
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36658-36662

© Research India Publications. http://www.ripublication.com

36658

A Fast and Scalable Pattern Matching Scheme for NIDS Using Z Algorithm

Dhanesh P

Department of ECE Amrita Vishwa Vidyapeetham University

Amritanagar, Coimbatore, India

e-mail: dhaneshpgopinath@gmail.com

D. S. Harish Ram

Department of ECE Amrita Vishwa Vidyapeetham University

Amritanagar, Coimbatore, India

e-mail: ds_harishram@cb.amrita.edu

Abstract

Network Intrusion Detection Systems (NIDS) have become

integral to today’s computer networks as the information

transferred through the network is highly vulnerable to cyber-

attacks. The implementation of the same involves an efficient

string matching algorithm which will compare certain
parameters and features of the received packets depending on

the protocols used for communication. As the system

incorporates a huge number of pattern comparisons, the string

matching algorithm stands as the heart of entire NIDS system.

Software implementations such as SNORT are inadequate for

Ethernet backbones with bit rates of hundreds of Gigabits

where high throughputs are required. Small improvements at

the algorithmic level can boost the performance of the system

drastically. In order to handle the large payloads of current

network packets, simple and commonly used algorithms such

as Aho-Corasick lack performance. In this work, the Z

algorithm which is generally used for finding large

subsequences in DNA strands is adapted for string matching

for intrusion detection. This new algorithm shows noticeable

improvements in performance and scalability.

Keywords: Aho Corasick, Boyer Moore, HIDS, IDS, KMP,

NIDS, Z Algorithm

I. INTRODUCTION

The network intrusion detection system (NIDS) [1, 5] is a

security system which governs the inbound and outbound
activities of a network. It is expected to identify suspicious

patterns that may point out some intrusion or policy violation

in the network or system. The idea of Intrusion Detection is

mainly implemented by the pattern classification and pattern

matching algorithms. The working of IDS is same as that of

the virus detection software or Antivirus software, where a

database of defined attacks have been formulated, maintained

and updated regularly on a periodic basis. The data or packet

of data is identified from a stream of network traffic and

different fields in the packet are analyzed according to the

rules maintained in the database. Once a particular rule is

recognized then that can be modeled as an intrusion.

There are some basic steps involved in Intrusion Detection

such as identifying attacks, alert different intrusions, take

decisions accordingly for active systems and store the details

of attack or event as and when they are detected. The real time
performance needed by the rule identification system depends

clearly on the efficiency of the pattern matching algorithm

used. So performance of the system and efficiency of the

algorithms shares a direct relationship between each other.

The selection of algorithm has a crucial role in modeling an

IDS. The data rates involved in computer networks have
increased drastically from 3 Mbps to 100 Gbps with 400 Gbps

in the pipeline. As and when the speed increases the payload

size also increases to incorporate the transfer rate. According

to the IEEE standard 802.3 [2] the payload size may vary

from 46 to 1500 bytes depending on the standards followed.

In some cases it may contain even 9000 bytes of payload

which are known to be the jumbo packets. This study throws

some light on the importance of choosing an algorithm

capable of handling huge amounts of data. The Z algorithm

[3] which is extensively used for pattern matching in large

volumes of data such as in DNA sequences can be adapted for

the pattern matching scenario followed in the case of IDS

also. The rest of the paper is organized as follows: Section 2

reviews the techniques reported in literature on pattern

matching for NIDS and also describes the Z algorithm.

Section 3 presents an analysis of the results obtained after
evaluating the string matching algorithms on different types of

packet traffic. Section 4 concludes the paper.

II. METHODOLOGY

This section will briefly explain the various surveys done in

the field of pattern matching and the scope of introducing a

new algorithm for the improvement in performance and

scalability. The upcoming subsections discuss the prior works

that has been done in the case of pattern matching algorithms

used for the implementation of different type of NIDS, the

proposed system architecture, the working of algorithm, and

the work done.

A. Prior Works

The field of pattern matching is well researched for a variety of

applications such as text matching, bio sequence matching,

dictionary finding, big data analysis, security systems etc. As

the information data is getting huge the need for efficient string

matching algorithms arises. The various string matching

algorithms for NIDS reported in the literature are discussed
briefly in this section. These algorithms include the famous

algorithms like Aho Corasick Algorithm, Boyer Moore

Algorithm, Brute Force Algorithm, and KMP Algorithm.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36658-36662

© Research India Publications. http://www.ripublication.com

36659

Aho Corasick [4]

This algorithm was one of the oldest algorithms developed for

multi-pattern matching which is capable of matching strings at

a worst case time. The Aho-Corasick algorithm constructs a

state machine out of the strings or patterns to be matched. It

consists of a root node which is considered to be a non-

matching state. The root node is the starting node for the

algorithm. Each and every pattern considered will add different

states and the state machine complexity increases

exponentially. The newly obtained state machine is scanned

and a pointer called failure pointer is updated with reference to

that which will give a way for back tracking in the case of non-
detection of a particular substring. The algorithm needs only a

single reference to the memory if the pattern data base is fully

optimized.

Boyer Moore [6, 7]

The Boyer Moore algorithm is used when the searched pattern

is much shorter when compared to the text in which the search

is going on. The basic working of this algorithm includes the

preprocessing of the pattern or string which is being searched.

The preprocessed results are used by the algorithm for

discarding some sections of the text and continuing search

from the next valid position. The Boyer Moore algorithm

mainly works from the back end of the text rather than the

front end. As the size of the pattern increases the speed of

algorithm also increases because of the number of letters in the

section being skipped increases with that.

Brute Force [6]

This algorithm is known to be the exhaustive searching

algorithm which works on the systematic enumeration of

almost all possible combinations for the solution and finding

whether it is producing satisfactory solutions. The algorithm is

not commonly used but it is simple in implementation and will
always find a possible solution if one exists. The time

complexity analysis shows that the algorithm follows a

polynomial behavior instead of the linear behavior exhibited

by the other algorithms.

KMP Algorithm [6]

KMP algorithm or Knuth–Morris–Pratt algorithm is one of the

most popular algorithms used in text searching applications. It

generally searches for the pattern P of length n in a text T of

length m. The algorithm is capable of finding out the next

match with the help of certain information embedded in the

pattern itself when a mismatch occurs while parsing the text.

This will help bypassing the repeated reexamination of

antecedent matched characters. The study of these algorithms

gives the idea of how different algorithms behave with the

different scenarios in text searching. Some of them are having

less complexity, some can have the included substring

matching capability and some others show more dependency

on patterns that have to be matched. Flexibility, sub pattern

matching capability and reduced comparisons are key features

demanded from string matching in NIDS.

B. Overall Architecture for NIDS [1]
The Network Intrusion Detection System comprises of many

different elements or modules which will work together to

attain the complete functionality of the system. The modular

diagram of an architectural model proposed by Pontarelli et al

[1] is shown in the Fig. 1. The network packets from the other

networks and hosts are received at the Ethernet interface and

same is buffered in an Ethernet buffer as the data rates are

much higher in current networks. The buffered packets are

then analyzed by a header analyzer in order to identify the

protocols used for transfer. IDS generally have separate rules

or patterns for different protocols used for communication,

that has to be detected in the payload or data part present in

each and every packet so as to confirm a malicious activity or

a violation of security policy inside the network. After
analyzing the packet for identifying the protocol used, a

protocol based classifier is used to classify the data part to

different buffers as shown in the block diagram.

Depending on the protocol used (TCP, UDP, IP, ICMP, etc.)

there exists different String Matching Modules (SMM) that

are dedicated to each packet type. A packet routing

mechanism is used to route packets between the SMMs. The

SMMs are intended to detect different malicious patterns

associated with each rules. Once the patterns have been

detected a rule identifying mechanism identifies each and

every rule with the help of pattern identifier or SMM output.

The Decision maker and Controller modules categorize the

outputs from rule identifier and with the help of a prediction

mechanism arrive at some decisions such as logging an attack,

blocking a user, blocking a host from the entire network, raise

alarms on certain events and also monitor different intrusions.

These logs are used by some organizations to identify

problems associated in their cyber security policy,

documenting different threats and proactively putting threat

mitigation mechanisms in place.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36658-36662

© Research India Publications. http://www.ripublication.com

36660

Fig. 1. Overall Architecture of NIDS.

C. Z – Algorithm [3]

The Z – Algorithm was first found to be useful in the field of

Bio Sequence detection where the text search field is large. A

common application of the Z – Algorithm is in the profile

matching of different DNAs. Due to the simplicity in the

design and low time complexity exhibited by the Z –

Algorithm, it is more convenient to be used in any pattern

detection schemes where a huge number of strings have to be

compared.

Fig. 2. Z Box formation in a pattern.

There are mainly two concepts up on which the Z – Algorithm

is based. They are the Z box and Z value. The Z-Algorithm can

be considered to be a signature based algorithm. The Z boxes

are the substrings that show a match with the string prefixes

with the same number of characters. The Z values represent the

length of Z box i.e. the length of substring. The example in Fig.

2 illustrates the concept of Z boxes. The string

“XYZAAAXYBBB” shown in the figure has only one Z box

i.e. at the position 6 and 7 which shows a match with the prefix

substring “XY”. So the Z value for the position 6 will be 2 as

there is a match of two positions.

In a combined string C of length n, the Z Algorithm produces a

set of values called Z values where Z[i] represents the length of

the longest sub string located at the position C[i] which is also
similar to the prefix of string C. The condition Z[i] = 0 implies

that the C[0] ≠ C[i]. The i value changes from 1 to n-1

excluding the 0th value in order to avoid the comparison of

string with itself. For iterating through the text an interval is

maintained as {l, r} inside where the i value is defined such

that 1 ≤ l ≤ i ≤ r. The value of l gives the lower bound and the

r value gives the upper bound of i. If there exists a valid

interval of {l, r} for (i-1)th position and also if the updated

values of Z till that position are available, then Z[i] and the

corresponding interval {l, r} are calculated by the following

steps.

If l > r, then there will not be an existence of a possible prefix

substring that starts before the position i and which will end up

at a position at or after the i value. When this condition occurs,

a reset is applied and new {l, r} values are computed by
comparing the sub-strings C[0….] to C[i…] and Z[i] is

updated as (r-l+1). If the second condition is satisfied, the

current values of left and right indices at least extend to

position i. Here another variable j is defined as j = i-l. In this

case Z[i] ≥ min(Z[j], r-i+1) since C[i…] matches to C[j…]

up to at least (r-i+1)th position. In this case if the Z value

exhibits a condition that Z[j] < r-i+1 then there does not exist

a sub string of prefix starting at the position i. This implies that
the Z value Z[i] = Z[j] and the left and right bounds do not

vary. If Z[j] ≥ r-i+1 then it is possible to have new Z value as

there is chance of finding match of more than r-l+1 characters

C[0…] and C[i…]. This condition yields an update to the left

and right bounds i.e. {l, r}. The new l value will be the value

of i and the matching process is conducted from the new

position C[r+1] forward to find the new r value from which

the Z[i] value will be updated correspondingly.

The Z Algorithm is capable of finding the whole Z values at a

single iteration from 0th position up to the (n-1)th position in

the string. This algorithm has a complexity of O(n) and is also

capable of identifying the prefix as well as the prefix

substrings. The different features exhibited by the Z Algorithm

make it useful for systems like NIDS where a large number of

patterns have to be matched within a huge amount of data in a

short time.

III. RESULTS AND EVALUATION

The various algorithms discussed are modeled and the delay

incurred by each is estimated. The different values are plotted

to evaluate the performance of each algorithm. The algorithms

that are considered are Aho-Corasick Algorithm, Boyer Moore

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36658-36662

© Research India Publications. http://www.ripublication.com

36661

Algorithm, Brute Force Algorithm, Knuth Morris Pratt

Algorithm and the Z Algorithm. The complexity, behavior,

multiple matches in single iteration and rule dependency of

these algorithms are tabulated below in Table. 1. For delay

estimation various scenarios are considered involving the

application of single patterns and multiple patterns with same

length, multiple patterns of same length with substrings

included in each set of patterns and nonlinear patterns with

random number of substrings. The delay of each algorithm is

plotted and compared with the help of graphs which are

provided in the figures below.

The plot in Fig. 3 shows the performance evaluation of
different algorithms for a given string of size 10 bytes which

searches in a text of size 64 bytes. All algorithms except Brute

Force experience the same worst case delay. For further

analysis multiple patterns with same length of 10 byte are

applied with the same number of branches in each set of input

patterns. The plotted results in Fig. 4 show that the Aho

Corasick and Z algorithms show almost the same behavior

with a small reduction in delay in the case of Z algorithm. The

Z algorithm shows a delay reduction of 1.33%. The plot in Fig.

5 compares the Aho Corasick algorithm and the Z Algorithm

for nonlinear patterns with random number of substrings. The

algorithms exhibit a wide variation in performance and notable

reduction in delay is observed for the Z algorithm. The

estimated reduction in delay is 42.81% for the Z Algorithm. So

as far as the randomness in the test patterns increases the Z

Algorithm shows a dramatic improvement in performance

which makes it highly desirable in an NIDS scenario. The

scalability of the system is ensured by adopting memory based

approaches and exploiting the flexibility of the Z Algorithm to

incorporate random strings.

Fig. 3. Comparison of delay for same single pattern for

different algorithms.

TABLE I. ANALYSIS OF DIFFERENT ALGORITHMS

USED FOR PATTERN MATCHING PROBLEMS

Algorithm Time

complexity

Behavior Multiple

Matches

Rule

Dependency

Aho

Corasick

O(m + n +

z)

Linear Yes Yes

Boyer

Moore

O(m + n) Linear No Yes

Brute

Force

O(m * n) Polynomial No No

Knuth

Morris
Pratt

O(m + n) Linear No Yes

Z

Algorithm

O(m + n) Linear Yes No

Fig. 4. Comparison of delay for multiple strings of same

length with substrings included.

Fig. 5. Comparison of Aho - Corasick and Z Algorithm for

nonlinear patterns with random number of substrings.

IV. CONCLUSION

This paper proposes the adaptation of the Z algorithm for fast

and scalable intrusion detection in IDS. The Z Algorithm is

capable of incorporating substring matching and its

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36658-36662

© Research India Publications. http://www.ripublication.com

36662

performance is not pattern dependent. The pattern-independent

nature of Z Algorithm helps to improve the scalability and

flexibility of the String Matching Modules present in the NIDS

architecture. The analysis results of different algorithms with

various pattern matching scenarios show that the Z Algorithm

can have more than 40% improvement in delay compared to

the next best algorithm. The performance improvements

observed for the Z algorithm will become more significant

with higher degree of randomness in packet traffic and higher

data rates.

REFERENCES

[1] Salvatore Pontarelli, Giuseppe Bianchi, and Simone

Teofili.: Traffic-Aware Design of a High-Speed

FPGA Network Intrusion Detection System. In:

IEEE transactions on computers, vol. 62, no. 11,

November 2013

[2] IEEE Standard for Ethernet. IEEE Std 802.3™-2012

Revision of IEEE Std 802.3-2008

[3] Dan Gusfield.: Algorithms on Strings, Trees, and

Sequences Computer Science and Computational

Biology. University of California, Davis.

[4] Nathan Tuck, Timothy Sherwood, Brad Calder,

George Varghese, “Deterministic Memory-Efficient

String Matching Algorithms for Intrusion

Detection”, IEEE INFOCOM 2004

[5] Chris Clark, Wenke Lee, David Schimmel, Didier

Contis, Mohamed Koné, Ashley Thomas, “A

Hardware Platform for Network Intrusion

Detection and Prevention”, Center for Experimental

Research in Computer Systems (CERCS) Georgia

Institute of Technology, Atlanta, GA, USA

[6] K. Prabha and Dr. S. SukumaranCzajkowski.:
Single-Keyword Pattern Matching Algorithms for

Network Intrusion Detection System. International

Journal of Computer and Internet Security. ISSN

0974-2247 Volume 5, Number 1 (2013)

[7] S. S. Sheik, Sumit K. Aggarwal, Anindya Poddar, N.

Balakrishnan, and K. Sekar.: A FAST Pattern

Matching Algorithm. J. Chem. Inf. Comput. Sci.

2004, 44, 1251-1256

