
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

Domain-Driven Design of Information System for Queuing System in Terms

of Unified Metamodel of Object System

Pavel P. Oleynik, PhD

System Architect Software, Aston JSC

Shakhty Institute (branch) of Platov South Russian State Polytechnic University (NPI) Rostov-on-Don, Russia

xsl@list.ru

Nikolay V. Kuznetsov, PhD

Advisor of CEO, Kaskad JSC, Director of the Center for Institutions of Innovation Economy Development,

Financial University under the Government of the Russian Federation, Moscow, Russia,

nkuznetsov@outlook.com

Edward G. Galiaskarov and Ksenia O. Kozlova

Ivanovo State University of Chemistry and Technology Ivanovo, Russia

portugaled@yandex.ru and ksu932011@mail.ru

Abstract

The paper presents an example of the implementation of an

information system for queuing system that is designed on the

basis of the metamodel of object system developed by the

authors. The metamodel lies at the heart of construction of

SharpArchitect RAD Studio. Using the metamodel is
universally and significantly simplifies the process of

developing information systems at different levels of

complexity.

Keywords—DDD; Object System Metamodel; Object-

Oriented System; Information System; Database

I. INTRODUCTION

Domain-driven design (DDD) is an approach to software

development for complex needs by connecting the

implementation to an evolving model. This article presents an

example of the implementation of an information system that

is designed on the basis of its own object system metamodel.

The structure of this article is as follows. Section 1 provides

an overview of existing work on the development of

metamodels of object systems. Section 2 presents the key

requirements (optimality criteria) for the developed

information systems to which it must meet. Section 3 presents

the metamodel used in this work and describes key

metaclasses and relationships between them. Section 4

contains the domain model of information system of a beauty

salon, which meets the specified requirements and described
the relationships between the classes. In conclusion, there are

the findings and directions for further development of work.

II. REVIEW OF EXISTING PUBLICATIONS

This article describes the domain-driven design (DDD) of

information system of a beauty salon in terms of unified

metamodel of object system. The domain of a beauty salon

was chosen precisely because this topic is closest to one of the

authors and she is an expert in the area. In general the domain

does not have a key value as metamodel is unified and can be

used in any application databases.

The idea of the design based on the metamodel is not new
since metamodels are used everywhere. Works [1-3] represent

the metamodel of object database compliant with the ODMG

standard. The SQL:2003 standard includes metamodel that

describes the object extensions of SQL [1, 3-4]. The graphical

modeling language UML which is often used in the design of

modern applications has the standard which governs its own

metamodel described in [3, 5].

Practically all the metamodels have some disadvantages.

Each author was trying to solve the problem own forces.

Thus, in [3], the author has developed its own metamodel for

implementing object database.

Metamodel does not exist independently of the rest of the

application, and serves a certain purpose. So in [6-7]

metamodel is used to facilitate the process of domain-driven

design.

Metamodel is also used in the model transformations. So in

[8-9] the principles of model transformations from the UML

metamodel in the models of languages developed by the

authors are described.

Mechanisms for evaluating the software quality based on

metamodel with the introduction of various metrics are

considered in [10-11]. Publications [12-13] are devoted to

questions of the expansion of existing metamodels by adding
new elements. In [1], the author offers his own hierarchy of

atomic literal types, which can be used in any object system

and built thanks to the author's experience.

xsl@list.ru
nkuznetsov@outlook.com
portugaled@yandex.ru
file:///e:\61.%20DDD%20of%20IS%20of%20Beauty%20Salon\ksu932011@mail.ru

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

III. THE OPTIMALITY CRITERIA FOR INFORMATION

SYSTEM QUEUING SYSTEM

The development of any software begins with the definition

of optimality criteria (CO), which are the requirements for

implementing the system. For the described application the

optimality criteria (CO) are:

1. The information system should be managed as a

separate beauty shop, and a network of salons. This

will simplify the process of personal training and

deployment of a software product.

2. It is necessary to implement a mechanism to preserve

the history of changes in prices of goods and
services. Many existing information systems that

automate the activities of beauty salons, keep only

the last actual price, on the basis of which is

calculated the cost of a visit to the master. This

approach leads to a number of problems when it is

necessary to analyze the performance of the

organization and the formation of aggregates reports.

3. It should be possible quantitative account of the

goods in the context of warehouses and salons. Many

systems do not offer this, as a result the financial

statements are distorted and profit increases

unnecessarily. In our system, it is necessary to make

a number of documents reflecting the process of

receipt of goods to warehouses, inventory results and

the actual use of the goods. This will automatically

build a trial balance for any day.

4. Implement leave records, absenteeism records,

compensatory holiday records. This will allow to

calculate the salary for each employee for any period

of time, with a detailed report.

5. Implement different mechanisms to charges for

services rendered. It is necessary for the calculation

of the employee's salary and gives a complete picture
of the costs of a beauty salon.

6. Provide registration certificates in the context of

salons and clients. It will assess the projected profit

in the future and will allow the owner of the salon

strategically to plan its development.

7. Implement a mechanism of formation of working

hours and tracking the compensatory holidays /

absenteeism / sick leaves.

Let us proceed to consider the implementation of the

described system. But first let us consider briefly a unified

metamodel of object system.

IV. UNIFIED METAMODEL OF OBJECT SYSTEM

In this section, we briefly review the metamodel used in a

unified development environment for the rapid development

of enterprise information systems, SharpArchitect RAD

Studio [14]. In [6-7, 15-18] the full class diagram of

metamodel was presented and detailed assignment of classes

were described. Here we consider only the relevant parts for

this article. Fig. 1 shows a fragment of a unified metamodel of

object system with display of the key associations that are
important for further discussion.

Consider some of the key hierarchies of metaclasses. Fig. 2 is

a diagram of the basic metaclasses used to represent different

kinds of classes applied to describe the entity classes which

are presented in the domain model.

An abstract metaclass Class is the root of the hierarchy. It has

two inherited classes: 1) InheritableClass is used to represent

metaclasses that can be inherited, i.e. support inheritance; 2)

NotInheritableClass is used to represent metaclasses that can

not be inherited. Metaclass Enum allows submit an

enumeration or a set of values of a simple type.

Abstract base metaclass CustomAttributedClass is used to

represent metaclasses that have the attributes. Metaclass
DomainClass is used to represent domain classes. Instances of

domain classes allow to describe the entity classes (such as

Customers, Products, Sales), which objects (eg, Ivanov,

Bread) are stored in the database. To simplify the description

instances of the domain classes will be called just domain

classes (if not assumed otherwise).

Abstract metaclass ComputationalClass<TBaseClass> is the

base for all calculated metaclasses ie those classes instances

of which are not stored in the database and are computed at

runtime (transient). For example, the turnover balance sheet is

not stored directly in the database, and is calculated based on

inventory, receipts and expenditures (which are the domain

classes and represent the instances of the metaclass

DomainClass).

Metaclass MethodParameterClass is used to represent a

Parameter Class of methods. A design pattern called

Parameter object, the essence of which is the transfer of a set

of parameters in the method as a single object (an instance of

the metaclass) is implemented in SharpArchitect RAD Studio.

Abstract metaclass CodeComputationalClass<TBaseClass> is

the base for calculated metaclasses implemented using code in

the language of C#. QueryClass is metaclass of query

allowing to form the result based on queries to the database
(usually based on Linq-object request but SQL-lines are also

possible). HelperClass is used to represent the auxiliary

metaclasses that can be displayed in the user interface and

used for internal purposes in the implementation of business

logic.

Now consider the metaclasses used to describe the class

attributes shown in Fig. 3.

Root abstract metaclass representing an attribute is

AbstractAttribute. Classes inherited from VirtualAttribute are

used to represent attributes that were not created by the

developer of the application domain, and were presented to

the system. They are necessary for an understanding of the

metamodel and simplify the software development process.

SystemAttribute allows to describe the attributes that are

system and are presented at the language of C#. Metaclass

GeneratedAttribute is used to represent attributes

automatically generated by the system. For example, if

inheriting from the base tree class an attribute Node, which

allows to get the child nodes and thus to form a hierarchical

structure, are automatically added.

An abstract base metaclass ConcreteAttribute is used for

presentation of attributes whose values can be defined by the

user. Since the system is implemented in the language of C #,
when saving values in the database the data types of this

language are used. To describe this moment parameterized

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

metaclass TypedAttribute<TDefaultValue> was added.

TypeAttribute is used to represent the properties whose values

can store a reference to the data type of the C# language.

Metaclass ClassedValueAttribute<TValueClass,

TDefaultValue> is used to represent attributes whose values

are the instances of the different instances of entity classes

present in the domain. Metaclass

NotInheritableClassedValueAttribute<TValueClass,

TDefaultValue> retains instances of non-inherited classes.

For example, EnumAttribute inherited from the one described

is used to store values of enumerations / sets.

Fig. 1. Fragment of a unified metamodel of object system

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

Fig. 2. Basic metaclasses used to represent the entity classes of the domain model

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

Fig. 3. Basic metaclasses used to represent the attributes of classes

Abstract metaclass

MultiplicityClassedValueAttribute<TValueClass,

TDefaultValue> is used to represent the values of the

attributes that can store not only atomic values but also a

collection of values. Metaclass

DesignTimeClassedValueAttribute <TValueClass,

TDefaultValue> allows saving a reference to instances of

design time. So BuiltInClassAttribute is used to store objects

of classes in the metamodel implementation in SharpArchitect

RAD Studio. In its turn MetaModelClassAttribute saves
information about the class metamodel of the application

domain. Both described metaclasses allow manipulate

metamodel at the moment of runtime. A similar approach is

used in many modern programming languages supporting an

extensive meta-information. So in C # there is a technology of

reflection, which allows realizing such things.

Metaclass CustomAttributedClassedValueAttribute

<TValueClass, TDefaultValue> is used to store instances of

classes with attributes. The system has two child classes: 1)

DomainClassAttribute saves a reference to the instance of a

domain entity described in the metamodel using an instance

of domain metaclass. Attribute of this type is used for the

organization of the association relationships and serves to

represent the relations with the object design of the domain.

Metaclass HelperClassAttribute allows saving references to

instances of helper classes.

Metaclass SimpleTypedAttribute <TDefaultValue> is abstract

and serves the root of all the attributes to save the atomic

literal value. All of this hierarchy is the result of many years

of work, the premise of which and the intermediate solutions

have been described in [1]. Metaclass ColorAttribute is used

to store the color in the format of RGB. LogicalAttribute is

used for storing Boolean values (true and false). Metaclass

DateTimeAttribute is used to save the date-time values. If you

want to present time only you should use TimeAttribute.

There is metaclass MoneyAttribute for submission to the

money attribute in the hierarchy. FileDataAttribute is used to

save files of various formats. Attribute of type

ObjectAttribute should be used to store any type of object.
This approach is similar to the use of type object in C#.

Attributes of types GeographyAttribute and

GeometryAttribute are used to save the geographical

coordinates and geometric objects, respectively. Metaclasses

StringAttribute and SymbolAttribute are used to represent

character strings and individual characters respectively. If you

want to save the text of unlimited length and with formatting

you should use TextAttribute. Metaclass HyperLinkAttribute

is used to represent hyperlinks to various resources.

ImageAttribute is used for storing graphics (pictures,

photographs and the like). Parameterized abstract metaclass

TypedValueRangedAttribute <TDefaultValue,

TValueRange> is used to represent atomic values, which may

be within a certain range of values specified by the relevant

enumeration (parameter TValueRange). Inherited metaclass

IntAttribute can be used to store integer values and

DecimalAttribute can be used to represent fractional values.

To implement the behavior in SharpArchitect RAD Studio

different syntactic constructions and metaclasses are used.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

Class methods, metaclasses of which are shown in Fig. 4 are

the most commonly used.

Fig. 4. Basic metaclasses used to represent the class

methods

Method is the root abstract metaclass of method. Currently,

the system supports only the methods implemented in the

form of program code and submitted as instances of

metaclasses inherited from CodeMethod. Metaclass
VisualCodeMethod will create a visual method, which is

displayed to the user in the form of a graphic element in the

interface. HelperCodeMethod is a helper method that is used

to call other methods and properties and is not involved in

forming the interface.

Events are an integral part of behavior used in the

development of object-oriented applications. Fig. 5 shows

metaclasses allowing to describe the various events of objects.

Fig. 5. Basic metaclasses used to represent events

The hierarchy is very simple. Event is the root abstract

metaclass represented an event.

AfterChangedAttributeValueEvent describes events of

changing the attribute values and has in its composition, not

only the name of the changed attribute, but also the possibility

of obtaining the values before and after the change. Event

AfterDeletedEvent is called after the removal of the object.

Note that the object is not physically removed from the

database, but only marked as deleted. This is due to the

possible presence of links to other objects and the need to

provide an opportunity to recover accidentally deleted object.

Exactly after the installation of this label the event is called.

Metaclass AfterLoadedEvent allows to create an event

handler that occurs after loading the object from the database.

Metaclass AfterSavedEvent describes an event that occurs

after saving the object in the database. Metaclass
BeforeDeletingEvent is used to represent an event that occurs

before the removal of the object. If you want to perform

certain actions before saving you must create an instance of

the metaclass BeforeSavingEvent. The code of the new object

initialization is performed in the object of type

InitializationEvent.

At present an essential step in the development of any large

system is to write validation rules that are checked at a certain

time (usually while maintaining the object) and confirm the

integrity and consistency of data. Hierarchy of validation rules

is shown in Fig. 6. ValidationRule is the root abstract

metaclass. ClassCheckingValidationRule is directly inherited

from it and allows to describe the rules for checking the

conditions at the class level (because it implements the

interface IClassLevelValidationRule). Metaclass

InvertableClassCheckingValidationRule enables to describe

invertible conditions. Implemented metaclass

CriteriaCheckingValidationRule allows to set the logical test

condition as a string and specify a set of attributes that violate

this condition. ConcreteAttributesValidationRule describes

the validation rules that involve the certain class attributes

inherited from ConcreteAttribute. Derived metaclass

RequiredAttributesValidationRule enables to specify which
class attributes are mandatory and can not contain null values.

The derivatives from the parameterized abstract metaclass

TypedAttributesValidationRule <TAttribute> allow to

describe validation rules that apply only to the attributes of a

certain type (of the type specified in TAttribute). Metaclass

RegularExpressionAttributesValidationRule is used to specify

a regular expression that values of the string attributes

(StringAttribute) must match.

Parameterized abstract metaclass

TypedValueRangedAttributesValidationRule <TValueRanged

Attribute, TValueType> is used to create validation rules of

entering values in a certain range. Its children

RangeDateTimeAttributesValidationRule, RangeDecimal

AttributesValidationRule, RangeTimeAttributesValidation

Rule, RangeIntAttributesValidationRule are used to specify a

range of datetime, decimal, time and integer attributes,

respectively.

UniqueCombinationAttributesValidationRule is the base

abstract metaclass specifying a unique combination of

attribute values. Its child

UniqueCombinationSimpleAttributes ValidationRule is used

when defining a unique combination of simple atomic values.

Another child
UniqueCombinationRunTimeClassedCollectionAttributesVali

dationRule <TClassValueAttribute> is used for attributes that

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

represent a collection of values and allows to determine the

unique attributes for each element in the collection. At the

moment, there is only one inherited implemented metaclass

UniqueCombinationDomainClassCollectionAttributesValidati

onRule, which allows setting a unique combination of values

for attributes of the domain entities.

In big applications, there is the problem of highlighting of

separate fields, columns or rows depending on their values. In

addition, it is often necessary to hide or to deactivate some

input fields or hide them from the form.

Hierarchy of metaclasses of visualization rules, shown in Fig.

7, solves this problem. VisualizationRule is the root base
metaclass. ActionsVisualizationRule allows to describe the

visualization rules for the various actions, such as the Save

button, the Create New button, the Edit button, etc. Metaclass

AttributesVisualizationRule describes the visualization rules

for class attributes. Instances of MethodsVisualizationRule

permit to define rules for visualization methods (Instances of

VisualCodeMethod).

As can be seen, SharpArchitect RAD Studio is a mature

software product designed for the development of object-

oriented database applications, and provides a unified

metamodel enabling to describe both static and dynamic

elements of the application. The IDE has been tested on

different projects, described in [18, 19].

V. THE DOMAIN MODEL OF INFORMATION SYSTEM OF

QUEUING SYSTEM

Fig. 8 shows the domain model of beauty salons built on the

basis of metamodel discussed above and taking into account

the selected criteria of optimality. Notice that all obtained

classes have been described in the metamodel in the form of

domain classes (metaclass DomainClass, Fig. 2). At the same

time for the implementation of the domain entities the

programming language of C# and syntactic construction of

interface are used. Generation of interfaces is performed on
the basis of metaclasses instances stored in the database.

Consider in detail the composition and structure of the classes

presented on the diagram.

Nomenclature of goods and services is provided with the class

hierarchy of Commodity (is the hierarchy root, which is

involved in various associations), of Service (for description

of service), of Product (for definition of goods sold). Please

note that classes of Service and Product are inherited from

both class of Commodity and class of

IBaseRunTimeTreeNodeDomainClass, which is the system

domain class that is used to describe a hierarchical (tree)

structure.

Fig. 6. Basic metaclasses used to represent the validation rules

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

Fig. 7. Basic metaclasses used to represent the visualization rules

Fig. 8. Domain model of information system of a queuing system, built in terms of the metamodel of object system

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

Thus, the system supports multiple inheritance, which is

realized using the interface of C# language, the concept is

discussed in detail in [20-23].

Class Price is used to save the history of changes in prices of

goods and services. It is inherited from

IBaseRunTimeIntervalActionValueDomainClass containing

the attributes DateStart and DateFinish, which are used to

store the operating range of prices.

Information about salons is stored as instances of class Salon.

Class hierarchy, the root of which is class Document is used

for organization of document interchange. From a logical

perspective, all documents can be divided into two groups.
The first group includes the documents, which may contain

strings both goods and services. Class

ProductAndServiceDocument is the root of the hierarchy of

such documents. Class Visit describing the record and visit of

the client is derived from this class. The idea is when the

client is recorded on getting a service, the document Visit is

formed, and the planned date and time of the visit are

indicated in it. Upon the occurrence of this time, it is

considered that the client either came or was late that indicate

the appropriate options.

The second group includes documents, which contain only

rows of products available in the salon. Class

ProductDocument is the root of the hierarchy and has two

subclasses: 1) class ProductArrival describes the arrival of

goods at the warehouse; 2) class Inventory is an inventory of

existing stocks in warehouses. Сlass Warehouse is used to

represent the existing warehouses.

Class Master is used to represent information about the

masters of salons. Class Client is a representation of the

clients. Both classes are inherited from the abstract class

Person, which comprises common properties.

To describe the discounts given to customers Allowance class

is used. For representation of interest earned by masters for
services rendered, class Percent is applied. Both of these

classes are inherited from the root class Discount, which in

turn is inherited from IBaseRunTimeIntervalAction

ValueDomainClass, described earlier. In this case, the

discount is assigned not to a specific master or client, and the

master category or the client category, respectively. This

approach reduces the time to configure the system and is

implemented by classes MasterCategory and ClientCategory,

respectively. Also, services can be grouped into categories

using ServiceCategory.

Each master can leave an application for goods needed by

instances of the class ProductOrder. Execution of such

applications is analyzed using the class OrderExecution.

The salon can issue certificates for various services by

creating instances of the class Certificate. The client uses

them to pay for various services through the creation of

instances of the class PaymentCertificate.

Work schedule is one of the key concepts on which depends

the coordinated work of all beauty salons. Class Schedule is

used to represent the working time of masters. Sick leave,

compensatory leave and absenteeism of employees are

represented by class LeaveSchedule. This information is used

for automatic payroll preparation. At this point the instances
of the class WorkingTime are also used. They provide

information on working hours in each month. Thus it is seen

that the domain model described above meets to the criteria of

optimality specified previously.

CONCLUSIONS AND FURTHER RESEARCH

This article describes an example of domain-driven design for

information system that automates the activities of beauty

salons. At the moment, system is under a test operation in one

of the salons of the Russian Federation. The system is

developed in terms of a unified metamodel of object system

described in detail in the relevant section of this article. As

further development of the work the authors suggest the
development of a formal mathematical apparatus describing

applied domains and the development of UML-profile that

facilitates the process of logical design of information systems

in the framework of the proposed approach.

REFERENCES

[1] Oleynik P.P. Implementation of the Hierarchy of

Atomic Literal Types in an Object System Based of

RDBMS // Programming and Computer Software,

2009, Vol. 35, No.4, pp. 235-240.

[2] Cattell R.G., Barry D.K. The Object Data

Standard:ODMG 3.0, Morgan Kaufmann Publishers,

2000, 288p.

[3] Habela P. Metamodel for Object-Oriented Database

Management Systems. Ph.D. Thesis // Submitted to

the Scientific Council of the Institute of Computer

Science, Polish Academy of Sciences, 2002, 142p.

[4] Information technology — Database languages —

SQL — Part 2: Foundation (SQL/Foundation),

http://wiscorp.com/sql200n.zip.

[5] Iyengar S., Brodsky S. Metadata Integration using
UML, MOF and XMI, November 2000, 88p.

[6] Oleynik P.P. Domain-driven design the database

structure in terms of metamodel of object system //

Proceedings of 11th IEEE East-West Design & Test

Symposium (EWDTS'2013), Institute of Electrical

and Electronics Engineers (IEEE), Rostov-on-Don,

Russia, September 27 – 30, 2013, pp. 469-472.

[7] Oleynik P.P. Using metamodel of object system for

domain-driven design the database structure //

Proceedings of 12th IEEE East-West Design & Test

Symposium (EWDTS’2014), Kiev, Ukraine,

September 26 – 29, 2014, DOI:

10.1109/EWDTS.2014.7027052

[8] Soon-Kyeong K., Carrington D., Duke R. A

metamodel-based transformation between UML and

Object-Z // Human-Centric Computing Languages

and Environments. Proceedings IEEE Symposia,

2001, 112-119 pp.

[9] Rahim L.A. Mapping from OCL/UML metamodel

to PVS metamodel //Information Technology, ITSim

2008. International Symposium, 2008, 1 – 8 pp.

[10] McQuillan J.A., Power J.F. A Metamodel for the

Measurement of Object-Oriented Systems: An
Analysis using Alloy // Software Testing,

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015) pp 35229-35238

© Research India Publications. http://www.ripublication.com

Verification, and Validation, 2008 1st International

Conference, 2008, 288 – 297 pp.

[11] Debnath N., Riesco D., Montejano G., Uzal R.,

Baigorria L., Dasso A., Funes A. A technique based

on the OMG metamodel and OCL for the definition

of object-oriented metrics applied to UML models //

Computer Systems and Applications, 2005. The 3rd

ACS/IEEE International Conference, 2005.

[12] Debnath N., Riesco D., Montejano G., Grumelli A.,

Maccio A., Martellotto P. Definition of a new kind

of UML stereotype based on OMG metamodel //

Computer Systems and Applications, 2003. Book of
Abstracts. ACS/IEEE International Conference, 14-

18 July 2003.

[13] Misbhauddin M. , Alshayeb M. Extending the UML

Metamodel for Sequence Diagram to Enhance Model

Traceability // Software Engineering Advances

(ICSEA), 2010 Fifth International Conference, 22-27

Aug. 2010, 129 – 134pp.

[14] Oleynik P.P., Computer program "The Unified

Environment of Rapid Development of Corporate

Information Systems SharpArchitect RAD Studio",

the certificate on the state registration №

2013618212/ 04 september 2013. (In Russian).

[15] Oleynik P.P. Class Hierarchy of Object System

Metamodel // Object Systems – 2012: Proceedings of

the Sixth International Theoretical and Practical

Conference. Rostov-on-Don, Russia, 10-12 May,

2012. Edited by Pavel P. Oleynik. 37-40 pp. (In

Russian),

http://objectsystems.ru/files/2012/Object_Systems_2

012_Proceedings.pdf

[16] Oleynik P.P. Class Hierarchy for Presentation

Validation Rules of Object System // Object Systems

– 2013: Proceedings of the Seventh International
Theoretical and Practical Conference (Rostov-on-

Don, 10-12 May, 2013) / Edited by Pavel P. Oleynik.

- Russia, Rostov-on-Don: SI (b) SRSTU (NPI),

2013. 14-17pp. (In Russian),

http://objectsystems.ru/files/2013/Object_Systems_2

013_Proceedings.pdf

[17] Oleynik P.P. The Elements of Development

Environment for Information Systems Based on

Metamodel of Object System // Business

Informatics. 2013. №4(26). – pp. 69-76. (In

Russian),

http://bijournal.hse.ru/data/2014/01/16/1326593606/

1BI%204(26)%202013.pdf

[18] Oleynik P.P. Domain-driven design of the database

structure in terms of object system metamodel //

Object Systems – 2014: Proceedings of the Eighth

International Theoretical and Practical Conference

(Rostov-on-Don, 10-12 May, 2014) / Edited by Pavel

P. Oleynik. – Russia, Rostov-onDon: SI (b) SRSPU

(NPI), 2014. - pp. 41-46. (In Russian),

http://objectsystems.ru/files/2014/Object_Systems_2

014_Proceedings.pdf

[19] Oleynik P.P., Kurakov Yu.I. The Concept Creation
Service Corporate Information Systems of Economic

Industrial Energy Cluster // Applied Informatics.

2014. №6. 5-23 pp. (In Russian).

[20] K.O. Kozlova, P.P. Oleynik. Experience of Using

Multiple Inheritance in Modern Programming

Languages // Object Systems – 2014 (Winter

session): Proceedings of IX International Theoretical

and Practical Conference (Rostov-on-Don, 10-12

December, 2014) / Edited by Pavel P. Oleynik. –

Russia, Rostov-on-Don: SI (b) SRSPU (NPI), 2014.

– pp. 10-12. (In Russian),

http://objectsystems.ru/files/2014WS/Object_System

s_2014_Winter_session_Proceedings.pdf
[21] Pavel P. Oleynik, Olga I. Nikolenko, Svetlana Yu.

Yuzefova. Information System for Fast Food

Restaurants. Engineering and Technology. Vol. 2,

No. 4, 2015, pp. 186-191.,

http://article.aascit.org/file/pdf/9020895.pdf

[22] Pavel P. Oleynik. Using Multiple Inheritance in

Modern Frameworks. Engineering and Technology.

Vol. 2, No. 4, 2015, pp. 202-206.,

http://article.aascit.org/file/pdf/8960766.pdf

[23] Pavel P. Oleynik. Metamodel-Driven Design of

Database Applications. Journal of Computer Science

Technology Updates, 2015, Vol.2, No. 1, pp. 15-24.,

dx.doi.org/10.15379/2410-2938.2015.02.01.03,

http://www.cosmosscholars.com/images/JCSTU-

v1n1/JCSTU-V2-N1/JCSTU-V2N1A3-Oleynik.pdf

http://objectsystems.ru/files/2012/Object_Systems_2012_Proceedings.pdf
http://objectsystems.ru/files/2012/Object_Systems_2012_Proceedings.pdf
http://objectsystems.ru/files/2013/Object_Systems_2013_Proceedings.pdf
http://objectsystems.ru/files/2013/Object_Systems_2013_Proceedings.pdf
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202013.pdf
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202013.pdf
http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.pdf
http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.pdf
http://objectsystems.ru/files/2014WS/Object_Systems_2014_Winter_session_Proceedings.pdf
http://objectsystems.ru/files/2014WS/Object_Systems_2014_Winter_session_Proceedings.pdf
http://article.aascit.org/file/pdf/9020895.pdf
http://article.aascit.org/file/pdf/8960766.pdf
http://www.cosmosscholars.com/images/JCSTU-v1n1/JCSTU-V2-N1/JCSTU-V2N1A3-Oleynik.pdf
http://www.cosmosscholars.com/images/JCSTU-v1n1/JCSTU-V2-N1/JCSTU-V2N1A3-Oleynik.pdf

