer. Proposed transpose buffer Occupies 

less area and high speed than existing transpose buffer. Hence 

the area, low power and delay of both the 2D-DCT 

architectures are reduced. 

 

Keywords: DCT, HEVC, Transpose buffer, video 

compression. 

 

 

INTRODUCTION 

Image compressing plays an important role in digital image 

compression and also important for efficient video 

Transmission and storage of images. The Discrete Cosine 

Transform plays a main role in image or Video Compression 

due to its de-correlation efficiency. There are different video 

code standards to video compression such as JPEG, MPEG, 

and AVC. The new H.265/High Efficiency Video Coding 

(HEVC) standard [2,3] has been recently finalized to replace 

H.264/AVC [7].The advantage of HEVC is to reduce the half 
bit rate with same video quality compared than previous video 

code standard i.e advanced video code standard (H.264). The 

advantage of HEVC is that it supports DCT of different sizes 

such as 4, 8, 16, and 32 [9]. The proposed DCT architectures 

are supported to HEVC. Discrete Cosine Transform divides 

the image into different parts (or spectral sub bands). DCT is 

mainly used in the lossey image compression. 

 

 

EXISTING ARCHITECTURES FOR INTEGER DCT 

COMPUTATION 

In this paper the one dimensional (general, reusable of four 

point, eight point, sixteen point, thirty-two point), and two 

dimensional DCT [10] architectures are implemented (4point 

and 8point) and mainly concentration is given on area and 

delay efficiency of two dimensional DCT architectures. 

 

A.1D DCT architectures 

Discrete Cosine Transform architecture [8] consists of mainly 

three blocks. They are input adder unit (IAU), shift adder unit 

(SAU), output adder unit (OAU). IAU consist the butterfly 

structure [7]. Inputs (x0, x1, x2…..xn) are applied to input 

adder unit by using below equation: 

 

 
 

Fig.1. shows the proposed architecture of four-point 

integer DCT. 

 

 
i) General Architecture for DCT 

General architecture for DCT is shown in Fig. 2. The N point 

DCT Architecture [4] consists of IAU, N/2 point DCT, N/2 

SAU blocks and OAU block. Inputs (x0,x1……x(n-1)) are 

applied to IAU, it generates the (a0,a1…..a(N/2-1) and 

b0,b1…b(N/2-1) . (a0, a1….a (N/2-1)) applied to N/2 point 

DCT block. This block produces the even terms of the output. 

SAU and OAU blocks compute the odd terms of the output. 

For example in 16 point DCT, 8 point DCT calculates the 

(y0,y2,y4,y6,y8,y10,y12,y14) and lower SAU and OAU 

calculates the (y1,y3,y5,y7,y9,y11,y13). Again 8 point DCT 

contains the 4point DCT and 4 SAU and OAU blocks. These 

calculate the (y0, y2, y4, y6, y8, y10, y12, y14). But this is not 

reusable so implemented the reusable architecture of DCT. It 

supports any lengths with the same throughput of processing 

irrespective of Transform size. 
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Fig. 1. Architecture of four-point integer DCT. (a) Four-

point DCT architecture. (b) Structure of SAU 

 

 
 

Fig. 2. Generalized architecture for integer DCT of lengths 

N = 816, and 32, 
 

 

ii). Reusable Architecture for DCT 

The Reusable Architecture of DCT consists of N/2 point 

upper and lower DCT and control the input to upper (N/2)-

point DCT unit is fed through (N/2) 2:1 MUXes that selects 

either [a (0), ..., a (N/2 − 1)] or [x(0), ..., x(N/2 − 1)], 

depending on whether it is used for N-point DCT computation 

or for the DCT of a lower size. The lower (N/2)-point DCT 

unit takes the inputs [x(N/2), ..., x(N − 1)] when it is used for 

the computation of DCT of N/2 point or a lower size, 

otherwise, the input is reset by (N/2) AND gates to reset this 

(N/2)-point DCT unit. The output of this (N/2)-point DCT unit 

is multiplexed with that of the OAU. The N AND gates in 

front of Input adder unit are used to disable the IAU, SAU, 

and OAU when the architecture is used to compute (N/2)-

point DCT computation or a lower size. The input of the 

control unit, mN is used to decide the size of DCT 

computation. 

For example, if N = 32, m32 is a 2-bit signal that is set to 

{00}, {01}, {10}, and {11} to compute four-, eight-, 16-, and 

32-point DCT, respectively. The control unit generates sel-1 

and sel-2, where sel-1 is used as control signals of N MUXes 

and input of N AND gates before IAU. Sel-2 is used as the 
input m(N/2) to two lower size reusable integer DCT units in a 

recursive manner. The control units for N = 16 and 32, are 

shown above in Fig. For N = 8, m8 is a 1-bit signal that is used 

as sel-1 while sel-2 is not required since four point DCT is the 

smallest DCT. This structure can compute one 32-point DCT, 

two 16-point DCTs, four eight point DCTs, and eight four-

point DCTs, with same throughput. 

 

B. 2D-DCT Architectures 

By using the row-column decomposition technique, an N 

point 2D-DCT could be computed in two stages [6]. In first 

stage 1D-DCT is calculated the input matrix of each column 

and the result is formed as intermediate output matrix. In 

second stage 1D-DCTis calculated for every row of the 

intermediate output matrix. 

Two different types of architectures are used to compute the 

2D-DCT. They are folded architecture and full parallel 

architecture. These consist of transposition buffer to relate the 

two 1D-DCT’s. 

 

i)Folded architecture 

Folded structure is shown in Fig .4. This architecture contains 

one 1D - DCT unit and a transposition buffer. For the 
calculation of first stage, the 1D-DCT unit takes the columns 

of input matrix and result is stored in transposition buffer. 

 
Fig. 3 Reusable architecture of integer DCT. (a) Reusable 

architecture for N = 8, 16, and 32. (b) Control unit for N = 

16. (c) Control unit for N = 32. 
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second stage, content of the transposition buffer is selected by 

using the multiplexers and fed as input to the 1D-DCT. These 

multiplexers select either rows or columns from the buffer. 

 

ii) Full parallel architecture 

Full parallel architecture is shown in Fig. 5. This Architecture 

contains the two 1D-DCT units and transposition buffer. The 

first 1D-DCT unit takes the input as column wise or row wise. 

It calculates the intermediate output columns and stored in 

buffer. Second 1D-DCT unit takes the input from the buffer, 

calculates rows for 2D-DCT output. After DCT perform the 

inverse DCT operation in video encoder [5]. 
 

C) Transposition Buffer 

Transposition buffer structure is shown in Fig. 6. Folded and 

parallel 2D-DCT Architectures used the same buffer structure 

and buffer is shown below. This buffer contains the AND 

gates, registers, Multiplexers. Registers are arranged in a row 

and column wise. For example, 4 X 4 buffer consists of 16 

register cells, 4 Multiplexers, 4 AND gates, 8 X 8 buffer 

consists of 64 register cells and 8 multiplexers, 8 AND gates, 

16 X 16 transpose buffer have 256 register cells and 16 

multiplexers. In the same way 32 X 32 buffer have 32 

multiplexers and 704 register cells. This buffer stores the N 

values in register of any column by enabling the column 

registers using one of the enable signal. AND gates are used 

to reset the Register cells by using clock and enable signal. 

Multiplexers are used to select the content of one of the row 

of registers. 

 

 

MODIFIED TRANSPOSITION BUFFER 

The modified buffer is as shown in Fig. 7. This buffer consists 

of counter, multiplexers and registers or register cells. In this 

transposition buffer AND gates are removed hence area and 
delay are reduced of the buffer compared than traditional 

transposition buffer. In the existing transpose buffer structure, 

Enable signal is used to activate all register cells hence delay 

is high, but in the modified transposition buffer structure, a 

counter is used. This counter gives the clock pulses to all cells 

so delay is reduced. In the modify buffer structure, up counter 

is used, by this the register cells are loaded with all values 

automatically with no delay. The counter is powered by a 

clock for every one tick of clock and the registers values are 

shifted. The Multiplexer selects the input lines from the 

register cell rows. 

 

 
 

Fig.4. Folded architecture. 

 

 
 

Fig.5 Parallel architecture. 

 

 
 

Fig.6. Transpose buffer architecture. 
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RESULTS 

The 1D-DCT and 2D-DCT architectures are coded in Verilog 

and synthesized by using Xilinx ISE14.2 Synthesis tool and 

ISIM simulator. The performance of these architectures are 

compared in terms of occupy slices; look up tables, number of 

registers and delay and computation time. The Fig. 8 shows 

the simulation waveforms of 2D DCT architectures. The 

synthesis report for existing transpose buffer shown in Fig .9 

and proposed buffer synthesis report shown in Fig. 10. In the 

synthesis report, the number of slices, flip-flops. Look up 

tables, and input-output pins are estimated. Table I shows the 

result of 1D-DCT Architecture. Table II shows the 
comparison results of Transpose buffer. Table III shows the 

results of 4 point 2D-DCT and Table IV shows the results of 8 

point 2D-DCT Architecture 

 

 
 

Fig. 7: proposed transposition buffer. 

 

 
 

Fig. 8: Simulation waveforms for folded and parallel 

structure 

 

 
 

Fig. 9: Synthesis report of existing buffer. 

 

 
 

Fig. 10: Synthesis report of Modified paper buffer. 

 

TABLE.1. Area, Time, and Power Complexities of 1D-

DCT architectures of Integer DCT for Various Lengths. 

 
Architectur

e type 

N(point

) 

AREA Dela

y 

(ns) 

Adders

/ 

sub 

tractor

s 

Power 

Consumptio

n 

(Watts) 

Computatio

n time 

(ns) 
LUT’

s 

Slice

s 

Reference 

Algorithm 

4 240 136 16.49 40 0.097 2.84 

8 928 505 25.01 64 0.143 3.25 

16 1854 3505 25.57 256 6.402 3.67 

32 12995 7006 32.98 843 25.53 3.9 

Existing 

Algorithm 

before 

pruning 

4 185 120 16.00 35 0.081 2.95 

8 307 211 24.82 50 0.122 3.34 

16 1800 3041 22.11 241 4.517 3.92 

32 10177 5416 30.24 837 19.63 4.48 

Existing 

Algorithm 

before 

pruning 

4 135 103 15.08 30 0.042 2.93 

8 238 222 21.65 50 0.108 3.31 

16 1415 2405 22.00 230 2.858 3.92 

32 5402 2976 28.70 703 17.63 4.45 

 

TABLE.2. Area, delay, computation time of proposed and 

existing architectures of transpose buffer. 

 

Transpose 

buffer 

Area Delay 

(ns) 

Clock 

frequency 

(MHZ) 

Computation 

time 

(ns) 
LUT’s Slices 

4 point 

Existing 

buffer 

608 343 6.18 469.72 3.10 

4 point 

Proposed 

buffer 

157 275 5.88 469 2.50 

8point 

Existing 

buffer 

1200 600 9.10 600.80 6.12 

8point 

Proposed 

buffer 

375 400 6.15 589.75 4.20 

 

TABLE.3. Area, delay, computation time of 2D DCT 4 

point proposed and existing architectures. 

 
4-point Architect

ure type 

AREA Dela

y 

(ns) 

Clock 

frequen

cy 

(MHZ) 

Adde

rs/ 

sub 

tracto

rs 

Power 

Consumpt

ion 

(Watts) 

Computat

ion time 

(ns)  LUT

’S 

Slic

es 

Folded 

architectu
re 

Existing 698 415 21 404 116 4.447 2.97 

proposed 610 390 17 300 76 3.161 2.8 

Parallel 
Architect

ure 

Existing 706 419 17.8 449 115 4.455 2.544 

proposed 550 378 17 414 116 3.211 2.50 
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TABLE.4. Area, delay, computation time of 2D DCT 8 

point proposed and existing architectures. 

 
8-point Architecture 

type 
AREA Delay 

(ns) 
Clock 

frequency 

(MHZ) 

Adders/ 
sub 

tractors 

Power 
Consumption 

(Watts) 

Computation 
time 

(ns)  LUT’S Slices 

Folded 
architecture 

Existing 6212 3618 20.59 389 808 9.562 2.97 

proposed 5633 3018 19.19 372 807 7.013 2.8 

Parallel 
Architecture 

Existing 3618 6212 19.09 400 808 9.567 2.544 

proposed 2853 1809 18.44 389 807 7.016 2.50 

 

 

CONCLUSION 

In this paper implement the efficient area, delay and power 

architectures for 2D DCT of different lengths. Existing 

Reusable architecture involves less area, delay and power than 

the general architecture of N point DCT and DCT that can 
compute the DCT of lengths 4, 8, 16, and 32 with throughput 

of 32 output coefficients per cycle. Two different architectures 

are implemented for 2D DCT. Transpose buffer plays 

important role in folded and parallel structures to match the 

rows and columns of intermediate output. By replacing the 

AND gates with up counter in proposed structure, reduce the 

area and delay, power. From the synthesis result it is found 

that proposed transposition buffer involves less area and delay 

than the existing transpose buffer. 
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