
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015)pp35064-35067

© Research India Publications. http://www.ripublication.com

35064

An Empirical study of DNA Compression using Dictionary Methods and

Pattern Matching in Compressed Sequences

KeerthyA S

Research Scholar, Karpagam University, Coimbatore-641021 and

Dr.Appadurai

Associate Professor, Department of Software Systems and Information Technology, Karpagam University, Coimbatore-641021

Abstract

The need for storage, analysis and transfer of genomic data is

vital for the biological research community in the current era.

The current methodologies of data transfer are not sufficient

as the growth of data is in the range of 50-100 PB every year

and is expected to rise higher. The reduction in the cost of

Human Genome sequencing is pointing towards an era of

personalized medicine. Hence effective management of

Genetic Data is vital which makes Data Compression

unavoidable. We investigate the research challenges in the

field and identify the unsolved issues. Compressing DNA data

reduces the cost of maintenance and transfer of data. Also

pattern matching in compressed sequences reduces the cost of
revealing the hidden characteristics of DNA. This paper

proposesto design a novel data compression algorithm and

develop pattern matching tool in compressed sequences.

Index Terms—Genomic Data, Data compression, LZW,

Pattern matching, Sequence alignment.

I. INTRODUCTION

Now the storage of mass data is not a severe problem,

whereas transmitting the data across the internet creates

overhead of time and cost. The cost of storage can be reduced

by deleting a sequence after the analysis and resequencing it

later if needed. Research community considers it

inappropriate and not a good technological

conduct.Centralization of data effectively reduces data

replication cost and makes access to huge repositories easy.

The genomic data are stored in public data repositories in

variant databases. The better way is to store the sequenced

data by compressing it.

Compression is the process of reducing the space requirement

to store data using mathematical algorithms which can be

lossy or lossless.Lossless compression is mandatory as it
allows reconstruction of original sequence on decompression.

Lossless compression method using dictionary replaces

substrings by using a dictionary built at runtime or offline.

The dictionary based algorithms, detect repetitions by book

keeping previously occurring sequences [1].

Repetitions in DNA sequences are accounted by simple

repeats in long sequences of non-coding regions, repetition of

material within a genome and existence of reverse

complement. [3]

The key areas of bioinformatics and computational biology

where data compression is used includes storage of biological

sequences, estimating entropy, whole genome pattern

matching, cataloging and indexing of genome related data,

segmentation of biological sequences and pattern discovery.

[9]

II. COMPRESSION OF GENOMIC DATA

Storing data in compressed format reduces the space

requirement for storage and speed up circulation of data.

Dictionary methods of data compression dates back to 1977-

78 by Zivand Lempel (Figure1). The textual data is processed
from left to right and long repetitions of consecutive

characters are encoded using references to previously

compressed parts of data. It is proved to be better than

statistical compression method using Huffman code. But the

rapid growth of data from sequential experiments demands

better compression ratios [1].

Another aspect of data compression is data indexing. Since

individual genome is static data, indexing is applicable and

makes pattern searching easy. A notable indexing technique

involves the LZ-based indexes which are efficient in

removing redundancy to a great extent[2].

The peculiarity of genomic data is the high level of similarity

between individuals of same species. This factor of similarity

can be used for efficient compression of data by detecting

redundancy and constructing dictionary while allowing

fetching of individual items in any order. [3]

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015)pp35064-35067

© Research India Publications. http://www.ripublication.com

35065

Figure:1 (Source: ETHW)

III. TEXT COMPRESSION USING LZW

Lempel and Zivintroduced Substitution Coding, making use

of pointers to previous words or parts of words for

compressing textual data. LZW (Lempel-Ziv-Welch)

modified it by constructing a dictionary of words or parts of

words in the message and then use pointers to the words in the

dictionary. LZW coder uses the dictionary as a tool to

generate a compressed output. The coder also expand the

dictionary with new patterns and provide the compressed data

output. When a string with entry in dictionary is encountered,

the corresponding index is output. The limitation of original

LZW is the maximum dictionary size of 4K. Suggested

improvisations are to flush out the dictionary as it exceeds the

size and overwrite least recently used entries in the dictionary
[19].

IV. PATTERN MATCHING IN COMPRESSED SEQUENCES

Pattern matching in biological sequences arise from the desire

to identify different characteristics about a DNA sequence. It

assists in aligning two biological sequences and identifies the

amount of similarity between them.Also pattern matching

identifies common subsequences like promoters, functional

motifs within a given sequence and how well a given

sequence fits into a pattern [18].

Pattern matching in compressed sequences is the processof

performing string matching in a compressed text without

decompressing it [20].

V. LITERATURE REVIEW

A. Biological sequence Compression

A number of studies by the eminent researchers are done in

literature towards different techniques of data compression

and pattern matching. This paperanalyzed more relevant and

recent available methodologies for data compression.

S. Kuruppu et alproposes COMRAD, a dictionary based

compression technique. COMRAD uses an iterative procedure

for compressing a set of DNA sequences. In COMRAD, for

all iterations a frequency dictionary is created and substitution

is made. It is observed that even though the first iteration of

frequency dictionary creation is of O(n), subsequent iterations
depend on the number of substitutions made in the previous

iterations. Since it is very difficult topredict the number of

substitutions made in iterations, the authors asymptotically

predict a compression cost of O(ni
t-1 logni

t-1). The space

consumption in each step is directly proportional to the

number of distinct pattern substrings and hence it is memory

intensive [3].

Jones et al developed Quip a lossless reference based

compression tool to compress NGS data. They claim three

times the speed of gzip, a common tool for genome

compression. The authors also claim that for single genome

samples, Quip gives highest compression consistently as

compared to assembly based compression [4].

Genome Resequencing Encoding (GReEn) by Pinho et al,is a

reference genome based tool for compressing genome

resequencing data.The tool performs compression efficiently

when the target sequence is similar to reference sequence. The

compression time depends on the size of sequence as well as

similarity with reference sequence. Hence it is not possible to

predict time of encoding for all cases [5].

HebaAfify et al propose a differential compression algorithm

which uses an opcode table to identify the difference between

reference sequence and target sequences. The algorithm aimed
at compressing a database of sequences.After compression,

the method stores a reference sequence, set of differences and

locations of differences. The authors claim a 195 fold

compression if the reference sequence is ideal but does not

have any practical implementation [6].

Heath et al proposed a frame work to compress and

manipulate a group of genomic sequences using a selected

reference genome. An indexing system is used to store the

differences identified [7].

DNAEncodeWG proposed by Kim et al identifies matching

regions in whole genome sequence with the input query

sequence. It records the characteristics of the region and

differences between two sequences. The method can be

applied only when the whole genome sequence of an

organism is accessible through web. The encoding time totally

depends on server and network status [8].

Giancarlo et al in their review paper points out various areas

of bioinformatics and computational biology where

compression is used. They suggested that versatility,

parameter free data, association mining and speed are the

main advantage of using data compression in biological

investigation [9].

Toshiko et al discussed the properties of DNA sequences that
enable effective compression. They proposed an algorithm

that combines CTW and LZ which searches reverse

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015)pp35064-35067

© Research India Publications. http://www.ripublication.com

35066

complements and approximate repeats in the sequence using

hash table and dynamic programming. On successful

identification,the algorithm represents the subsequence by

storing its length and distance [10].

Table 1: List of dictionary based Lossless compression

tools/ algorithms for whole genome sequences.

Tool/ Algorithm Techniq

ue Used

Compression

Ratio

Compress

ion

Time(MB/

s)*

COMRAD RAY 5.5 0.3

Quip SM, AC 0.35 22

GReEn AC 172 8.33

Differential

CompressionAlgo
rithm

Opcode 0.005 -

Genome

Compression

Huffma

n

Coding

98.8 -

DNAEncodeWG Diff

Analysis

0.19 -

CTW+LZ PPM,

CTW

1.74 -

*Values are taken from original papers. '-' represent unknown

values.

A comparative analysis of the tools and algorithms discussed

in the literature review is summarized in Table1. GReEn

shows highest compression ratio with moderate speed among

the tools analyzed. The authors pointed out that the success

depends highly on the similarity between target sequence and

reference sequence [5]. Hence it is not a reliable method for

generalizing DNA compression.

The genome compression method, proposed by Heath et al,

also shows good compression ratio. But it is still in research

phase and no tool is developed so far based on the proposed

algorithm [7].

The tools were compared based on the results provided by the

authors and no common data was used to compare the tools.

The lack of efficient tool to compress whole genome
sequences points towards the need of a novel technology for

DNA data compression and benchmarking tool.

B. Textual data compression using LZW

Rahul Gupta et al proposeda method for compressing dynamic

textual data using LZW compression algorithm. They used

anindexed lexicon table for storing already encountered

substrings. The input text is compressed and stored as blocks

of data. The index table also maintains information about the

blocks. When new data is to be appended; only the

corresponding block has to be decompressed and the

appended data is added to the block and compressed. In

standard LZW algorithm the whole compressed file has to be

decompressed to append any additional data [11].

Kodituwakku and Amarasingheconducted an experimental

comparison of lossless data compression algorithms for

textual data. The algorithms were compared based on

compression ratio, compression factor, saving percentage,

compression time entropy and code efficiency. For non

statistical based algorithms like RLE and LZW, entropy and

code efficiency could not be calculated. It is also observed

that LZW does not work well for large files as the dictionary

size for compression and decompression is huge [12].

Parvinder Singh et al proposed an enhancement for improving

LZW algorithm by eliminating frequent flushing of dictionary

to reduce processing time. The authors point out the short

comings of LZW algorithm for text data compression and

suggest improvisations. Firstly whenever a dictionary gets

filled a replacement strategy is initialized that replaces shorter
strings by longer string for efficient compression ratio.

Another suggestion is a two level dictionary modification

scheme where two dictionaries are used. Primary dictionary

stores frequently used entries and have smaller code size.

Secondary dictionary stores codes with larger size. As the

primary dictionary gets filled up the replacement strategy

removes nodes from primary dictionary to secondary

dictionary. This can be further enhancedwith the usage of Bi-

mode Encoder. Individual bytes are sent in uncompressed

mode (as it is) and sequence of bytes are sent in compressed

mode (compressed using LZW)[13].

C. Pattern Matching in Compressed text files

Tao Tao and Amar Mukherjee implemented Amir’s approach

for pattern matching and suggest a novel algorithm for

compressed pattern matching using Aho-Corasickalgorithm.

The authors report a time complexity of O(n+mt+r) and space

complexity of O(mt) [14].

Dictionary quasi filling by Kim et al used a modified

dictionary adaptation method to remove the index coding

redundancy of LZW. Additional string matching is needed by

their method and is less complex than multiplication in

arithmetic coding [15].
Compressed String Matching (CSM) and Fully Compressed

String Matching (FCSM) differs in compressing text alone in

CSM and both text and pattern in FCSM. Gasieniec and

Rytter proposed sequential and parallel approaches for FCSM,

for compressed text using LZW algorithm. Both procedures

perform preprocessing before actual search.They claim a time

complexity of O((n+m)log(n+m)) for LZW compressed

sequences in the case of FCSM [16].

Collage system proposed by Kida et al is a framework based

on existing dictionary based algorithm for compressed pattern

matching. The system finds all occurrences of a pattern in a

text without decompression. To identify multiple patterns the

system needs to be modified [17].

VI. PROPOSAL

Based on the survey conducted we analyzed the lack of a

unique system for compressing DNA sequences and pattern

matching. So we propose a novel algorithm based on LZW for

compressing DNA sequences and a system for pattern

matching in compressed sequences.

With the advancements in sequencing techniques there is a big

leap in the genomic data availability. As a matter of fact
storage and transportation of this Big Data can be achieved

effectively only when data can be compressed efficiently. The

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 15 (2015)pp35064-35067

© Research India Publications. http://www.ripublication.com

35067

literature review clearly points out that dictionary methods

provide efficient data compression and in particular LZW is

effective in compressing textual data [13]. With this situation

we propose to designa compression algorithm based on LZW

for genomic data which focus on reduced dictionary size.

Pattern matching techniques for biological sequences

developed so far concentrates only on uncompressed data.

Pattern matching in compressed data can reduce the memory

and time requirements to identify the match. The literature

survey brings out the importance of pattern matching in

biological data and points out the success of pattern matching

using LZW algorithm for textual data [16]. Hence we propose
to develop a system based on LZW compression for pattern

matching in compressed genomic data without decompressing

it.

Identifying similarities between genomic sequences of

organisms of same species can aid healthcare industry as it

contributes to personalized medicine and drug discovery.

Hence aligning multiple sequences is an interesting area of

research. We propose to develop a system that would perform

multiple sequence alignment in compressed data.

Comparing algorithms help to bring out the efficiencies and

drawbacks of algorithms. Genomic data compression

algorithms lack a benchmark systemfor comparison [12]. In

this scenario, we propose to suggest performance measures

that are applicable to all compression algorithms for effective

comparison.

VII. CONCLUSIONS

In the survey we analyzed a series of methods used by

previous researchers for genomic data compression and

pattern matching.In this era of increasing volume of genome

sequencing and resequencing, considering the cost of storing

and transmitting this data, efficient compression tools are
always in demand. These tools could assist in analysis of

human genome variation between individuals and hence could

be a key for progress in personal medicine effects.LZW has

been successfully used in textual data compression, but its

weakness is the increased dictionary sizehence increased

computational cost. A lossless dictionary based tool using

LZW with reduced dictionary size would definitely help in

achieving high compression ratio and reduced computational

cost and achieve pattern matching in compressed sequences.

REFERENCES

[1] Sebastian Wandelt, Marc Bux and Ulf Leser, “Trends

in Genome Compression”, Current Bioinformatics,

2014, pg315-326.

[2] Sebastian Deorowicz,Szymon Grabowski,“DNA

compression for sequencing Data”, Algorithms for

Molecular Biology,2013

[3] ShanikaKuruppu, Bryan Beresford-Smith, Thomas

Conway and Justin Zobel, “Iterative Dictionary

Construction for Compression of Large DNA Data

sets”, Published by IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2012, pg

137-149

[4] Daniel C Jones, Walter L Ruzzo, XinxiaPeng and

Michael G Katze, ”Compression of next generation

sequencing reads aided by highly efficient de novo

assembly”, Nucleic Acid Research, 2012.

[5] Armando J Pinho, DiogoPratas and Sara P Garcia,

“GReEn: a tool for efficient compression of genome

resequencing data”, Nucleic Acid Research, 2012.

[6] HebaAfify, Muhammad Islam and Manal Abdel

Wahed, “DNA lossless diffrential compression

algorithm based on similarity of genomic sequence

database”, IJCSIT, 2011, pg 145-154.

[7] Lenwood S. Heath, Ao-ping Hou, Huadong Xia and
Liqing Zhang, “A Genome Compression Algorithm

Supporting Manipulation”,LSS

ComputSystBioinform Conf. Vol. 9. 2010, pg 38-49.

[8] Hyoung Do Kim, Ju-Han Kim, “DNA Data

Compression Based on Whole Genome Sequence”,

JCIT,2009, pg 82-85.

[9] Raffaele Giancarlo, DavideScaturro and FilippoUtro,

“Textual Data compression in computational

biology:a synopsis”, Bioinformatics,2009, pg 1575-

1586.

[10] Toshiko Matsumoto, KunihikoSadakane, Hiroshi

Imai, “Biological Sequence Compression

Algorithms”, Genome Informatics, 2000, pg 43-52.

[11] Rahul Gupta, Ashutosh Gupta, SunnetaAgarwal, ”A

Novel Data Compression Algorithm for Dynamic

Data”, IEEE, 2008, pg 266-271.

[12] S. R. Kodituwakku, U.S. Amarasinghe, “Comparison

of Lossless Data Compression Algorithms for text

data”, IJCSE, 2010,pg 416-425

[13] Parvinder Singh, ManojDuhan, Priyanka,”Enhancing

LZW Algorithm to increase Overall Performance”,

IEEE,2006, pg1-4.

[14] Tao Tao, Amar Mukherjee, “Pattern Matching in
LZW Compressed Files”, IEEECS, 2005, pg 929-937

[15] Tae Young Kim, Taejong Kim, “Improving Index

coding efficiency of Lempel-Ziv-Welch algorithm by

dictionary quasi-filling”, Electronic Letters, 1998,

1067-1068.

[16] LeszekGasieniec and WojciechRytter, “Almost

optimal fully LZW-compressed pattern matching”,

Proceedings Data Compression Conference, 1999, pg

316-325.

[17] Takuya Kida, Yusuke Shibata, Masayuki Takeda,

Ayumi Shinohara, SetsuoArikawa, “A unifying

framework for Compressed Pattern Matching”,

IEEE, 1999, pg 89-96.

[18] Eric C Rouchka, “Pattern Matching Techniques and

their applications to Computational Molecular

Biology”, 1999

[19] Mohammed Al-Iaham, Ibraheim M. M. ElEMary,

“Comparitive study between various Algorithms of

Data Compression Techniques”, IJCSNS, 2007, pg

281-291.

[20] Martin Farach, MikkelThorup, “String Matching in

Lempel-Ziv Compressed Strings”, ACM, 1995, pg

703-712.

