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Abstract 
 

This paper describes about an efficient total autocorrelation computation 

method for large multiple output Boolean functions over a Shared Binary 

Decision Diagram (SBDD). The existing method performs the computation in 

a single traversal of SBDD, using an additional memory function kept in the 

hash table for storing the results of computation of autocorrelation between 

two sub-diagrams in the SBDD. During the single traversal of the SBDD, 

autocorrelation for each of the nodes representing the sub-diagrams is 

computed at least once. The proposed method computes the total 

autocorrelation coefficient using „Root Node Memory Function‟, which stores 

all the cubes (minterms) representing the „Then‟ sub-diagram function and 

„Else‟ sub-diagram function for each of the functions in the multiple output 

Boolean function. The cubes representing the shifted function are compared 

with the cubes representing the original function and total autocorrelation 

coefficient is computed. The amount of computation required for 

autocorrelation coefficient is not dependent on the number of nodes in the 

SBDD as they do in the existing method. This makes the method an efficient 

and feasible one in practical applications. The effectiveness of the method is 

evaluated using the experimental results. 

 

Keywords: SBDD; switching theory; autocorrelation; mutiple output 

functions 

 

 

Introduction  
In order to achieve a more global view of the switching functions, transforms such as 

Hadamard and Rademacher-Walsh are applied [1]. Applications of these transforms 
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in digital logic are well researched compared to the other transforms, such as the 

autocorrelation transform. The autocorrelation transform has been used in various 

areas including optimization and synthesis of combinational logic [2], variable 

ordering for Binary Decision Diagrams [3], and to compute the estimate of a 

function‟s complexity [4]. An analytic approach for the paths-reduction problem is 

provided in [5] based on the autocorrelation coefficient. In this, an explicit expression 

for the number of paths in decision diagrams as a linear function of so-called 

weighted autocorrelation coefficients associated with the basis vectors that span the 

finite Galois field GF(2
n
) is framed.  

     Various applications in areas of communication and cryptography use Binary 

sequences with optimal autocorrelation property. Special sequences like m-sequence, 

generalized GMW sequences, and Legendre sequence [6], interleaved structure of 

sequence [7], Binary sequences of period 4N [8], all aim on optimal autocorrelation 

property. When a designer is given a function to work with for which no information 

about the function‟s use or structure is provided, the values of the autocorrelation 

coefficients for the switching function [9] may provide the designer with some 

information about the type of function with which they are working. In these 

applications, it is required to have an efficient method for computation of 

autocorrelation of given binary sequences and check their properties. 

     The methods for computing the autocorrelation coefficients are exponential in the 

number of inputs to the function(s). Hence in practice, the complexity of computing 

the autocorrelation is the main problem. New methods for computation of 

autocorrelation coefficient have been introduced in [10] and [11].  

     The problem of computing the autocorrelation coefficient for binary sequences can 

be overcome up to some reasonable size, if it is viewed as truth vectors of Boolean 

functions. Under these circumstances, Binary Decision Diagram (BDD) is used as the 

data structure to perform the computations. 

     Multi-output functions are widely used in practical applications. The total 

autocorrelation of the function in such cases is computed as the sum of the 

autocorrelations for separate outputs. That is, the algorithm has to be performed k 

times for computing the autocorrelation of a function with k outputs. The generalized 

BDD based algorithm for computing total autocorrelation to multiple output functions 

represented by Shared BDDs (SBDD), in a single traversal is described in [12]. This 

modified traversal of the sub-diagrams in SBDD makes use of an additional 

autocorrelation memory function kept in the separate hash table, in order to avoid 

repeated computation over shared sub-diagrams for different outputs. 

     In this paper, an improved and efficient method to compute total autocorrelation of 

SBDD using a „Root Node Memory Function‟ is discussed. The proposed method 

avoids using additional autocorrelation memory functions needed in the hash table to 

save the results of the autocorrelation between sub-functions represented by sub-

diagrams in the SBDD. Computation of autocorrelation for each function fi is 

performed only at the corresponding root node of the function for the „Then‟ and 

„Else‟ sub-diagrams. Hence the complexity of this method is independent of the 

number of nodes in the SBDD. 
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     The efficiency of the proposed method is estimated by extending the standard 

BDD package [13] framework, with a procedure for calculating the autocorrelation 

over SBDD. Experimental results using the benchmark functions for switching theory 

and logic design, confirm the efficiency of the proposed method. 

 

 

Background 
 

A. Total Autocorrelation Function 

Application of the autocorrelation transform to a switching function results in a 

comparison of the function to itself, shifted by a specified amount. The 

autocorrelation transform is a special case of the correlation transform, which is 

defined as [14]: 

            

 (1) 

 If f and g are the same function, then this becomes the autocorrelation transform 

also called the cross-correlation, or convolution function. To refer to the 

autocorrelation transform, the superscript is generally omitted. Here autocorrelation 

coefficient B(τ) is evaluated with f in the Boolean domain of {0,1}. 

     The total autocorrelation function B(τ) for the multiple output function f = (f1 f2… 

fk) is defined as the sum of autocorrelation functions for the outputs Bi(τ) [10], [11], 

[12]. 

               (2) 

 The functions fi and their autocorrelation coefficients Bi are represented by vectors 

in matrix notation, Fi = [fi(0), fi(1),. . . . , fi(2
n
-1)]

T
 and Bi = [Bi(0), Bi(1),. . . . , Bi(2

n
-

1)]
T
 , respectively. The autocorrelation coefficients are computed by using the 

autocorrelation coefficient matrix Ri(n) as [11]; 

     Bi = Ri(n) Fi            (3) 

 Where the matrix Ri(n) consists of: 

            

(4)

 

                   
 

 The first row of Ri(n) shows the function values of fi(x). The other rows show the 

shifted values of the function fi(x⨁τ), for τ = (1, 2, ….. 2
n
-1). It is shown in [11] that 

the shifting of the argument corresponds to the permutation of labels at the edges of 

certain nodes in the BDD. This feature is exploited in computing the autocorrelation 

over SBDD. 

 

B. Shared Binary Decision Diagram 

Shared Binary Decision Diagram (SBDD) is an effective way of representing multiple 

output switching functions. In an SBDD, the output of a particular switching function 
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is derived by sharing isomorphic sub-diagrams in the BDD [15].The main feature of 

SBDDs is illustrated by the following example. 

 Example-1: For a two output, four variable function f = (f1, f2), where f1 and f2 are 

defined by the truth vectors F1 = [0000, 0011, 0100, 0111, 1000]
T
, F2 = [0011, 0100, 

1000, 1100]
T
 , the corresponding SBDD is shown in Fig. 1. 

 The main feature of SBDD is that it can compactly represent multiple output 

functions with large number of identical sub-functions, which is illustrated in this 

example. It is this feature that is highly exploited in computing the autocorrelation 

over SBDDs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: SBDD of f = (f1, f2) 

 

C. Autocorrelation Coefficient Computation using BDD Method 

It requires an exponential number of calculations in the number of variables to 

compute the autocorrelation coefficients for a given function using the Equation (2). 

But, the computation complexity of BDD based method is proportional to the size of 

the diagram (number of nodes). The corresponding BDD based methods to compute 

the autocorrelation coefficient are discussed as the recursive BDD method in [10] and 

the in-place BDD method in [11]. Where, using the single BDD for f(x), the shifted 

function f(x⨁ τ) is determined with permuted labels at the edges of all the nodes for 

the variables xi whose indices i correspond to the 1-bits in the binary expansion of τ = 

τ1 τ2 . . . τn . 

     Example-2: Fig. 2 shows the BDD of the function f1(x) = f1(x1 x2 x3 x4) in Example 

1, defined by the truth vector F1 = [0000, 0011, 0100, 0111, 1000]
T
. Fig. 3 shows the 

BDD of the shifted function f1(x⨁ 4). For τ = 4 = (0100)2 over the BDD of f1(x) the 

values of f1(x⨁ 4) are determined by exchanging the traversal over the outgoing edges 

for the nodes x3, since the nonzero bit in τ = (0100)2corresponds to the variable x2. 

The traversal over the BDD from the root node to the constant node for f1(x) and 

f1(x⨁ 4) are labelled as (a) and (b) in Fig. 2 and Fig. 3 respectively. 
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Figure 2: BDD of the function f1(x) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: BDD of the function f1(x⨁ 4) 

 

D. Autocorrelation Coefficient Computation using SBDD Traversal Method 

Additional autocorrelation memory functions are used in the hash table [12] to speed 

up the recursive traversal of the SBDD. These memory functions are used to save the 

results of the computation of the autocorrelation between sub-functions represented 

by sub-diagrams in the SBDD. Each unique autocorrelation memory function has an 

entry in the hash table. Before a new autocorrelation value is calculated, the hash table 

is looked up to determine if the result of the autocorrelation already exists. If so, the 

existing result is used. In [12] the autocorrelation memory function is represented by 

the triple (original, shifted, result), where result denotes the integer result of the 

autocorrelation performed on the two input arguments original (sub-diagram of 

SBDD(f(x)) ) and shifted (sub-diagram of SBDD(f(x⨁ 4))). The autocorrelation 
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coefficients for sub-functions represented by all the nodes in the SBDD are 

determined. The required value is the autocorrelation memory function B(τ) for the 

root node. Therefore the complexity of this method is proportional to the number of 

nodes in the SBDD for a multi output function. Fig. 4 shows the computation of the 

autocorrelation coefficient B(4) using the BDD for the function f1(x) in Example 2 

with the autocorrelation memory functions (ACMF)assigned to corresponding pairs of 

sub-diagrams. The fields that store the original and shifted integer values are 

represented by dots and the result B(τ) that should be computed for the sub-diagram 

rooted in the considered node is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: BDD of the function f1(x) 

 

 

Autocorrelation Coefficient Computation Using Root Node Memory 

Function (RNMF) 
Given an SBDD for the function f(x1 x2. . . xn) = f1(x1 x2. . . xn), . . . . . , fk(x1 x2. . . xn), 

the autocorrelation coefficient can be computed for each function and added to get the 

total autocorrelation coefficient. The procedure to compute the autocorrelation 

coefficient for SBDD using the Root Node Memory Function is discussed below. 

 

Procedure: Root Node Memory Function (RNMF) method  

1. Traverse from a root node of the given SBDD and determine all the cubes 

(minterms) of the function at the corresponding root node. A Root Node 

Memory Function Table is used to save the corresponding cubes of each 

function. 

2. Divide the set of cubes representing the function fi(x1 x2 . . . xn), into „Then‟ 

sub-diagram cubes fTi(x1 x2 . . . xn) and „Else‟ sub-diagram cubes fEi(x1 x2 . . . 
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xn). [In a BDD all the cubes of a function fi(x1 x2 . . . xn) starting with „1‟, 

represents the „Then‟ sub-diagram and all those starting with „0‟ represents the 

„Else‟ sub-diagram] 

3. Mark all the nodes in the SBDD for the variables xi whose indices correspond 

to the 1-bits in the binary expansion of autocorrelation coefficient τ = τ1τ2. . . 

τn and permute the labels at the outgoing edges of the nodes xi . 

4. Shifted„Then‟ sub-diagram cubes fTi((x1 x2 . . . xn)⨁(τ1τ2. . . τn)) and „Else‟ sub-

diagram cubes fEi((x1 x2 . . . xn)⨁ (τ1τ2. . . τn)) are computed by complementing 

the variables xi whose indices correspond to the 1-bits in the binary expansion 

of autocorrelation coefficient τ = τ1τ2. . . τn.  

5. Compare original„Then‟ sub-diagram cubes fTi(x1 x2 . . . xn) with the 

Shifted„Then‟ sub-diagram cubes fTi((x1 x2 . . . xn)⨁ (τ1τ2. . . τn)). Similarly 

compare original and shifted„Else‟ sub-diagram cubes. 

6. Autocorrelation coefficient of a function fi is equal to the sum of total number 

of similar (matching) cubes in the „Then‟ and „Else‟ sub-functions. 

7. Repeat step-2 onwards for all the „k‟ Root Nodes. 

8. Total autocorrelation B(τ) of SBDD is B(τ) = B1(τ) + ……+Bk(τ). 

     In this procedure autocorrelation coefficients for sub-functions represented by each 

of the node in the SBDD need not be determined. Hence additional autocorrelation 

memory functions needed in the hash table [12] to save the results of the 

autocorrelation between sub-functions represented by sub-diagrams in the SBDD are 

avoided. Computation of the autocorrelation for each function fi(x) is performed only 

at the corresponding Root Node of the function. Therefore, ignoring the negligible 

amount of time needed for comparing the cubes, the complexity of this procedure is 

independent of the number of nodes. 

     The effectiveness of the RNMF method is highlighted using an illustration. For the 

SBDD shown in Fig. 1, the RNMF procedure will result in the list of cubes for f1, f2 as 

shown in Table-1. The comparison between original and shifted sub-functions for 

„Then‟ and „Else‟ sub-diagrams results in the total autocorrelation coefficient B(4) = 

6. 

 

Table 1: Computing The Total Autocorrelation Coefficient Using RNMF Method 

 

Original and Shifted 

Sub-functions 

Cubes stored due to 

RNMF procedure 

Number of 

similar cubes 

Autocorrelation 

Coefficient 

fT1(x) 1000  
0 

B1(4) = 4 
fT1(x⨁ 4) 1100  

fE1(x) 0000, 0100, 0011, 0111 
4 

fE1(x⨁ 4) 0100, 0000, 0111, 0011 

fT2(x) 1000, 1100  
2 

B2(4) = 2 fT2(x⨁ 4) 1100, 1000  

fE2(x) 0011, 0100 0 

fE2(x⨁ 4) 0111, 0000   

Total Autocorrelation Coefficient B(4) = 6 
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Experimental Results 
The proposed method is evaluated by comparing the time to compute the 

autocorrelation coefficient with the existing in-place BDD method and the SBDD 

traversal method [12]. The standard BDD package [13] framework was extended, 

with a procedure for calculating the total autocorrelation over SBDD using C++. 

Standard benchmarks were used to test the proposed RNMF procedure on a Pentium 

IV PC, at 2.66 GHz speed and 4GB RAM. The time in seconds to compute the total 

autocorrelation coefficient includes the time to construct SBDD. Table-2 gives a 

comparison of the time to compute the autocorrelation coefficient with the existing in-

place BDD method, the SBDD traversal method and the proposed RNMF method. 

The corresponding graphical representation is shown in Fig. 5.  

 

 
 

Figure 5: Comparison of the time to compute the autocorrelation coefficient 

 

     In Table-2, the data are in the increasing order of the number of SBDD nodes. 

Depending on the SBDD size the improvement in the speed of computing the 

autocorrelation coefficient varies from 7 to 50 percentages compared to the SBDD 

Traversal method. It can be observed that the speedup is very large for functions with 

nodes greater than 1000. Clearly the time to compute the autocorrelation coefficient is 

slightly greater than the time to construct the SBDD. 

 

Table 2: Comparison of the total autocorrelation computation time between the 

existing In-place BDD method [11], SBDD Traversal method [12] and the proposed 

RNMF method 

 

Bench-

mark 
In Out 

SBDD 

Size 

(Nodes) 

In-Place 

BDD Method 

(Sec) 

SBDD 

Traversal 

Method (Sec) 

Proposed 

RNMF Method 

(Sec) 

misj 35 14 58 0.021 0.015 0.011 

cordic 23 2 80 0.089 0.067 0.055 

b7 8 31 106 0.025 0.017 0.011 

misex2 25 18 140 0.016 0.013 0.010 

in3 35 29 377 0.046 0.036 0.028 
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b4 33 23 512 0.062 0.047 0.035 

jbp 36 57 550 0.072 0.046 0.036 

ibm 48 17 835 0.109 0.102 0.095 

table5 17 15 873 0.064 0.041 0.038 

apex4 9 19 1021 0.094 0.089 0.073 

ex1010 10 10 1079 0.093 0.078 0.077 

alu4 14 8 1352 0.296 0.234 0.128 

cps 24 109 2318 0.327 0.265 0.154 

signet 39 8 2956 1.276 0.658 0.349 

b2 16 17 4454 1.123 0.605 0.304 

 

 

Conclusion 
In this paper, the problem of computing the autocorrelation coefficient for binary 

sequences of reasonable size is overcome up to some extent, by viewing the 

sequences as the truth vectors of Boolean functions. Shared Binary Decision Diagram 

(SBDD) is used as the data structure to perform the computations. The autocorrelation 

of multiple output function f = (f1, …, fk) is computed by introducing only „k‟ Root 

Node Memory Function (RNMF). Whereas in „SBDD Traversal Method [12],‟ 

ACMF for each node has to be computed once before the required final root node 

autocorrelation is computed. By the RNMF procedure, maintaining a hash table as in 

to store the autocorrelation of sub-functions represented by each node is avoided. The 

proposed RNMF procedure was evaluated by the experiments conducted on 

benchmark functions and the efficiency confirmed. Experiments show that the time to 

compute the autocorrelation coefficient is slightly greater than the time to construct 

the SBDD it self, from which it is evident that no significant additional time is 

required to compute the autocorrelation compared to other methods.  
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