
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 11 (2015) pp. 29773-29782

© Research India Publications

http://www.ripublication.com

An Efficient Method For Computing Total Autocorrelation

Over Shared Binary Decision Diagram

S. R. Malathi

Department of Electronics and Communication Engg.,

Sri Venkateswara College of Engineering

Chennai, Tamilnadu, India, malathiraj@svce.ac.in

P. Sakthivel

Department of Electronics and Communication Engg., College of Engineering, Anna

University, Chennai, Tamil nadu, India, psv@annauniv.edu

Abstract

This paper describes about an efficient total autocorrelation computation

method for large multiple output Boolean functions over a Shared Binary

Decision Diagram (SBDD). The existing method performs the computation in

a single traversal of SBDD, using an additional memory function kept in the

hash table for storing the results of computation of autocorrelation between

two sub-diagrams in the SBDD. During the single traversal of the SBDD,

autocorrelation for each of the nodes representing the sub-diagrams is

computed at least once. The proposed method computes the total

autocorrelation coefficient using „Root Node Memory Function‟, which stores

all the cubes (minterms) representing the „Then‟ sub-diagram function and

„Else‟ sub-diagram function for each of the functions in the multiple output

Boolean function. The cubes representing the shifted function are compared

with the cubes representing the original function and total autocorrelation

coefficient is computed. The amount of computation required for

autocorrelation coefficient is not dependent on the number of nodes in the

SBDD as they do in the existing method. This makes the method an efficient

and feasible one in practical applications. The effectiveness of the method is

evaluated using the experimental results.

Keywords: SBDD; switching theory; autocorrelation; mutiple output

functions

Introduction
In order to achieve a more global view of the switching functions, transforms such as

Hadamard and Rademacher-Walsh are applied [1]. Applications of these transforms

29774 S. R. Malathi

in digital logic are well researched compared to the other transforms, such as the

autocorrelation transform. The autocorrelation transform has been used in various

areas including optimization and synthesis of combinational logic [2], variable

ordering for Binary Decision Diagrams [3], and to compute the estimate of a

function‟s complexity [4]. An analytic approach for the paths-reduction problem is

provided in [5] based on the autocorrelation coefficient. In this, an explicit expression

for the number of paths in decision diagrams as a linear function of so-called

weighted autocorrelation coefficients associated with the basis vectors that span the

finite Galois field GF(2
n
) is framed.

 Various applications in areas of communication and cryptography use Binary

sequences with optimal autocorrelation property. Special sequences like m-sequence,

generalized GMW sequences, and Legendre sequence [6], interleaved structure of

sequence [7], Binary sequences of period 4N [8], all aim on optimal autocorrelation

property. When a designer is given a function to work with for which no information

about the function‟s use or structure is provided, the values of the autocorrelation

coefficients for the switching function [9] may provide the designer with some

information about the type of function with which they are working. In these

applications, it is required to have an efficient method for computation of

autocorrelation of given binary sequences and check their properties.

 The methods for computing the autocorrelation coefficients are exponential in the

number of inputs to the function(s). Hence in practice, the complexity of computing

the autocorrelation is the main problem. New methods for computation of

autocorrelation coefficient have been introduced in [10] and [11].

 The problem of computing the autocorrelation coefficient for binary sequences can

be overcome up to some reasonable size, if it is viewed as truth vectors of Boolean

functions. Under these circumstances, Binary Decision Diagram (BDD) is used as the

data structure to perform the computations.

 Multi-output functions are widely used in practical applications. The total

autocorrelation of the function in such cases is computed as the sum of the

autocorrelations for separate outputs. That is, the algorithm has to be performed k

times for computing the autocorrelation of a function with k outputs. The generalized

BDD based algorithm for computing total autocorrelation to multiple output functions

represented by Shared BDDs (SBDD), in a single traversal is described in [12]. This

modified traversal of the sub-diagrams in SBDD makes use of an additional

autocorrelation memory function kept in the separate hash table, in order to avoid

repeated computation over shared sub-diagrams for different outputs.

 In this paper, an improved and efficient method to compute total autocorrelation of

SBDD using a „Root Node Memory Function‟ is discussed. The proposed method

avoids using additional autocorrelation memory functions needed in the hash table to

save the results of the autocorrelation between sub-functions represented by sub-

diagrams in the SBDD. Computation of autocorrelation for each function fi is

performed only at the corresponding root node of the function for the „Then‟ and

„Else‟ sub-diagrams. Hence the complexity of this method is independent of the

number of nodes in the SBDD.

An Efficient Method For Computing Total Autocorrelation Over Shared et. al. 29775

 The efficiency of the proposed method is estimated by extending the standard

BDD package [13] framework, with a procedure for calculating the autocorrelation

over SBDD. Experimental results using the benchmark functions for switching theory

and logic design, confirm the efficiency of the proposed method.

Background

A. Total Autocorrelation Function

Application of the autocorrelation transform to a switching function results in a

comparison of the function to itself, shifted by a specified amount. The

autocorrelation transform is a special case of the correlation transform, which is

defined as [14]:

 (1)

 If f and g are the same function, then this becomes the autocorrelation transform

also called the cross-correlation, or convolution function. To refer to the

autocorrelation transform, the superscript is generally omitted. Here autocorrelation

coefficient B(τ) is evaluated with f in the Boolean domain of {0,1}.

 The total autocorrelation function B(τ) for the multiple output function f = (f1 f2…

fk) is defined as the sum of autocorrelation functions for the outputs Bi(τ) [10], [11],

[12].

 (2)

 The functions fi and their autocorrelation coefficients Bi are represented by vectors

in matrix notation, Fi = [fi(0), fi(1),. . . . , fi(2
n
-1)]

T
 and Bi = [Bi(0), Bi(1),. . . . , Bi(2

n
-

1)]
T
 , respectively. The autocorrelation coefficients are computed by using the

autocorrelation coefficient matrix Ri(n) as [11];

 Bi = Ri(n) Fi (3)

 Where the matrix Ri(n) consists of:

(4)

 The first row of Ri(n) shows the function values of fi(x). The other rows show the

shifted values of the function fi(x⨁τ), for τ = (1, 2, ….. 2
n
-1). It is shown in [11] that

the shifting of the argument corresponds to the permutation of labels at the edges of

certain nodes in the BDD. This feature is exploited in computing the autocorrelation

over SBDD.

B. Shared Binary Decision Diagram

Shared Binary Decision Diagram (SBDD) is an effective way of representing multiple

output switching functions. In an SBDD, the output of a particular switching function

29776 S. R. Malathi

is derived by sharing isomorphic sub-diagrams in the BDD [15].The main feature of

SBDDs is illustrated by the following example.

 Example-1: For a two output, four variable function f = (f1, f2), where f1 and f2 are

defined by the truth vectors F1 = [0000, 0011, 0100, 0111, 1000]
T
, F2 = [0011, 0100,

1000, 1100]
T
 , the corresponding SBDD is shown in Fig. 1.

 The main feature of SBDD is that it can compactly represent multiple output

functions with large number of identical sub-functions, which is illustrated in this

example. It is this feature that is highly exploited in computing the autocorrelation

over SBDDs.

Figure 1: SBDD of f = (f1, f2)

C. Autocorrelation Coefficient Computation using BDD Method

It requires an exponential number of calculations in the number of variables to

compute the autocorrelation coefficients for a given function using the Equation (2).

But, the computation complexity of BDD based method is proportional to the size of

the diagram (number of nodes). The corresponding BDD based methods to compute

the autocorrelation coefficient are discussed as the recursive BDD method in [10] and

the in-place BDD method in [11]. Where, using the single BDD for f(x), the shifted

function f(x⨁ τ) is determined with permuted labels at the edges of all the nodes for

the variables xi whose indices i correspond to the 1-bits in the binary expansion of τ =

τ1 τ2 . . . τn .

 Example-2: Fig. 2 shows the BDD of the function f1(x) = f1(x1 x2 x3 x4) in Example

1, defined by the truth vector F1 = [0000, 0011, 0100, 0111, 1000]
T
. Fig. 3 shows the

BDD of the shifted function f1(x⨁ 4). For τ = 4 = (0100)2 over the BDD of f1(x) the

values of f1(x⨁ 4) are determined by exchanging the traversal over the outgoing edges

for the nodes x3, since the nonzero bit in τ = (0100)2corresponds to the variable x2.

The traversal over the BDD from the root node to the constant node for f1(x) and

f1(x⨁ 4) are labelled as (a) and (b) in Fig. 2 and Fig. 3 respectively.

 0

 0

Х1

Х3

Х4

Х2

0

Х1

Х3

Х4

 1 0

Х2

 1

 0

Х3

 1 0

 1
1

1

0

0

 1

0

1

f1 f2

1
1

 0

An Efficient Method For Computing Total Autocorrelation Over Shared et. al. 29777

a

 0

 0
Х

3

Х

4

Х

2

Х

1

Х

3

Х

4

 1 0

 1

 0

1

1

0

1

f1

1
1

 0

0

Figure 2: BDD of the function f1(x)

Figure 3: BDD of the function f1(x⨁ 4)

D. Autocorrelation Coefficient Computation using SBDD Traversal Method

Additional autocorrelation memory functions are used in the hash table [12] to speed

up the recursive traversal of the SBDD. These memory functions are used to save the

results of the computation of the autocorrelation between sub-functions represented

by sub-diagrams in the SBDD. Each unique autocorrelation memory function has an

entry in the hash table. Before a new autocorrelation value is calculated, the hash table

is looked up to determine if the result of the autocorrelation already exists. If so, the

existing result is used. In [12] the autocorrelation memory function is represented by

the triple (original, shifted, result), where result denotes the integer result of the

autocorrelation performed on the two input arguments original (sub-diagram of

SBDD(f(x))) and shifted (sub-diagram of SBDD(f(x⨁ 4))). The autocorrelation

b

 0
 0

 0
Х3

Х4

Х2

Х1

Х3

Х4

 1 0

 1

1

0

1

f1

1
1

 0

0
1

29778 S. R. Malathi

coefficients for sub-functions represented by all the nodes in the SBDD are

determined. The required value is the autocorrelation memory function B(τ) for the

root node. Therefore the complexity of this method is proportional to the number of

nodes in the SBDD for a multi output function. Fig. 4 shows the computation of the

autocorrelation coefficient B(4) using the BDD for the function f1(x) in Example 2

with the autocorrelation memory functions (ACMF)assigned to corresponding pairs of

sub-diagrams. The fields that store the original and shifted integer values are

represented by dots and the result B(τ) that should be computed for the sub-diagram

rooted in the considered node is shown.

Figure 4: BDD of the function f1(x)

Autocorrelation Coefficient Computation Using Root Node Memory

Function (RNMF)
Given an SBDD for the function f(x1 x2. . . xn) = f1(x1 x2. . . xn), , fk(x1 x2. . . xn),

the autocorrelation coefficient can be computed for each function and added to get the

total autocorrelation coefficient. The procedure to compute the autocorrelation

coefficient for SBDD using the Root Node Memory Function is discussed below.

Procedure: Root Node Memory Function (RNMF) method

1. Traverse from a root node of the given SBDD and determine all the cubes

(minterms) of the function at the corresponding root node. A Root Node

Memory Function Table is used to save the corresponding cubes of each

function.

2. Divide the set of cubes representing the function fi(x1 x2 . . . xn), into „Then‟

sub-diagram cubes fTi(x1 x2 . . . xn) and „Else‟ sub-diagram cubes fEi(x1 x2 . . .

• 1 •

ACMF1

• 0 •

ACMF4

• 1 •

ACMF5

• 1 •

ACMF2

• 0 •

ACMF3

• 4 •

ACMF6

 0

 0
Х3

Х4

Х2

Х1

Х3

Х4

 1 0

 1

 0

1

1

0

1

f1

1
1

 0

0

An Efficient Method For Computing Total Autocorrelation Over Shared et. al. 29779

xn). [In a BDD all the cubes of a function fi(x1 x2 . . . xn) starting with „1‟,

represents the „Then‟ sub-diagram and all those starting with „0‟ represents the

„Else‟ sub-diagram]

3. Mark all the nodes in the SBDD for the variables xi whose indices correspond

to the 1-bits in the binary expansion of autocorrelation coefficient τ = τ1τ2. . .

τn and permute the labels at the outgoing edges of the nodes xi .

4. Shifted„Then‟ sub-diagram cubes fTi((x1 x2 . . . xn)⨁(τ1τ2. . . τn)) and „Else‟ sub-

diagram cubes fEi((x1 x2 . . . xn)⨁ (τ1τ2. . . τn)) are computed by complementing

the variables xi whose indices correspond to the 1-bits in the binary expansion

of autocorrelation coefficient τ = τ1τ2. . . τn.

5. Compare original„Then‟ sub-diagram cubes fTi(x1 x2 . . . xn) with the

Shifted„Then‟ sub-diagram cubes fTi((x1 x2 . . . xn)⨁ (τ1τ2. . . τn)). Similarly

compare original and shifted„Else‟ sub-diagram cubes.

6. Autocorrelation coefficient of a function fi is equal to the sum of total number

of similar (matching) cubes in the „Then‟ and „Else‟ sub-functions.

7. Repeat step-2 onwards for all the „k‟ Root Nodes.

8. Total autocorrelation B(τ) of SBDD is B(τ) = B1(τ) + ……+Bk(τ).

 In this procedure autocorrelation coefficients for sub-functions represented by each

of the node in the SBDD need not be determined. Hence additional autocorrelation

memory functions needed in the hash table [12] to save the results of the

autocorrelation between sub-functions represented by sub-diagrams in the SBDD are

avoided. Computation of the autocorrelation for each function fi(x) is performed only

at the corresponding Root Node of the function. Therefore, ignoring the negligible

amount of time needed for comparing the cubes, the complexity of this procedure is

independent of the number of nodes.

 The effectiveness of the RNMF method is highlighted using an illustration. For the

SBDD shown in Fig. 1, the RNMF procedure will result in the list of cubes for f1, f2 as

shown in Table-1. The comparison between original and shifted sub-functions for

„Then‟ and „Else‟ sub-diagrams results in the total autocorrelation coefficient B(4) =

6.

Table 1: Computing The Total Autocorrelation Coefficient Using RNMF Method

Original and Shifted

Sub-functions

Cubes stored due to

RNMF procedure

Number of

similar cubes

Autocorrelation

Coefficient

fT1(x) 1000
0

B1(4) = 4
fT1(x⨁ 4) 1100

fE1(x) 0000, 0100, 0011, 0111
4

fE1(x⨁ 4) 0100, 0000, 0111, 0011

fT2(x) 1000, 1100
2

B2(4) = 2 fT2(x⨁ 4) 1100, 1000

fE2(x) 0011, 0100 0

fE2(x⨁ 4) 0111, 0000

Total Autocorrelation Coefficient B(4) = 6

29780 S. R. Malathi

Experimental Results
The proposed method is evaluated by comparing the time to compute the

autocorrelation coefficient with the existing in-place BDD method and the SBDD

traversal method [12]. The standard BDD package [13] framework was extended,

with a procedure for calculating the total autocorrelation over SBDD using C++.

Standard benchmarks were used to test the proposed RNMF procedure on a Pentium

IV PC, at 2.66 GHz speed and 4GB RAM. The time in seconds to compute the total

autocorrelation coefficient includes the time to construct SBDD. Table-2 gives a

comparison of the time to compute the autocorrelation coefficient with the existing in-

place BDD method, the SBDD traversal method and the proposed RNMF method.

The corresponding graphical representation is shown in Fig. 5.

Figure 5: Comparison of the time to compute the autocorrelation coefficient

 In Table-2, the data are in the increasing order of the number of SBDD nodes.

Depending on the SBDD size the improvement in the speed of computing the

autocorrelation coefficient varies from 7 to 50 percentages compared to the SBDD

Traversal method. It can be observed that the speedup is very large for functions with

nodes greater than 1000. Clearly the time to compute the autocorrelation coefficient is

slightly greater than the time to construct the SBDD.

Table 2: Comparison of the total autocorrelation computation time between the

existing In-place BDD method [11], SBDD Traversal method [12] and the proposed

RNMF method

Bench-

mark
In Out

SBDD

Size

(Nodes)

In-Place

BDD Method

(Sec)

SBDD

Traversal

Method (Sec)

Proposed

RNMF Method

(Sec)

misj 35 14 58 0.021 0.015 0.011

cordic 23 2 80 0.089 0.067 0.055

b7 8 31 106 0.025 0.017 0.011

misex2 25 18 140 0.016 0.013 0.010

in3 35 29 377 0.046 0.036 0.028

An Efficient Method For Computing Total Autocorrelation Over Shared et. al. 29781

b4 33 23 512 0.062 0.047 0.035

jbp 36 57 550 0.072 0.046 0.036

ibm 48 17 835 0.109 0.102 0.095

table5 17 15 873 0.064 0.041 0.038

apex4 9 19 1021 0.094 0.089 0.073

ex1010 10 10 1079 0.093 0.078 0.077

alu4 14 8 1352 0.296 0.234 0.128

cps 24 109 2318 0.327 0.265 0.154

signet 39 8 2956 1.276 0.658 0.349

b2 16 17 4454 1.123 0.605 0.304

Conclusion
In this paper, the problem of computing the autocorrelation coefficient for binary

sequences of reasonable size is overcome up to some extent, by viewing the

sequences as the truth vectors of Boolean functions. Shared Binary Decision Diagram

(SBDD) is used as the data structure to perform the computations. The autocorrelation

of multiple output function f = (f1, …, fk) is computed by introducing only „k‟ Root

Node Memory Function (RNMF). Whereas in „SBDD Traversal Method [12],‟

ACMF for each node has to be computed once before the required final root node

autocorrelation is computed. By the RNMF procedure, maintaining a hash table as in

to store the autocorrelation of sub-functions represented by each node is avoided. The

proposed RNMF procedure was evaluated by the experiments conducted on

benchmark functions and the efficiency confirmed. Experiments show that the time to

compute the autocorrelation coefficient is slightly greater than the time to construct

the SBDD it self, from which it is evident that no significant additional time is

required to compute the autocorrelation compared to other methods.

References

[1]. S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in Digital

Logic.Orlando, Florida: Academic Press, Inc., 1985.

[2]. R. Tomczuk, “Autocorrelation and Decomposition Methods in

Combinational Logic Design,” Ph.D. dissertation, University of Victoria,

1996.

[3]. J. E. Rice, J. C. Muzio, and M. Serra, “The Use of Autocorrelation

Coefficients for Variable Ordering for ROBDDs,” in Proceedings of the

4th International Workshop on Applications of th e Reed-M¨uller

Expansion in Circuit Design, 1999.

[4]. M. Karpovsky, Finite Orthogonal Series in the Design of Digital Devices.

John Wiley & Sons, 1976.

[5]. O. Keren, I. Levin, and R. S. Stankovi´c, “Determining the number of

paths in decision diagrams by using autocorrelation coefficients,” IEEE

29782 S. R. Malathi

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 1, pp. 31–

44, Jan. 2011.

[6]. S. W. Golomb and G. Gong, Signal Design for Good Correlation for

Wireless Communication , Cryptography, and Radar, Cambridge

University Press, Cambridge, 2005.

[7]. G. Gong, “Theory and applications of q-ary interleaved sequences,” IEEE

Trans. Inf. Theory, vol.41, no.2, pp.400-411, March 1995.

[8]. X. Ma, Q. Wen, J. Zhang, and X. Zhang, “New constructions of binary

sequences with good autocorrelation based on interleaving technique,”

IEICE Trans. Fundamentals, vol. E94-A, no.12, pp.2874-2878, Dec. 2011.

[9]. J. E. Rice, “Autocorrelation Coefficients in the Representation and

Classification of Switching Functions,” Ph.D. dissertation, University of

Victoria, 2003.

[10]. J. E. Rice and J. C. Muzio, “Methods for calculating autocorrelation

coefficients,” in Proc. 4th Int. Workshop on Boolean Problems, pp. 69–76,

Freiberg, Germany, Sept. 2000.

[11]. R. S. Stanković and M. G. Karpovsky, “Remarks on calculation of

autocorrelation on finite dyadic groups by local transformations of

decision diagrams,” Lect. Notes Comput. Sci., vol.3643, pp.301-310,

Springer Berlin, 2005.

[12]. M. Radmanović, R. S. Stanković, and C. Moraga, “Computation of the

Total Autocorrelation over Shared Binary Decision Diagrams,” IEICE

Trans. Fundamentals, vol. E97-A, No.5, pp.1140-1143, May. 2014.

[13]. Fabio Somenzi. “CUDD: Colorado UniversityDecision Diagram

package”University of Colorado at Boulder, http://vlsi.colorado.edu/

fabio/CUDD/.

[14]. M. Karpovsky, Finite Orthogonal Series in the Design of Digital Devices.

John Wiley & Sons, 1976

[15]. T. Sasao and M. Fujita, Representations of Discrete Function, Kluwer

Academic Publishers, Boston, 1996.

