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Abstract 

This paper discusses about an effective noise and acoustic 

echo reduction system based on adaptive algorithm for 

speech signals. The Acoustic Echo Reduction system is most 

prominently used in mobile phones and pilot head phones. 

The requirements of an adaptive algorithm for Acoustic Echo 

Cancellation (AEC) are (i) high convergence and better 

tracking and (ii) low misadjustment and robustness against 
background noise variations. Affine Projection family of 

algorithms best satisfies these requirements. The basic APA 

(Affine Projection Algorithm) cannot meet these 

requirements together. A Variable Step-Size Affine 

Projection Algorithm (VSS-APA) solves this problem. This 

paper presents VSS-APA for speech signals with echo. In the 

presence of impulsive noise VSS-APA cannot perform well. 

For this APSA algorithms were proposed. A Memory 

Improved Proportionate Affine Projection Sign Algorithm 

(MIP-APSA) was found to perform well in impulsive noise 

environments with less computations and improved 

misadjustment. This paper simulates MIP-APSA for speech 

signals with echo and compares the misadjustment with that 

of APA and VSS-APA 

 

Keywords: Acoustic Echo Cancellation (AEC), Affine 

Projection (AP) Algorithm, Variable Step-Size Affine 

Projection Algorithm (VSS-APA), Memory Improved 

Proportionate Affine Projection Sign Algorithm (MIP-
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Introduction 
The LMS algorithm and NLMS algorithm are commonly 

used algorithms in adaptive signal processing [1]. But for 

highly correlated inputs, their convergence is significantly 

low [2]. Even though the RLS algorithm could converge at a 

faster rate than LMS and NLMS, its computational 

complexity is very high [1], [3]. The Affine Projection (AP) 

algorithm proposed by Ozeki and Umeda in 1984 was a 

solution to this problem [4], [2]. The algorithm aims at 

increasing the convergence speed of the stochastic gradient 

algorithm. It was found that the convergence speed of NLMS 

could be increased if the update directions are orthogonal to 

the last p input vectors and thus decorrelates the input 

sequence. But the requirements of AEC are not met by the 

Ozaki-Umeda AP algorithm. The main application of AEC is 

in mobile phones and pilot headphones where it helps to 

reduce he echo generated by hand-free audio terminals [5]. In 
such a scenario, the adaptive filter should identify the 

acoustic echo path between the terminal‘s loudspeaker and 

microphone. The microphone signal is the sum of the near-

end speech with noise and the far-end echoed speech. The 

output of the filter which is the convolution of the far-end 

speech and the filter taps is subtracted from microphone 

signal to cancel the echo. 

The AEC faces several challenging problems [5]. First the 

echo path is extremely long and tine-varying. This could be 

due to slow speed of sound through air, multiple reflections 

of walls and may be due to objects in room. Again the 

impulse response of the room is time variant with the 

ambient temperature, pressure and humidity and also 

movement of objects and human bodies can rapidly change 

the acoustic impulse response. Thus the filter seems to work 

in an under modeling situation i.e. its length is less than the 

length of the acoustic impulse response. Hence the residual 

echo caused by the part of the system that cannot be modeled 

acts like an additional noise and alters the overall 

performance. Second the background noise present can be 

strong and highly non-stationary. Another important 

challenge faced is the non stationary nature of the speech 

signal and the fact that the speech signal is highly correlated. 
Finally, a major aspect that has to be considered in echo 

cancellation is behavior during double-talk. 

Considering all these challenges an AEC demands some 

special characteristics for adaptive algorithms used. Ideally 

the algorithm should converge at a faster rate, should have 

good tracking capability and low misadjustment. Also apart 

from these requirements the algorithm should be 

computationally less complex. Neither LMS nor RLS 
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algorithm nor any other algorithms belonging to their family 

could satisfy these requirements [2]. APA algorithm 

proposed in [4] and other algorithms belonging to its family 

turned to be a better option in AEC applications. The 

algorithm performs well for highly correlated inputs 

especially speech signals. It shows better convergence rate 

than NLMS algorithm. 

Like LMS and NLMS algorithm, the convergence rate, 

misadjustment and stability of APA depends on the selection 

of the step-size parameter [2]. The basic APA fails to meet a 

compromise between convergence and fast tracking on one 

hand and misadjustment on the other. Thus various variable 
step-size algorithms were developed. This paper discuss 

about the performance of variable step size APA for speech 

input at different projection order. 

It was found in [6] was found in [6] that the LMS and APA 

type algorithms are based on L2-norm optimization, thus they 

suffer from performance degradation due to system output 

noise, which includes impulsive noises. The adaptive 

algorithms that are robust against robust against impulsive 

noises are based on L1-norm optimization. The main 

challenge with these algorithms is that they have slow 

convergence rate. To overcome this drawback, affine 

projection sign algorithm (APSA) has been proposed. Even 

though APSA is also based on L1-norm optimization 

approach, it has fast convergence rate due to multiple input 

vectors and its specific constraint. In this case we have to 

choose an optimum step-size so that we acquire the required 

convergence rate and a small steady state estimation error. In 

such a situation VSS-APSA was developed [7]. 

Similar to AEC, in a network echo cancellation (NEC) the 

adaptive filter has to model an unknown system, i.e. the echo 

path. The main difference is the way in which echo arises. In 

the network echo problem, there is an unbalanced coupling 

between the 2-wire and 4-wire circuits which results in echo, 
while the acoustic echo is due to the acoustic coupling of the 

microphone and loudspeaker. Proportionate affine projection 

sign algorithm was proposed for NEC [6]. The algorithm was 

computationally less complex compared to the AP algorithm 

family due to elimination of matrix inversion 

A new proportionate affine projection sign algorithm MIP-

APSA was proposed for network echo cancellation. It uses a 

recursive procedure and takes into account the previously 

computed proportionate coefficients. It is observed that the 

proposed algorithm can obtain a lower steady-state 

misalignment than other affine projection sign algorithms for 

different echo paths, impulsive interferences and step sizes. 

This paper also discuss about the behavior of MIP-APSA in 

an AEC environment with input speech signal. Also here we 

compare the performance of MIP-APSA with that of VSS-

APA for AEC. The basic structure of both AEC and NEC is 

the same and is shown in Fig.1. 

 

 

AP algorithm for AEC 

Consider the input vector u(n)=[u(n),u(n-1),...,u(n-M+1)], 

which is a collection of M past input samples u(n) and let 

w(n) be the weight vector. The new estimate w(n+1) of M 
dimensional unknown plant parameter w is computed as in 

[2] from the old estimate of w(n) as 

w(n+1) = w(n) + α  e(n) (1) 

 

e(n) = d(n) – wT(n)u(n) (2) 

 

where, φ(n) defines the direction of the update. The desired 

vector d(n) consist of plant output and additive noise. We 

define φ(n) as 

 

φ(n) = u(n) – U(n)a(n) (3) 

 

where, U(n) is the input matrix defined as U(n) = [u(n-

1),...u(n-p)] and u(n),...u(n-p) are p past input vectors. Here 

p is the projection order and a(n) = [UT(n)U(n)]-1 UT(n)u(n). 

If M is the order of the filter, then U(n) is a matrix of order 
Mxp, u(n) is an Mx1 vector and thus φ(n). 

 

 
 

Fig.1. Basic Structure of an Echo Canceller 

 

 

From the update equation we can conclude that the algorithm 

runs with a decorrelated direction vector φ(n) instead of the 

original correlated input u(n), thus the convergence of the 
algorithm becomes fast [2], [4]. In this paper we have 

simulated the affine projection algorithm in a application of 

AEC to recover the near-end speech signal as the output 

which appears as the error vector used to update the tap 

weights 

 

 

VSS-AP Algorithm for AEC 

The main aim of an acoustic echo canceller (AEC) is to 

identify an unknown system (i.e., acoustic echo path) using 

an adaptive filter [5]. Both the acoustic echo path and 

adaptive filter have finite impulse responses, defined as real 

valued vectors h = [h0 h1 … hN-1]
T and h(n) = [h0(n) 

h1(n)…hM-1(n)]T, where n is the time index, N is the length of 

echo path and M is the length of the adaptive filter. The far 

end speech signal x(n) is subjected to acoustic impulse 

response h, resulting in a far-end echoed signal, y(n). The 

far-end echoed signal together with near-end is picked up by 

the microphone resulting in a microphone signal d(n). The 

near end signal is a combination of near end speech, u(n) and 

background noise w(n). The output of the adaptive filter 

provides the replica of the echo, which is then subtracted 

from the microphone signal. 
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From classical APA as in [2] we have 

 

e(n) = d(n) – XT(n) h(n-1) (4) 

 

h(n) = h(n-1) + μ X(n)[XT(n)X(n)]-1e(n) (5) 

 

where, d(n)=[d(n),d(n-1),...,d(n-p+1)] is the input signal 

vector of length p, where p is the projection order and 

X(n)=[x(n),x(n-1),...,x(n-p+l)] is the input matrix of order 

Mxp, with l=0,1,...p-1.The constant μ is the step size 

parameter of the algorithm. 

For a variable step size affine projection algorithm, the 
weight update equation can be modified as 
 

h(n) = h(n-1)+X(n)[XT(n)X(n)]-1μ(n)e(n) (6) 

where, 

μ(n) = diag{μ0(n),μ1(n),…,μ2(n)} (7) 

 

is a pxp diagonal matrix. The a posteriori error vector can be 

defined as 

 

ε(n) = d(n)-XT(n)h(n) (8) 

 

For the AEC in the fig.1, we have a combination of adaptive 

system identification and adaptive interference cancelling 

[5]. The aim of system identification part is to identify the 

acoustic echo path. The aim of the interference cancelling 

system is to recover the useful signal i.e. the near-end signal 

corrupted by an undesired perturbation. v(n)=[v(n),v(n-

1),…,v(n-p+1)]T is the near-end signal. 

To find the variable step size parameter μ(n) we modify the a 

posteriori error vector as 

 

ε(n) = [Ip –μ(n)]e(n) (9) 

 
εl+1(n) = [1–μl(n)]el+1(n)=v(n-l) (10) 

 

where εl+1(n) and el+1(n) denote the (l+1)th elements of the 

vectors ε(n) and e(n), with l=0,1,…,p-1. Squaring and taking 

expectation on both sides we have 

 

E{ ε 2l+1(n)}=E{v2(n-l)}= [1–μl(n)]2 E{ e 2 
l+1(n)} (11) 

 

Solving ―(11)‖ we get 

μl(n) =  (12) 

 
but the value of step size parameter ranges between 0 and 1, 

we choose 

μl(n) =  (13) 

 

in terms of power estimates we can write as 

μl(n) =  (14) 

i.e. 

ζ2
el+1

 (n) = λ ζ2
el+1 (n-1) + (1-λ) e2 

l+1 (n), (15) 

 

where, λ is the weighing factor and is chosen as 1-1/(KM) 

and K>1; the initial value of ζ2
el+1

 (0)=0 [5]. 

In this paper we have simulated VSS-APA for speech signals 

with echo and its performance is evaluated. 

 

 

MIP-APSA for AEC 

For an echo canceller and when the input contains impulsive 

noise neither APA nor VSS-APA provides the required 

misadjustment. Thus in this paper we propose to use 

Memory Improved Proportionate Affine Projection Sign 

Algorithm (MIP-APSA) which is computationally less 

complex and provides low misadjustment compared to any 

of the adaptive algorithms belonging to the Affine Projection 
family for AEC. The adaptive filter that models the true M-

length echo path, h, is defined by w(n) = [w0(n), w1(n),..., 

wM-1(n)]T, where superscript T denotes transposition, M is 

filter length, and n is the time index [6], [8], [10]. We note 

x(n) the far-end signal, z(n) and v(n) are the near-end and 

background noise signals, respectively. 

The desired signal is given by 

 

y(n) = xT (n)h + z(n) + v(n), (16) 

 

where, 

x(n) = [x(n), x(n − 1),..., x(n − M + 1)]T (17) 

 

is an M × 1 vector collecting the far-end signal, the output of 

the adaptive filter is 

y(n) = xT (n)w(n). (18) 

 

The output error is 

e(n) = y(n) – XT (n)w(n), (19) 

 

where, 

y(n) = [y(n), y(n − 1),..., y(n − p + 1)]T, (20) 

 
p is the projection order and 

X(n) = [x(n), x(n − 1),..., x(n − p + 1)]T (21) 

 

is the M × p input signal matrix. 

The APSA algorithm was obtained by minimizing the l1-

norm of the a posteriori error vector, i.e. 

 
 

with constraint on filter coefficients  norm(w(n + 1) − 

w(n))2
2≤ ß2, where ß2 is a parameter. The method of Lagrange 

multipliers as in is used and the filter coefficients are adapted 

proportionately by pre-multiplying the update vector with the 

proportionate matrix G(n) = diag{g0(n),..., gp-1(n)} which 

contains the proportionate factors, gl(k) given by 
 

gl(k)=[(1-α)/2L+(1+α)abs(wl(n))]/[2 

 

)] (23) 

 

where, l=1,…,L and-1 α<1 and ε is a small constant which 

avoids division by zero. If we denote P(n)= G(n)X(n), then 

we have 

 

P(n)=[g(n).x(n) g(n).x(n-1)…g(n)x(n-p+1)], (24) 
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where, g(n) is a vector containing diagonal elements of G(n), 

which denotes Hadamard product. Considering the 

‗proportionate history‘ from the last p moments of time and 

approximate P(n) with 

 

P′(n) = [g(n).x(n) P′-1(n)], (25) 

 

Where, the matrix 

P′-1(n) = [g(n − 1).x(n − 1)...  

 

g(k − p + 1).x(k − p + 1)], (26) 

 
contains the first p – 1 columns of P′(n − 1). Therefore, in 

order to update P′(n),only the M × 1 vector g(n).x(n) has to 

be computed and this part simply requires M multiplications. 

An approximate M × 1 vector xg′s(n) is then computed as 

 

xg′s(n) = P′(n)sgn(e(n)). (27) 

 

Finally, the weight update formula of the MIP-APSA is: 

 

w(n + 1) = w(n)+ µxg′s(n)/ 

 

sqrt(δ+ xTg′s(n)xg′s(n)). (28) 

 

In this paper we have simulated MIP-APSA for speech input 

and compared the results with APA and VSS-APA. 

 

 

Simulation 

In this paper we compare APA with commonly used adaptive 

algorithms like LMS and RLS. Also we have simulated 

APA, VSS-APA and MIP-APSA for AEC using speech input 

and compared the performance of each. For LMS algorithm 

convergence is slow [9], thus tracking ability is less. Thus 
LMS algorithm cannot be used in real time applications or in 

the scenario of AEC where input is speech signal which is 

highly correlated. The RLS algorithm even though it 

converges at a faster rate [3], it can be used in real time 

applications. But RLS algorithm also doesn‘t perform well 

when the input is highly correlated. 

It was found that the family of Affine Projection Algorithm 

performs well than any other adaptive algorithm when the 

input is highly correlated [2]. In this paper we have simulated 

the basic APA with sound input with 5000 samples for 

projection order 2, 4 and 8 with constant step size of 0.01 

and also for different step-size. The weight updates equation 

for APA is computed using equations 

 

w(n+1) = w(n) + α  e(n) (29) 

 

and error vector is 

 

e(n) = d(n) – wT(n)u(n) (30) 

 

The error vector denotes the output of the system and 

wT(k)u(k) denotes filtered far end speech signal. All the 
simulations are done for a filter order of 512. The 

performance at different projection order is evaluated in 

terms of normalised misadjustment (in dB) computed as 

20log10(norm(w0-w)/norm(w0)) [5]. Certain values are 

chosen for parameters ε, δ, and λ. The parameter ε which is a 

small constant is chosen to be 1, δ as 50 and λ as 0.001. 

It is found that as the projection order is increased for APA 

the normalized misadjustment becomes more positive. Thus 

the optimum projection order is chosen to be 2. By setting 

projection order p=2 and simulating the algorithm for various 

values of step size parameter µ we can see that as the value is 
increased above 0.01 the normalized misadjustment becomes 

more positive. From Fig 2(b) and 2(c) we can infer that 

optimum APA is obtained at p=2 and µ=0.01. 
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Fig 2: (a) input sound signal and reference sound signal 

of sample size 5000 and sample frequency 8000 Hz, (b) 

normalized misadjustment plot at p=2,4 and 8 with 

µ=0.01 for APA and 0.25 for MIP-APA and (c) 

normalized misadjustment plot at different µ and p=2 for 

APA and p=8 for MIP-APA. 
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Since the misadjustment depends on weight updated we can 

also infer that when µ value is increased from 0.01 in 

addition to more positive misadjustment, the weight updates 

deviates more from zero. In all the cases we take ε = 1, δ = 

50 and λ = 10^-3. 

The main difficulty faced by the basic constant step-size 

APA is the selection of optimum step-size that satisfies fast 

convergence and low misadjustment [5]. Thus variable step-
size APA was developed which solves this problem and also 

reduces the error to a great extent. In this paper we have 

simulated VSS-APA for a sound input signal of sample size 

5000 and also we have applied it in the scenario of AEC. The 

weight update for VSS-APA is given by 

h(n) = h(n-1)+X(n)[XT(n)X(n)]-1μ(n)e(n) (31) 

 

where, 

e(n) = d(n)-XT(n)h(n) (32) 
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Fig: 3 (a) normalized misadjustment at p=2, 4 and 8 of 

order 512 with input sound of sample size 5000. 

 
 

It is found that as projection order is increased from 2 to 8 

there was no significant improvement in misadjustment. 

Thus by considering the number of computations we choose 

p=2 as the optimum case. While considering the scenario of 

AEC it is found that as the projection order p is increased the 

amount of echo at the output of the system is reduced. Thus 

we choose p=8 VSS-APA for AEC. Fig 3(a) shows the 

performance of VSS-APA in terms of misadjustment for the 

inputs shown in Fig 2(a). 

Fig 4(a) shows the measured impulse response of the room 

which imparts echo into the far-end signal, Fig 4(b) shows 

the input to the AEC system using VSS-APA, the near-end 

speech, the far-end echoed speech and the microphone signal 

which is the sum of far-end echoed speech and the near end 

speech along with the background nose. Fig 4(c) shows the 
output of the AEC system which is the calculated error 

vector that appears as the microphone signal with reduced 

echo for different projection order. As the projection order 

increases, we can see that the output becomes freer from 

echo. 
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Fig: 4 (a) Room impulse response, (b) input to the AEC, 

Far-End speech signal, Near-End speech signal and 

Microphone signal and (c) output of AEC at p=2, 4 and 8 

for VSS-APA. 

The main limitation of APA and VSS-APA is that they are 

less tolerant to impulsive noise. MIP-APSA was found to 

perform well in the impulsive noise environment [6]. In this 

paper we have simulated MIP-APSA for an input sound of 

sample size 5000 and it was found that as the projection 

order is increased the normalized misadjustment becomes 

more negative Thus we choose MIP-APSA with p=8 and 

step-size 0.25 and also we have simulated AEC with MIP-

APSA at p=8 and step size 0.25. It was observed that MIP-
APSA performs well than APA or VSS-APA in an acoustic 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 16 (2015) pp 37110-37116 

© Research India Publications.  http://www.ripublication.com 

37115 

echo environment. The weight update of MIP-APSA is given 

by 

 

w(n + 1) = w(n)+ µxg′s(n)/sqrt(δ+ xTg′s(n)xg′s(n)). (33) 

 

where, 

xg′s(n) = P′(n)sgn(e(n)). (34) 

 

From Fig 2(b) and (c) we can infer that optimum MIP-APSA 
is obtained at p=8 and µ=0.25. 
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Fig: 5 (a) normalized misadjustment for APA, VSS-APA 

and MIP-APSA and weight adjustment for APA, VSS-
APA and MIP-APSA for an input sound signal of sample 

size 5000. 
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Fig:6 (a) weight adaptation for p=4 and 8 VSS-APA and 

p=8 MIP-APSA and (b) output of p=4 and 8 VSS-APA 

and p=8 MIP-APSA for AEC. 

 

 

Fig 5(a) shows the comparison of different AP algorithms in 

terms of misadjustment and (b) shows the comparison in 
terms of weight adaptation. It is observed that among the 

three AP, VSS-AP and MIP-APSA, the best performance is 

obtained for p=8, µ=0.25 MIP-APSA. Thus we expect MIP-

APSA to perform well in Acoustic Echo Cancellation than 

any other AP algorithm. 

Fig 6(a) shows the performance of AEC using VSS-APA and 

MIP-APSA in terms of weight adaptation. It is observed that 

for MIP-APSA the weight update value is more close to zero 

than VSS-APA. Fig 6(b) shows the output of AEC for VSS-

APA and MIP-APSA. It was observed that echo cancellation 

is performed well by MIP-APSA for p=8 and µ=0.25. 

 

 

 

Conclusion 

We know that mobile phones and aircraft headphones are 

often used in a noisy and reverberant environment. In hands-
free mode the distance between the speaker and the 

microphone is usually larger than that encountered in handset 

mode. The received audio signal is degraded by the acoustic 

echo of the far end speaker, room reverberation and 
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background noise. This problem can be solved by the use of 

different adaptive filters. The family of affine projection 

algorithm shows better performance than LMS and RLS 

algorithm. It was observed that for basic affine projection as 

step-size decreases convergence increases but mean square 

error decreases. Thus variable step size was introduced 

which could cancel p posteriori error at each iteration of the 

algorithm. The main disadvantage was that computation 
increases and takes more memory. Memory improved 

proportionate affine projection shows least misadjustment 

and consumes less memory. Also MIP-APSA performs well 

in acoustic echo cancellation. 
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