
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36371

Network Intrusion Detection using DPI Techniques in Wireless Network

Mr. Satish N. Gujar

JJT,University

Rajastan, India,

satishgujar@gmail.com

Dr. V. M. Thakare

S.G.B. Amravati University,

Amravati

Maharashtra, India

vilthakare@yahoo.co.in

Abstract— Deep Packet Inspection (DPI) is becoming more

widely used in virtually all applications or services like

Intrusion Detection System (IDS), which operate with or

within a network. DPI analyzes all data present in the packet

as it passes an inspection to determine the application

transported and protocol. Deep packet inspection typically

uses regular expression matching as a core operator. Regular

expressions (RegExes) are used to flexibly represent complex

string patterns in many applications ranging from network

intrusion detection and prevention systems (NIDPSs). Regular

expressions represent complex string pattern as attack

signatures in DPI. It examine whether a packet‘s payload

matches any of a set of predefined regular expressions. There

are various techniques developed in DPI for deep packet

inspection for regular expression. We survey on these

techniques for further improvement in regular expression

detection in this paper. We implement technique to block

regexp packet such as DOS attack. In the result we found that

it is possible to reduce RegExp transaction memory required

in network intrusion detection. We implement this technique

with possible use of DPI techniques in the wireless network.

Keywords— Deep Packet Inspection(DPI); Regular

Expression(RegExp); Deterministic Finite Automata(DFA);

LaFA; StriFA; CompactDFA; Tcam; DFA/EC; Snort; Br,Sql

injection Attack, Xss Attack.

Introduction
In most of the applications Regular expressions (RegExes) are

used to flexibly represent complex string patterns in many

applications, such as network intrusion detection and

prevention systems (NIDPSs), Compilers and DNA multiple

sequence alignment [1]. Intrusion detection is the process of

monitoring the events occurring in a computer system or

network and analyzing them for signs of possible incidents,

which are imminent threats of violation of computer security

policies and standard security practices. Intrusion detection

and prevention systems (IDPS) are primarily focused on

identifying possible incidents in packet, logging information

about these incidents, attempting to stop and reporting them to

security administrators [3].

Deep Packet Inspection (DPI) is a technology that enables the

network owner to analyze internet traffic, throughout the

network, in real-time and to differentiate them according to

their payload [3]. Traditional packet inspection algorithms

have been limited to comparing packets to a set of strings.

Newer DPI systems, such as Snort [11], and Bro [10], use

rule-sets consisting of regular expressions, these systems are

more expressive, efficient, and compact in specifying attack

signatures [4].

In Network intrusion detection system techniques

such as Bro [10] and Snort [11] and Linux Application Level

Packet Classifier (L7 filter) [5] use RegExes to represent

attack signatures or packet classifiers. Regular expressions

represent complex string pattern as attack signatures in many

applications. There is no current regular expression detection

system is capable of supporting large RegEx set ; and even

larger RegExp sets are expected in future with high speed

demand [1]. The LaFA technology based on three

observations, first RegExes consist of a variety of different

components such as character classes or repetitions, Second is

the order of components in a RegEx is preserved in the state

machine detecting this RegEx and Third, most RegExes share

similar components [1]. LaFA requires less amount of

memory due to these three contributions: 1) providing

specialized and optimized detection modules to increase

resource utilization; 2) systematically reordering the RegEx

detection sequence to reduce the number of concurrent

operations; 3) sharing states among automata for different

RegExes to reduce resource requirements.

The TCAM technology is the first hardware-based RE

matching approach that uses ternary content addressable

memory (TCAM), TCAM is has been widely deployed in

modern networking devices for tasks such as packet

classification. StriFA [6] technology presents the stride finite

automata; it‘s a novel finite automata family, used to

accelerate both string matching and regular expression

matching. Compact DFA [6] proposed method is to compress

DFAs by observing that the name used by common DFA

encoding is meaningless. This degree of freedom and encode

states in such a way that all transitions to a specific state are

represented by a single prefix that defines a set of current

states. Compact DFA technique applies to a large class of

automata, which can be categorized by simple properties.

With a TCAM [2] the throughput of compact DFA reaches to

10 Gb/s with low power consumption. This technique uses

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36372

Aho–Corasick (AC) algorithm, which uses a deterministic

finite automaton (DFA) to represent the pattern set [6].

Extended Character set DFA [3] focused on reducing the

memory storage requirement of DFAs, and it can be divided

into the following categories: reducing the number of states,

reducing the number of transitions, reducing the bits encoding

the transitions, and reducing the character-set. Unfortunately,

all of these approaches compress DFAs at the cost of

increased main memory accesses. This technique propose a

novel solution, called deterministic finite automata with

extended character-set (DFA/EC), which can significantly

decrease the number of states through doubling the size of the

character-set. Solution describe in this methodology requires

only a single main memory access for each byte in the traffic

payload [3].

We implement this project to use deep packet inspection

techniques for RegExp matching to improve IDS technique in

wireless networks. Implementation and comparatively

evolution of existing technique with the new propose

technique by considering different parameter such as

bandwidth requirement, speed of intrusion detection e.t.c. The

implementation details describe in following section.

This project consists of improved RegEx detection technique

which will have higher throughput than any other network

intrusion detection techniques. We will minimize memory

requirements and resource usage by network detection system.

The project will be used for regular expression detection of

attack signature pattern matching in wireless network.

Modules of the projects are survey existing techniques,

implement DOS attack filter, built RegEx detection technique

which will work on wireless network.

Paper Organization
The rest of the paper organized as follows. An overview of
DPI is given in Section 3. Here we describe Detail working of

DPI and its levels. Section 4 describes the use of regular

expression in DPI. Section 5 gives related DPI techniques

limitations in RegExp detection. Ad-hoc network describes In

section 6. Dos attacks and its types describes in section 7. Our

proposed system details describe in section 8. Section 9

includes advantages of our proposed system. Result and

comparison with existing system is given in section 10.

Section 11 conclude our work and contains our future work.

Literature Survey and Elaboration & synthesis

Deep Packet Inspection (DPI) is a technology that enables the

network owner to analyses internet traffic, through the

network, in real-time and to differentiate them according to

their payload. Originally the Internet protocols required the

network routers to scan only the header of an Internet Protocol

(IP) packet. The packet header contains the origin and

destination address and other information relevant to moving

the packet across the network. The ―payload‖ or content of the

packet, which contains the text, images, files or applications

transmitted by the user, was not considered to be a concern of

the network operator. DPI allows network operators to scan

the payload of IP packets as well as the header. Figure 1 [8]

shows the domain of packet inspection required in internet

protocols and in DPI [8].

Fig 1. Domain of Deep Packet Inspection [8]

DPI systems use expressions to define patterns of interest in

network data streams. The equipment is programmed to make

decisions about how to handle the packet or a stream of

packets based on the recognition of a regular expression or

pattern in the payload. This allows networks to classify and

control traffic on the basis of the content, applications, and

subscribers [8]. Figure 2 shows the DPI implementation in

software and hardware modules.

Deep

packet inspection typically uses regular expression (RE)

matching as a core operator. It examine whether a packet‘s

payload matches any of a set of predefined regular

expressions. REs are fundamentally more expressive, efficient,

and flexible in specifying attack signatures. Prior RE matching

algorithms are either software base or field-programmable

gate array (FPGA) based [1].

RegExes consist of a variety of different components such as

character classes or repetitions [1]. Due to this variety, it is

hard to identify a method that is efficient for concurrently

detection of all these different components of a RegExp. Most

RegExes share similar components. In the traditional FA, a

small state machine is used to detect a component in a

RegExp. This state machine is duplicated since the similar

component may appear multiple times in different RegExes.

Furthermore, most of the time, RegExes sharing this

component cannot appear at the same time in the input. As a

result, the repetition of the same state machine for different

RegExes introduces redundancy and limits the scalability of

Fig 2. DPI Implementation [7]

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36373

the RegEx detection system. Figure 3 shows example

illustrating the transformation from a RegEx set R into the

corresponding LaFA technique [1].

Fig 3: Example illustrating the transformation from a RegEx set R into the

corresponding LaFA. (a) RegEx set. (b) NFA corresponding to. (c) Separation

of simple strings. (d) Reordering of the detection sequence. (e) Sharing of

complex detection modules. (f) LaFA representation of the RegExes [1].

Currently, regular expressions are replacing explicit string

patterns as the pattern matching language of choice in packet

scanning applications. Their widespread use is due to their

expressive power and flexibility for describing useful patterns.

For example, in the Linux Application Protocol Classifier (L7-

filter), all protocol identifiers are expressed as regular

expressions. Similarly, the Snort intrusion detection system

has evolved from no regular expressions in its rule set in April

2003 to 1131 out of 4867 rules using regular expressions as of

February 2006. Another intrusion detection system, Bro [10],

also uses regular expressions as its pattern language [9].

A regular expression describes a set of strings without

enumerating them explicitly. Table 1 lists the common

features of regular expression patterns used in packet payload

scanning. For example, consider a regular expression from the

Linux L7-filter for detecting Yahoo traffic:

―^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80‖. This pattern

matches any packet payload that starts with ymsg, ypns, or

yhoo, followed by seven or fewer arbitrary characters, and

then a letter l, w or t, and some arbitrary characters, and finally

the ASCII letters c0 and 80 in the hexadecimal form [9].

TABLE 1: Features of Regular Expressions [9]

Syntax Meaning Example

^

Pattern to be

matched at the start

of the input

^AB means the input starts with

AB. A pattern without ‗^‘, e.g.,

AB, can be matched anywhere in

the input.

I OR relationship A|B denotes A or B

.
A single character

wildcard

?
A quantifier

denoting one or less
A? denotes A, or an empty sting.

*

A quantifier

denoting zero or

more

A* means an arbitrary number of

As.

{} Repeat A{100} denotes 100 As.

[]
A class of

characters
[lwt] denotes a letter l, w, or t.

[^]
Anything but

not n

[^\n] denotes any character except

\n.

.

 The Deterministic Finite Automata (DFA) consists of

a finite set of input symbols (which are denoted as P), a finite

set of states, and a transition function to move from one state

to the other denoted as @. In contrast of NFA, DFA has only

one active state at any given time [4][9].

The regular expression is required as a need for packet

payload inspection to different protocols packets. It introduces

a limited DPI system to deal with all packets structures. As the

result of this limitation, state-of-art systems have been

introduced to replace the string sets of intrusion signature with

more expressiveness regular expression (regexp) systems.

Therefore, there are several content inspection engines which

have partially or fully migrated to regexps including those in

Snort [11], Bro [10], and Cisco systems‘.

Experimentally, DFA of regexp that contains hundreds of

pattern yields to tens of thousands of states which mean

memory consumptions in hundreds of megabytes. As a

solution of one of the common problems of HW based DPI

solutions is the memory access because the memory accesses

for the contents of the off chip memory are proportional with

the number of bytes in the packet [9].

Related Work

LaFA [1]

 LaFA is a novel detection method that resolves

scalability issues of the current RegEx detection paradigm.

LaFA is finite automata optimized for scalable RegEx

detection. LaFA is used for representing a set of RegExes

(R={r1;r2;r3;…}) which can also be called a RegEx database.

An associated LaFA RegEx detection system can be queried

with an input , such as a network packet. The system will

return a match along with a list of matching RegExes if input

includes one or more of the RegExes in . Otherwise, a no

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36374

match is returned. LaFA facilitate the reduction of memory

requirements and detection complexity.

LaFA architecture shown in following figure 3 consist of two

blocks, The detection block and The correlation block

Detection Block is responsible for detecting the component in

the input string. The simple string optimized for exact string

matching module used to detect simple string.

Fig 4: LaFA Architecture [1].

The variable string detector consists of highly optimized

variable string detection modules. The correlation block used

to track status of RegEx. The correlation block inspects the

sequence of components in the input string (i.e., order and

timing). The detectors in the detection block communicate

their findings to the correlation block by sending detection

events. Each detection event consists of a unique ID for the

detected component and its location in the input packet.

Small TCAM is the first ternary content addressable memory

(TCAM)-based RE matching solution. This technology use a

TCAM and its associated SRAM to encode the transitions of

the DFA built from an RE set where one TCAM entry might

encode multiple DFA transitions. There are three key reasons

why TCAM-based RE matching works well given in this

research: a small TCAM is capable of encoding a large DFA

with carefully designed algorithms. TCAMs facilitate high-

speed RE matching because TCAMs are essentially high-

performance parallel lookup systems TCAMs are off-the-shelf

chips that are widely deployed in modern networking devices;

it should be easy to design networking devices that include our

TCAM-based RE matching solution[2].

In this experiment, TCAM able to store a DFA with 25 K

states in a 0.5-Mb TCAM chip; most DFAs require at most

one TCAM entry per DFA state. With variable striding it

shows a throughput of up to 18.6 Gb/s is possible.

StriFA technique has been implemented in software and

evaluated based on different traces. It undertakes the problem

of designing a variable-stride pattern matching engine that can

achieve an ultrahigh matching speed with a relatively low

memory usage. The technology proposes stride finite automata

(StriFA), which can process a variable number of characters at

a time. StriFA is designed to be immune to the memory blow-

up and byte alignment problems, and therefore, requires much

less memory than the previous schemes. Stride deterministic

finite automaton (StriDFA) and stride nondeterministic finite

automaton (StriNFA) are two basic forms of implementation

of StriFA.

The technology results showed that this architecture can

achieve about 10-fold increase in speed, with a lower memory

consumption compared to traditional NFA/DFA, while

maintaining the same detection capabilities.

One of the main advantages of CompactDFA is that it fits into

commercially available IP-lookup solutions. They may be

used also for performing fast pattern matching. The output of

the CompactDFA scheme is a set of compressed rules, such

that there is only one rule per state. In the compressed set of

rules, a code of a state may match multiple rules. Algorithm of

CompactDFA and gives the intuition behind each of its three

stages: State Grouping, Common Suffix Tree Construction,

and State and Rule Encoding.

CompactDFA evaluates only for the pattern matching process.

It uses two common pattern sets: Snort and ClamAV. This

methodology can achieve fast pattern matching of 2 Gb/s with

low power consumption. This technique shows a reduction of

the pattern matching problem to the IP-lookup problem. Due

to its small memory and power requirements, this architecture

can implement with several TCAM working in parallel. Each

TCAM performs pattern matching on a different session,

achieving a total throughput of 10 Gb/s and beyond.

Implementation of this technique based on general-purpose

processors that are cost-effective and flexible to update. It

proposes a novel solution, called deterministic finite automata

with extended character-set (DFA/EC), which can

significantly decrease the number of states through doubling

the size of the character-set. Solution describe in this

methodology requires only a single main memory access for

each byte in the traffic payload. It performs experiments with

several Snort rule-sets. Results show that, compared to DFAs,

DFA/ECs are very compact and are over four orders of

magnitude smaller in the best cases.

The advantages of a DFA/EC are summarized in the

following: A DFA/EC requires only one main memory access

for each byte in the packet payload, while significantly

reducing storage in terms of table size. A DFA/EC is

conceptually simple, easy to implement, and easy to update

due to fast construction speed. It maintains two states in

runtime: one state for the main DFA, and an additional state

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36375

for the complementary program. The current runtime state of

the main DFA is represented by a DFA state label, and state of

the complementary program is represented by a set that

contains currently active complementary states. For each byte

in the payload, the DFA/EC functions as follows. Firstly, the

complementary program calculates the extra bit for the

extended character by using the next byte and the current state

of the complementary program and the next state of the main

DFA and a label is looked-up by using the current state of the

main DFA and the extended character, which is composed of

the next byte and the extra bit. After that the complementary

program calculates its next state by using its current state, the

next byte, and the label on the main DFA transition In this

implementation, the transition functions of the main DFA, , is

implemented by a transition table; and is implemented by the

complementary program, which only contains several efficient

instructions.

The total minimum memory (storage) requirement of the

transition tables in terms of bits and the number of bits is the

product of the number of transitions and the number of bits

needed to encode each transition measured. It gives result as;

the memory bandwidth of DFA/EC can even be smaller than

DFA in rule-sets exploit-19 and web-misc-28

A Distributed Denial of Service (DDoS) attack is an attempt to

make an online service unavailable by overwhelming it with

traffic from multiple sources. They target a wide variety of

important resources, from banks to news websites, and present

a major challenge to making sure people can publish and

access important information.

Attackers build networks of infected computers, known as

'botnets', by spreading malicious software through emails,

websites and social media. Once infected, these machines can

be controlled remotely, without their owners' knowledge, and

used like an army to launch an attack against any target. Some

botnets are millions of machines strong. Botnets can generate

huge floods of traffic to overwhelm a target. These floods can

be generated in multiple ways, such as sending more

connection requests than a server can handle, or having

computers send the victim huge amounts of random data to

use up the target‘s bandwidth. Some attacks are so big they

can max out a country's international cable capacity.

It is important to differentiate between Denial of Service

(DoS) and Distributed Denial of Service (DDoS) attacks. In a

DoS attack, one computer and one internet connection is used

to flood a server with packets, with the aim of overloading he

targeted server‘s bandwidth and resources.

DDoS attack, uses many devices and multiple Internet

connections, often distributed globally into what is referred to

as a botnet. A DDoS attack is, therefore, much harder to

deflect, simply because there is no single attacker to defend

from, as the targeted resource will be flooded with requests

from many hundreds and thousands of multiple sources.

Fig 5: DDOS attack

XSS Attack: Cross-Site Scripting (XSS) attacks are a type of

injection, in which malicious scripts are injected into

otherwise benign and trusted web sites. XSS attacks occur

when an attacker uses a web application to send malicious

code, generally in the form of a browser side script, to a

different end user. Flaws that allow these attacks to succeed

are quite widespread and occur anywhere a web application

uses input from a user within the output it generates without

validating or encoding it.

An attacker can use XSS to send a malicious script to an

unsuspecting user. The end user‘s browser has no way to

know that the script should not be trusted, and will execute the

script. Because it thinks the script came from a trusted source,

the malicious script can access any cookies, session tokens, or

other sensitive information retained by the browser and used

with that site. These scripts can even rewrite the content of the

HTML page.

XSS attacks may be conducted without using

<script></script> tags. Other tags will do exactly the same

thing, for example:

<body onload=alert('test1')>

or other attributes like: onmouseover, onerror.

 Onmouseove

<b onmouseover=alert('Wufff!')>click me!

 Onerror

<img src="http://url.to.file.which/not.exist"

onerror=alert(document.cookie);>

http://en.wikipedia.org/wiki/Botnet
http://www.incapsula.com/ddos/ddos-attacks/

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36376

SQL Injection Attack: SQL injection is a technique where

malicious users can inject SQL commands into an SQL

statement, via web page input. Injected SQL commands can

alter SQL statement and compromise the security of a web

application.

Let's say that the original purpose of the code was to create an

SQL statement to select a user with a given user id. If there is

nothing to prevent a user from entering "wrong" input, the

user can enter some "smart" input like this:

SELECT * FROM Users WHERE UserId = 105 or

1=1

The SQL above is valid. It will return all rows from the table

Users, since WHERE 1=1 is always true. The example above

seems dangerous, What if the Users table contains names and

passwords?

The SQL statement above is much the same as this:

 SELECT UserId, Name, Password FROM Users WHERE

UserId = 105 or 1=1

A smart hacker might get access to all the user names and

passwords in a database by simply inserting 105 or 1=1 into

the input box.

Problem with existing system
From the survey of above techniques we found that, the

approach describe in these techniques may require a large

number of transitions for some cases, leading to an increase in

the number of memory accesses per input byte. In addition,

DFA construction is complex and requires significant
resources[1]. There is very few network intrusion detection

techniques discover in wireless networks.

CompactDFA technique used in architecture requires several

TCAM working in parallel, Due to its small memory and

power requirements. NBA technologies have some significant

limitations. They are delayed in detecting attacks because of

their data sources, especially when they rely on flow data from

routers and other network devices[3]. DFA/EC does not

combine with the existing transition compression and

character-set compression techniques, and perform

experiments with more rule-sets[4]. One of the problems for

StriFA is how to choose an appropriate tag. Since in both the

rules and the incoming traffic, the occurrence probabilities of

different characters vary from each other, it is a problem to

choose an appropriate tag from the rule set [5].Following table

shows comparison of existing network intrusion detection

techniques.

TABLE 2: Comparison of deep packet intrusion techniques

Intrusion Detection Techniques Throughput

LaFA 34 Gb/s

CompactDFA 10 Gb/s

Small TCAM 18.6 Gb/s

StriDFA 26.5 Gb/s

 Following are objectives of problem we define on the

basis of above survey:

1. We can improve network intrusion detection

throughput with use of DPI techniques.

2. LaFA technique can be modifying for effective

detection of evaluating RegExp on the network.

3. Higher throughput in network intrusion detection can be

possible.

4. Above discuss techniques could have better

performance in memory requirements, speed of

detection, detection of evaluating RegEx detection.

5. There is very few intrusion detection techniques work

on wireless network.

4. PROPOSED METHODOLOGY

System Implementation
This section we include the partitioning of project into

different modules. All these modules are explained as follows:

 This module includes the registration and log In of

client and server. It includes following classes.

 Log In : With this class client can login to the server web

site i.e. Banking website

 Register: this class used to register new user for server

site.

 Admin Login: Admin can log in and manage the data of

website.

 Admin View Log: With this class admin can view all the

block IP and type of attacks done and its date and time.

 Unblock: With this class admin can unblock the block IP.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36377

Fig 6: User Log in snapshot

User Account Page Snapshot:

Fig 7: User Account Snapshot

Fig 8: Snapshot for admin log in page

Fig 9: Snapshot for admin log in page.

DDOS Attack Filter
 Request Count: This class count no. of requests per second

(RPS) coming from client.

 RPS Limit: This class used to save the limit of the

request per second any human user can make.

 Block IP: DDOS filter block the user IP if RPS

exceeds the limit.

Fig 10: Snapshot of attack log detail page.

Block IP Page Snapshot:

Fig 11: Snapshot of Block IP Page

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36378

 Pattern Matching: This class used deep packet

inspection pattern matching algorithm to detect the

attack pattern.

 Block IP: If request packet pattern match to attack

pattern saved in database then it block the client IP.

Fig 12: Snapshot of SQL Injection Attack

Fig 13 : Snapshot of XSS attack

 In this project we use Apache Tomcat sever to use

database named IDS.

 This database used to save attack pattern and request

count per second and access by DDOS filter and DPI

module to search for the attack pattern.

 Database used to store account data, user account id

and password, list of blocked ip, type and date and

time of attack when it occurs

Low-level designs of software system include:

 private classes, private methods, private attributes

 Algorithms.

Low-level design also provides an interface for all classes,

public and private methods, including parameters, return

values, exceptions thrown and types defined. It describes and

justifies the choice of data structures, describes the major

alternatives that are considered and why the choice is

preferred that is opted.

In our project private classes such as block ip class, account

information class only can be access by owner. Owner can

login to the server using admin login and see the all

information from the site. Admin also have privileges to alter

the data saved in database such as unblock the user ip. Client

can only access the information about his account, hr does not

see any attack information or other user account data. If client

try to make attack on the server it can block by dos filter and

DPI module.

DOS filter compare the request count per second with the

possible no. of the request any human user can make which is

saved in database and make the decision to block the ip or not.

DPI used to compare packet pattern with the attack pattern

saved in database if attack pattern match then it blocks the

user op who try to attack on server.

 We implement our project on Net beans IDE 7.3.

Project is implemented in java language. We used SQL yog

enterprises to use Apache Tomcat server. Client server model

is used to run this project. To connect server and client we

implement Ah-hoc wireless connection between them. We

also test our project on internet by connecting internet

connection. Data owner & authorized user can login through

any machine.

DDOS Attack.java File

package ddosattack;

import java.io.IOException;

import java.net.*;

public class attack {

 public static void main(String[] args) throws

IOException {

 String str="localhost:8084/OnlineBanking";

 for (int i = 0; i < 200; i++) {

 pingUrl(str);

 }

 }

 public static boolean pingUrl(final String address)

throws IOException {

 try {

 final URL url = new URL("http://" + address);

 final HttpURLConnection urlConn =

(HttpURLConnection) url.openConnection();

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36379

 urlConn.setConnectTimeout(1000 * 10); //

mTimeout is in seconds

 final long startTime = System.currentTimeMillis();

 urlConn.connect();

 final long endTime = System.currentTimeMillis();

 if (urlConn.getResponseCode() ==

HttpURLConnection.HTTP_OK) {

 System.out.println("Time (ms) : " + (endTime -

startTime));

 System.out.println("Ping to "+address +" was

success");

 return true;

 }

 } catch (final MalformedURLException e1) {

 e1.printStackTrace();

 } catch (final IOException e) {

 e.printStackTrace();

 }

 return false;

}

}

SQLInjectionRegExUtil.java

package com.sqlinjection.regularexpressions;

import java.util.ArrayList;

//class for SQL injection checking

public class SQLInjectionRegExUtil

{

 public String

SQLInjectionRegEx="/\\w*((\\%27)|(\\'))((\\%6F)|o|(\\%4F))((

\\%72)|r|(\\%52))exec(\\s|\\+)+(s|x)p\\w+/ix";

 public ArrayList<String> sqlKeywordsFound=new

ArrayList<String>();

 //check for SQL characters in query

 public boolean checkSQLChars(String query)

 {

 //array for SQL keywords/charcters used in SQL injection

 String[] AttackPattern = {"'","TABLE","table"

,"CREATE", "create", "ALTER", "alter", "shutdown",

"DROP", "drop", "RENAME", "rename", "SELECT", "

select", " INSERT", "insert", " UPDATE", " update", "

DELETE", " delete", " GRANT", " grant", " REVOKE", "

revoke", " char", " int", "@@version", "@@VERSION",

"exec", "update", "select", "EXEC", "union", "UNION",

"WAITFOR", "waitfor", "ORDER BY", "order by", ";", "\"",

"\'", "/*", "*/", "--"};

 int i = 0, fnd;

 boolean chk = false;

 for (i = 0; i < AttackPattern.length; i++)

 {

 fnd = query.indexOf(AttackPattern[i]);//checking for

attack pattern

 if (fnd != -1)

 {

 sqlKeywordsFound.add(AttackPattern[i]+"_");

 System.out.println("ap "+AttackPattern[i]);

 System.out.println("q "+query);

 chk = true; //Attack Pattern Present

 break;

 }

 return chk;

 }

 public static void show()

 {

 String[] AttackPattern = {"'", " CREATE", " create", "

ALTER", " alter", "shutdown", " DROP", " drop", "

RENAME", " rename", " SELECT", " select", " INSERT",

"insert", " UPDATE", " update", " DELETE", " delete", "

GRANT", " grant", " REVOKE", " revoke", " char", " int",

"@@version", "@@VERSION", "exec", "update", "select", "

EXEC", " union", " UNION", " WAITFOR", " waitfor", "

ORDER BY", " order by", ";", "\"", "\'", "/*", "*/", "--"};

 System.out.println("Keyword and characters for SQL

injection");

 for (int i = 0; i < AttackPattern.length; i++) {

 String string = AttackPattern[i];

 System.out.println(""+string);

 }

 }

 public static void main(String[] args) {

 show();

}

}

XSSAttackRegExUtil.java:

package co.xss.regularexpressionutil;

import java.util.regex.Pattern;

import javax.print.DocFlavor;

public class XSSRegExUtil {

 public String RegExForXSS="/((\\%3C)|<)((\\%2F)|\\/)*[a-

z0-9\\%]+((\\%3E)|>)/ix";

 private String cleanXSS(String value)

 {

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36380

 value = value.replaceAll("<", "& lt;").replaceAll(">", "&

gt;");

 value = value.replaceAll("\\(", "& #40;").replaceAll("\\)",

"& #41;");

 value = value.replaceAll("'", "& #39;");

 value = value.replaceAll("eval\\((.*)\\)", "");

 value =

value.replaceAll("[\\\"\\\'][\\s]*javascript:(.*)[\\\"\\\']", "\"\"");

 value = value.replaceAll("script", "");

 return value;

 }

 private static Pattern[] patterns = new Pattern[]{

 // Script fragments

 Pattern.compile("<script>(.*?)</script>",

Pattern.CASE_INSENSITIVE),

 // src='...'

 Pattern.compile("src[\r\n]*=[\r\n]*\\\'(.*?)\\\'",

Pattern.CASE_INSENSITIVE | Pattern.MULTILINE |

Pattern.DOTALL),

 Pattern.compile("src[\r\n]*=[\r\n]*\\\"(.*?)\\\"",

Pattern.CASE_INSENSITIVE | Pattern.MULTILINE |

Pattern.DOTALL),

 // lonely script tags

 Pattern.compile("</script>",

Pattern.CASE_INSENSITIVE),

 Pattern.compile("<script(.*?)>",

Pattern.CASE_INSENSITIVE | Pattern.MULTILINE |

Pattern.DOTALL),

 // eval(...)

 Pattern.compile("eval\\((.*?)\\)",

Pattern.CASE_INSENSITIVE | Pattern.MULTILINE |

Pattern.DOTALL),

 // expression(...)

 Pattern.compile("expression\\((.*?)\\)",

Pattern.CASE_INSENSITIVE | Pattern.MULTILINE |

Pattern.DOTALL),

 // javascript:...

 Pattern.compile("javascript:",

Pattern.CASE_INSENSITIVE),

 // vbscript:...

 Pattern.compile("vbscript:",

Pattern.CASE_INSENSITIVE),

 // onload(...)=...

 Pattern.compile("onload(.*?)=",

Pattern.CASE_INSENSITIVE | Pattern.MULTILINE |

Pattern.DOTALL)

 };

 public XSSBean stripXSS(String value)

 {

 String org=value;

 if (value != null) {

 // NOTE: It's highly recommended to use the ESAPI

library and uncomment the following line to

 // avoid encoded attacks.

 // value = ESAPI.encoder().canonicalize(value);

 // Avoid null characters

 value = value.replaceAll("\0", "");

 for (Pattern scriptPattern : patterns){

 value = scriptPattern.matcher(value).replaceAll("");

 }

 }

 boolean flag=false;

 if(!org.equals(value))

 {

 flag=true;

 }

 XSSBean xb=new XSSBean();

 xb.setIsXSS(flag);

 xb.setValue(value);

 return xb;

 }

 public static void main(String[] args) {

 XSSBean s=new XSSRegExUtil().stripXSS("<script");

 System.out.println("v "+s.isIsXSS());

 System.out.println("v "+s.getValue());

 }

}

ddosattackdetection.java:

package com.DDOS.jpcap;

import com.DDOS.dao.DdosDetectDao;

import com.DDOS.dao.SourceCheckandCountDao;

import java.awt.Toolkit;

import java.util.ArrayList;

import java.util.Timer;

import java.util.TimerTask;

public class ddosattackdetection

{

 Toolkit toolkit;

 Timer timer;

 DdosDetectDao dddao=new DdosDetectDao();

 SourceCheckandCountDao sccdao=new

SourceCheckandCountDao();

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36381

 public boolean checkSuspectedIPWithnum_periodAndTH()

 {

 boolean flag=false;

 ArrayList alist=null;

 int num_period=dddao.getnum_periodThreshold();

 int th=dddao.getThThreshold();

 // int max_th=dddao.getMax_ThThreshold();

 // int node_th=dddao.getNode_ThThreshold();

 //System.out.println("Threshold :"+threshold);

 alist=dddao.getsuspectedIPAddress(num_period,th);

 String ip="";

 int alen=alist.size();

 for(int i=0; i<alen;i++)

 {

 ip=alist.get(i).toString();

 sccdao.updateSourceIPStatus(ip, 1);

 System.out.println("IP "+ip+" Added to Source black

list ");

 }

 return flag;

 }

 public boolean checkSuspectedIPWithMax_Th()

 {

 boolean flag=false;

 ArrayList alist=null;

 //int num_period=dddao.getnum_periodThreshold();

 // int th=dddao.getThThreshold();

 int max_th=dddao.getMax_ThThreshold();

 // int node_th=dddao.getNode_ThThreshold();

 //System.out.println("Threshold :"+threshold);

alist=dddao.getsuspectedIPAddressWithMax_Threshold(max_

th);

 String ip="";

 int alen=alist.size();

 for(int i=0; i<alen;i++)

 {

 ip=alist.get(i).toString();

 sccdao.updateSourceIPStatus(ip, 1);

 System.out.println("IP "+ip+" Added to Source black

list ");

 }

 return flag

 }

 public void AttackDetectionModule()

 {

 toolkit = Toolkit.getDefaultToolkit();

 timer = new Timer();

 timer.schedule(new ddosattackdetection.RemindTask(),

 0, //initial delay

 60*1000); //(100*1000)subsequent

rate

 }

 class RemindTask extends TimerTask

 {

 public void run()

 {

 toolkit.beep();

 checkSuspectedIPWithnum_periodAndTH();

 sccdao.TruncatePacketCount();

 //sccdao.ResetPacketCount();

 }

 }

}

Mathematical Model for simple regular

expression matching

 Consider

 R=regular expression

 R= abc[a-z]op

 P=pattern with which we match the input

packet regular expression.

 If

 R=P (Regular expression pattern match)

 i.e R(i)=P(i)

 R(ii)=P(ii)

 R(iii)=P(iii)

 Then the packet blocked

 Else the packet forward to the server.

In our approach we divide regular expression in two division

 S= set if simple variables in regular

expression.

 C= set of complex variables in regular

expression.

 Consider

 R= adc[a-z]op

 We divide this regular expression

 S= abcop

 C= [a-z]

 If

 S=P (Pattern Matching)

 C=P (Pattern Matching)

Then the packet is block

Otherwise packet forwarded to the server.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36382

Figure 2.7 shows RegEx components based on their detection

complexity and depth.

Fig 14 : RegEx components based on their detection

complexity and depth

 In DDos filter we count number of request per 40

seconds from one IP address, if the no requests are greater

than 100 then we block the IP address. Thus any human can

not send hundred requests per 40 seconds

Suppose

 r = request count per 40 seconds (time

stamp) from particular IP.

 t= time stamp which we set 40 seconds.

 c = no of request any human can possibly

send to server here we set (100).

 If

 r > c in time t

Ip address blok, (No further request from this IP

processed)

If not

 Then allow IP to communicate with server.

Architecture Diagram

 Figure 4.2.1 shows architecture diagram for our

project. It shows client and server transaction which done

through DOS filter and DPI module to avoid attack on server

such as DOS attach and Sql Injection Attack.

Fig 15: Architecture Diagram

 ER Diagram means Entity Relationship Diagram.

The Entities are mapped to the tables in the application. An

entity-relationship (ER) diagram is a UML diagram that shows

relationships between entities in a database. In figure 4.2.2

client, DOS filter, DPI module, server and data base are

entities. Connection line shows the relationship between them,

and ovals represent attributes of entities.

Fig 16: E-R diagram for our project

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36383

Activity diagram shows the execution and flow of the system,

and not how it is assembled. Activity diagrams contain

activities, made up of smaller actions. When used for software

modeling, activities typically represent an event occur after

any function call. Figure 4.3.a shows activity diagram for our

project. Figure 4.3.b shows activity diagram for DOS filter

and DPI module.

Fig 17: Activity Diagram for our Project

Fig 18: DOS and DPI Module Activity Diagram

The system is "decomposed in lower-level DFD (Level 1)"
into a set of processes, data stores, and the data flows between

these processes and storage of data.

Fig 19: DFD level 1 Diagram (DOS filter)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36384

Fig 20: DFD level 2 Diagram (Dpi Module)

Test Procedures Results and Discussion

TABLE 3: Test Plan for Project

Sr.
No

Content Explanation

1.

Name of

the

product

Network Intrusion Detection Using Dpi

Techniques In Wireless Network.

2.
Prepared

By

Mr. Satish N. Gujar

JJT,University, Rajastan, India,

3. Introduction

Testing is carried out mainly

for finding all defects

present in the system and to

prevent a defective product

reaching the customers.

Testing is also carried out to

convince the customer that

product is fulfilling the

specifications and functional

requirement of customer.

4. Objectives

To test all the functionality

of a module.

Test correctness of input and

output.

Test the component point of

view estimation accuracy.

5. Scope

Test the functionality for

traditional development and

Component based software

development.

6.
Testing

Strategy

Unit Testing

Module Testing

Performance Testing

User acceptance Testing

Beta Testing.

7. Approval

Dr. Vilas M. Thakare,

S.G.B. Amravati

University, Amravati

Maharashtra, India

Advantages of proposed system
With this proposed methodology improve network intrusion

detection throughput with use of DPI techniques. The Dos

filter remove or blocked all dos attack malicious packet it

filters the dos attack packets due to which it improve

malicious packet detection.

 Speed of intrusion detection and prevention is

increased.

 Authorized user can access data without any security

risk.

 Memory requirement for server security is reduced.

Result and Analysis
This section we discuss on the result of our project. After all
the test cases we test our program for various DDOS attack on

our server site web page. It results in machine IP block as we

expected. We test our project for Sql injection and XSS attack

for testing DPI technique pattern matching by inserting

various Sql injection and XSS attack, our project blocked

every attack. We also tested admin privileges to unlock any

client which would be block earlier. Admin can unblock any

client from the database by accessing admin login.

Admin can also see the information about attack that what

kind of attack occurs at which date and time, Server can store

the list of attack according to its time and date.

Conclusion and Future Enhancement
In existing systems, there are some limitations Intrusion

detection and prevention system. In our project DDOS filter

blocks the DDOS attacks so that the intrusion detection

module only face packet without DDOS attack pattern, hence

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 36371-36385

© Research India Publications. http://www.ripublication.com

36385

it automatically increase intrusion detection and prevention

speed.

In DDOS filter we implement technique to count request per

second and set the value that cannot be achieve by any human

user, If the request per second count is greater than predefined

value system block clients ip, so that the attacker cannot try to

attack on server again. Intrusion detection module use Deep

Packet Inspection pattern matching technique to detection of

intrusion containing packets and prevent it.

We implement our project with the use of wireless network;

we tested it with ad-hoc wireless network and internet as client

server module.

Future Enhancement

In future we can improve intrusion detection by using various

emerging attack patterns in intrusion detection module.

References

[1] Masanori Bando, N. Sertac Artan, and H. Jonathan Chao.,

―Scalable Lookahead Regular Expression Detection System

for Deep Packet Inspection‖, IEEE Transactions on

Networking, Vol. 20, No. 3, June 2012.

[2] Chad R. Meiners, Jignesh Patel, Eric Norige, Alex X. Liu,

and Eric Torng., ―Fast Regular Expression Matching Using

Small TCAM‖, IEEE/Acm Transactions On Networking, Vol.

22, No. 1, February 2014.

[3] Tiwari Nitin, Solanki Rajdeep Singh and Pandya Gajaraj

Singh, ―Intrusion Detection and Prevention System (IDPS)

Technology- Network Behavior Analysis System (NBAS)‖,

ISCA Journal of Engineering Sciences, Vol. 1(1), 51-56, July

2012.

[4] Cong Liu, Yan Pan, Ai Chen, and Jie Wu., ―A DFA with

Extended Character-Set for Fast Deep Packet Inspection‖,

IEEE Transactions On Computers, Vol. 63, No. 8, August

2014.

[5] Xiaofei Wang, Yang Xu, Junchen Jiang, Olga Ormond,

Bin Liu, and Xiaojun Wang, ―StriFA: Stride Finite Automata

for High-Speed Regular Expression Matching in Network

Intrusion Detection Systems‖, IEEE Systems Journal, Vol. 7,

No. 3, September 2013.

[6] Anat Bremler-Barr, DavidHay, and Yaron Koral,

―CompactDFA: Scalable Pattern Matching Using Longest

Prefix Match Solutions‖, IEEE/Acm Transactions On

Networking, Vol. 22, No. 2, April 2014.

[7] Tamer AbuHmed, Abedelaziz Mohaisen, and DaeHun

Nyang., ―A Survey on Deep Packet Inspection for Intrusion

Detection Systems‖, Information Security Research

Laboratory, Inha University, Incheon 402-751, Korea, March

2008.

[8] Klaus Mochalski, and Hendrik Schulze,―White paper on

Deep Packet Inspection‖, ITU-T study groups com13.

[9] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman,

and Randy H. Katz, ―Fast and Memory-Efficient Regular

Expression Matching for Deep Packet Inspection‖, ACM 580-

0/06/0012, December 3–5, 2006.

[10] Bing Chen, Lee, J., and Wu, A.S., ―Active event

correlation in Bro IDS to detect multi-stage attacks‖, Fourth

IEEE International Workshop on Information Assurance, 13-

14 April 2006.

[11] Rafeeq Ur Rehman, ―Intrusion Detection Systems with

Snort‖, ISBN 0-13-140733-3, Library of Congress Cataloging-

in-Publication Data, Prentice Hall PTR Upper Saddle River,

New Jersey 07458.

