
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35253-35257 

© Research India Publications.  http://www.ripublication.com 

35253 

 

On Demand Replica Management of Application Servers with 

Service Level Agreements for Quality of Service Improvement 
 

 

J.Parthasarathy 

 

AP(S.G), Vivekanandha College of Technology for Women, Trichengodu, Tamil Nadu, India. 

 

R.S.D. Wahidabanu 

 

Principal, Government College of Engineering, Salem, Tamil Nadu, India. 

 

 

ABSTRACT: 

Service level agreements are the main issue of on demand 

computing, which hugely affects the quality of service. The 

SLA driven approaches has been discussed earlier to meet the 

agreements but suffers with the management of services and 

servers at higher load conditions. We propose two 
mechanisms, one for clustering application servers according 

to number of metrics like access frequency, server platform, 

response metrics and etc., another for dynamic generation of 

replica server at high load conditions. We discuss the load 

balancing of servers and services, to meet the service level 

agreements. The load balancing of service request is 

performed using a middleware which selects servers and 

redirects request to those servers. The middleware is capable 

of generating dynamic replica of server when it’s necessary 

and will be removed at less load conditions. 

 

Key Terms: Replica Server, SLA, QoS, Load Balancing. 

 

 

1. INTRODUCTION: 

The development of information technology opens the gate of 

on demand services, which could be accessed by the users as 

necessary and generated at demand. The services are provided 

according to SLA, and it becomes the response for the service 

provider to meet the agreements. The SLA consists of many 

criteria like: service availability, service reliability, and many 

more. Here the availability of service is the more dominant 

property, because the service has to be available at all the 
conditions for the user. The service provider or the QoS 

driven application has to meet the service availability and they 

have to plan about the required resources to meet the criteria. 

Application server clustering is discussed in [1], where the 

servers are clustered like master and slave format and 

performs group communication. The problem with the 

solution is the server has to be up at all the time in all the 

nodes of the cluster to meet the requirements. This makes the 

resource unusable and reduces the throughput of the server 

which does not used at lower load conditions. So that the 

server has to be up and used at dynamic conditions when there 

is higher load arises. 

Whenever the number of incoming http request increases the 

process of load balancing is comes into play. Every server has 

the bound in number of request handling and could not handle 

request more than that, also highly loaded server could not 

provide service at least response time. The load balancing 

procedure has to point all these issues before scheduling the 

request to a server. 

The quality of service of any server or service is depending on 

throughput and timeliness, reliability. If the server response 

quickly then it will be good and will increase the throughput 
of the server. In order to increase the QoS, the server or 

service has to maintain the availability, reliability metrics at 

all levels of service agreements. 

Replica is a method of generating the copy of service or server 

which could be placed at any node and could start servicing 

by runtime. This has to be done at runtime and managed based 

on load conditions. we propose such a framework to create 

replica of a server and start servicing at runtime with dynamic 

conditions. The newly generated server will be clustered into 

the early clusters according to the clustering parameters. 

 

 

2. BACKGROUND: 

A System for Dynamic Server Allocation in Application 

Server Clusters [1], investigates a system for allocating server 

resources to applications dynamically, thus allowing 

applications to automatically adapt to variable workloads. 

Such a scheme requires meticulous system monitoring, a 

method for switching application servers between text it 

{server pools} and a means of calculating when a server 

switch should be made (balancing switching cost against 

perceived benefits). Experimentation is performed using such 

a switching system on a Web application test bed hosting two 
applications across eight application servers. The test bed is 

used to compare several theoretically derived switching 

policies under a variety of workloads. Recommendations are 

made as to the suitability of different policies under different 

workload conditions. 

Construction and Application of Linux Virtual Server Cluster 

for Scientific Computing[2], describe a cluster server, Linux 

virtual server cluster, formed by various inexpensive personal 

computers for scientific computing. This cluster has many 

favorable features, including lower cost, load balancing, and 

dynamic scalability. 

Enhancing an Application Server to Support Available 

Components [3], describes how replication for availability can 

be incorporated within the middle and back-end tiers, meeting 

all these challenges. This paper develops an approach that 

requires enhancements to the middle tier only f 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35253-35257 

© Research India Publications.  http://www.ripublication.com 

35254 

or supporting replication of both the middleware back-end 

tiers. The design, implementation, and performance evaluation 

of such a middle-tier-based replication scheme for multi 

database transactions on a widely deployed open source 

application server (JBoss) are presented. 

Dynamic load balancing algorithm for scalable heterogeneous 

web server cluster with content awareness [4], propose a DLB 

algorithm for scalable heterogeneous server cluster using 

content awareness. The algorithm considers server's 

processing capability, queue length, utilization ratio etc. as 

load indices. As the cluster supports multiple services, at the 

primary level, we have used content awareness forwarding 
algorithm and at the secondary level, waited round robin 

algorithm has been used. 

Multi-Cloud Deployment of Computing Clusters for Loosely-

Coupled MTC Applications [5], explore this scenario to 

deploy a computing cluster on top of a multi-cloud 

infrastructure, for solving loosely-coupled Many-Task 

Computing (MTC) applications. In this way, the cluster nodes 

can be provisioned with resources from different clouds to 

improve the cost-effectiveness of the deployment, or to 

implement high-availability strategies. We prove the viability 

of this kind of solutions by evaluating the scalability, 

performance, and cost of different configurations of a Sun 

Grid Engine cluster, deployed on a multi-cloud infrastructure 

spanning a local data-center and three different cloud sites: 

Amazon EC2 Europe, Amazon EC2 USA, and Elastic Hosts. 

Although the test bed deployed in this work is limited to a 

reduced number of computing resources. 

Symphony: A Scheduler for Client-Server Applications on 

Coprocessor-Based Heterogeneous Clusters [12], propose a 

novel scheduler called Symphony that enables efficient, 

dynamic sharing of a GPU-based heterogeneous cluster across 

multiple concurrently-executing client-server applications, 

each with arbitrary load spikes. Symphony performs three key 
tasks: it (i) monitors the load on each application, (ii) collects 

past performance data and dynamically builds simple 

performance models of available processing resources and 

(iii) computes a priority for pending requests based on the 

above parameters and the requests' slack. Based on this, it 

reorders client requests across different applications to 

achieve acceptable response times. 

Improving Application Placement for Cluster-Based Web 

Applications [13], first propose and define new optimization 

objectives: limiting the worst case of each individual server's 

utilization, formulated by a min-max problem. A novel 

framework based on binary search is proposed to detect an 

optimal load balancing solution. Second, we define system 

cost as the weighted combination of both placement change 

and inter-application communication cost. By maximizing the 

number of instances of dependent applications that reside in 

the same set of servers, the basic load-shifting and placement-

change procedures are enhanced to minimize whole system 

cost. 

DynaPlan: Resource placement for application-level 

clustering [14], a method that improves the quality of failover 

planning by allowing the expression of a wide and extensible 

range of considerations, such as multidimensional resource 
consumption and availability, architectural compatibility, 

security constraints, location constraints, and policy 

considerations, such as energy-favoring versus performance-

favoring. 

A System for Dynamic Server Allocation in Application 

Server Clusters [15], This paper investigates a system for 

allocating server resources to applications dynamically, thus 

allowing applications to automatically adapt to variable 

workloads. Such a scheme requires meticulous system 

monitoring, a method for switching application servers 

between server pools and a means of calculating when a 

server switch should be made (balancing switching cost 

against perceived benefits). 

 
 

3. PROPOSED METHOD: 

The proposed method has three stages namely: middleware 

service, load balancing, and clustering. The middleware 

performs the service selection and server selection and 

controls the load balancing and clustering. The load balancing 

is performed when there are unbalanced job load present in 

different servers of the clusters. The clustering is performed to 

group set of servers according to their characteristics. 

 

3.1 Middleware Service: 

The middleware service is the request handler in the proposed 

model which controls the overall flow of the framework. 

whenever the middleware receives a request from the user, it 

selects one of server by which the request has to be handled. 

The selection of server is based on the service agreements and 

quality of service parameters and access frequency, and 

response time. If there is no server is free to handle the request 

then the middleware generates a replica of a server and run it 

on a machine then handover the request to the server. 

 

Algorithm: 

step1: start 
step2: initialize service history Sh, available machines M, 

clusers C. 

step3: Identify Request HttpRq = Ø(Request). 

step4: Identify the server and platform of request HttpRq. 

Srq = . 

step5: compute load conditions of Srq. 

Ld =  
step6: select most least weighted server from Ld. 

step7: Redirect request to selected server. 

step8: stop. 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35253-35257 

© Research India Publications.  http://www.ripublication.com 

35255 

 
 

Figure1: Proposed Method Architecture. 

 

 

3.2 Load Balancing: 

Load balancing is performed at regular interval and at each 

time whenever the middleware receives the request. From set 

of servers S available and clusters C, we perform load 

balancing based on the following metrics like timeliness, 

availability, response time, access frequency and request flow. 

 

Algorithm: 

step1: start 

step2: initialize request flow Rf, servers S, Clusters C, Access 

Frequency Af. 

step3: for each cluster Ci from C 

for each Server Si from Ci 

compute access frequency Af = i) (Ci) 
Af(Si) = Af. 

compute average response time Rt = 

/x 
Ts- Time submitted 

Tr – Time Replied 

end 

step4: Receive request Rq. 

Identify server with least Af value and High Response time. 

S = Min(Af)×Max(Rt). 

step5: if( ( Af> Ath) and Rt> Rth) 

generate Replica. 

Handover request at new server. 

cluster server into the available cluster. 

else 

Handover request to selected server S. 
step6: stop. 

3.3 Clustering: 

Clustering of servers is performed based on the characteristics 

of servers and their platform of nature and kind of services it 

provides. For example set of servers working under Linux 

platform are grouped and others working under other 

operating systems are grouped separately. Also according to 

the service metrics like the capacity of server as number of 

request it can handles at runtime is used to group the servers. 

The servers with less capacity are grouped separately and high 

capacity servers are grouped separately. 

 

Algorithm: 
step1: start 

step2: initialize clusters C. 

step3: read number of available servers S. 

step4: read server characteristics capacity cap, platform pf. 

step5: Assign random labels to the servers. 

step6: perform K-means clustering. 

step7: stop. 

 

3.4 Replica Management: 

The server replica is generated when there is huge load 

present in all the servers and overall response time of the 

servers crosses a threshold. The middleware generates a server 

replica and start servicing in new node and handover the 

request to the newly started server. Newly started server will 

be clustered into the available clusters. 

 

 

4. RESULTS AND DISCUSSION: 

The proposed approach has been implemented in different 

operating systems and the performance of the approach has 

been evaluated with 300 nodes as servers. The initial 

clustering is performed with 90 percent of nodes ie 270 nodes 

and grouped as 5 clusters. we have used servers with 
following characteristics as mentioned in the table 1. 

 

Table1: configurations used for clustering. 

 

Cluster Capacity Operating System Server 

1 3000 Linux JBoss 

2 2500 Windows Apache 

3 2000 MacOs JBoss 

4 1500 Windows Apache 

5 1000 Windows Glassfish 

 

INCOMING REQUEST  

 

 

ON DEMAND 

REPLICA 

MANAGEMEN

T OF 

APPLICATION 

SERVERS 

WITH SOA. 

SERVICE 

AGREEM

ENTS 
SERVICE 

HISTORY 
SERVERS/

MACHINES 

MIDDLEWARE 

 

LOAD 

BALANCING 

/REPLICA 

MANAGEME

NT 

CLUSTERING 

S1 S2 

S3 

s4 S5 

S6 
S7 S8 S9 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35253-35257 

© Research India Publications.  http://www.ripublication.com 

35256 

 
 

Graph1: shows the resource utilization produced. 

 

 

The graph1 shows the resource utilization achieved by the 

proposed method. It is clear that the proposed method has 

achieved higher utilization at all level of density. 

 

 
 

Graph2: Response Time of proposed method. 

 

 

The graph2 shows the response time achieved by the proposed 

method. It is clear that the proposed real-time replica 

management approach has reduced the response time with 

different number of nodes. 

 

 
 

Graph3: shows the percentage of SLA violation. 

 

 

The graph 3 show the violation generated by the proposed 

method according to SLA. It shows that the proposed method 

has violated very negligible level and does not affect the QoS 

at any stage. 

 

 

5. CONCLUSION: 

We propose a new on demand replica management 

framework, which clusters application servers according to 

access frequency, response time and capacity of servers. The 

load balancing is performed based on the access frequency 

and response time, whenever the access threshold and 

response threshold crosses a limit the middleware generates a 

new copy of required server and handovers the request to the 
server. The new replica will be clustered into the available 

servers. The proposed approach has produced higher results 

with increased performance and increases throughput of the 

overall framework. 

 

 

REFERENCES 

 

[1]  Chester A.P, A System for Dynamic Server 

Allocation in Application Server Clusters, Parallel 

and Distributed Processing with Applications, 

pp:130-139, 2008. 

[2]  Hong Tong, Construction and Application of Linux 

Virtual Server Cluster for Scientific Computing, 

IFIP, Network and Parallel Computing, pp: 287-289, 

2008. 

[3]  Kistijantoro, Enhancing an Application Server to 

Support Available Components, IEEE Transactions 

on Software Engineering, vol:34, Issue:4, pp:531-

545, 2008. 

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

100 200 300

R
e

so
u

rc
e

 U
ti

liz
at

io
n

Number of Nodes Used

Resource Utilization

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

100 200 300

R
e

sp
o

n
se

 T
im

e
 in

 s
e

co
n

d
s

Number of machines used

Response Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 200 300

P
e

rc
e

n
ta

ge
 o

f S
LA

 v
io

la
ti

o
n

Number of nodes

SLA Violation 
Percentage



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35253-35257 

© Research India Publications.  http://www.ripublication.com 

35257 

[4]  Tiwari A, Dynamic load balancing algorithm for 

scalable heterogeneous web server cluster with 

content awareness, Trends in Information science 

and computing, pp:143-148, 2010. 

[5]  Rafael Moreno-Vozmediano, Multi-Cloud 

Deployment of Computing Clusters for Loosely-

Coupled MTC Applications, IEEE Transaction on 

Parallel and distributed systems, 2010. 

[6]  E. Huedo, R. Montero, I. Llorente, A Modular Meta-

Scheduling Architecture for Interfacing with Pre-WS 

and WS Grid Resource Management Services, Future 

Generation Computer Systems 23 (2): 252–261, 
2007. 

[7]  B. Sotomayor, R.S. Montero, I.M. Llorente, I. Foster, 

Virtual Infrastructure Management in Private and 

Hybrid Clouds, IEEE Internet Computing 13(5): 14–

22, 2009. 

[8]  M. Tsugawa, J. Fortes, A Virtual Network (ViNe) 

Architecture for Grid Computing, in: In Proc. IEEE 

Intl. Parallel and Distributed Processing Symposium 

(IPDPS06), 2006, pp. 1–10. 

[9]  M. Matos, A. Sousa, J. Pereira, R. Oliveira, CLON: 

Overlay Network for Clouds, in: Proceedings of the 

Third Workshop on Dependable Distributed Data 

Management, 2009, pp. 14–17. 

[10]  G. Juve, E. Deelman, K. Vahi, B. P. Berman, B. 

Berriman, and P. Maechling, Scientific Workflow 

Applications on Amazon EC2. Workshop on Cloud-

based Services and Applications in conjunction with 

5th IEEE Int. Conference on e-Science, 2009. 

[11]  E. Deelman, G. Singh, M. Livny, B. Berriman, and J. 

Good, The cost of doing science on the cloud: the 

Montage example. Proceedings of the 2008 

ACM/IEEE conference on Supercomputing, 2008. 

[12]  Rafique M.M, Symphony: A Scheduler for Client-
Server Applications on Coprocessor-Based 

Heterogeneous Clusters, cluster Computing, pp:353-

362, 2011. 

[13]  Chein Tyan, Improving Application Placement for 

Cluster-Based Web Applications, IEEE transaction 

on network and service management, Vol:8, issue:2, 

pp:104-115, 2011. 

[14]  Harper R.E, DynaPlan: Resource placement for 

application-level clustering., IEEE conference on 

Dependable Systems and Networks Workshops 

(DSN-W), pp:271-277, 2011. 

[15]  Chester, A.P., Xue, J.W.J., He, L. and Jarvis, S.A. 

(2008) A System for Dynamic Server Allocation in 

Application Server Clusters. In: Proceedings of the 

IEEE International Symposium on Parallel and 

Distributed Processing with Applications (ISPA'08), 

10-12 December, 2011, Sydney, Australia. 

[16]  D.B. Ingham, S.K. Shrivastava, and F. Panzieri, 

“Constructing Dependable Web Services, ” IEEE 

Internet Computing, vol. 41, no. 1, Jan.-Feb. 2000. 


