
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 11 (2015) pp. 27513-27524

© Research India Publications

http://www.ripublication.com

Comparison of Checkpointed Aided Parallel Execution

Against Mapreduce

Nisha Rani N, Shiju Sathyadevan

Amrita Center For Cyber Security Systems & Network, Amrita University, Kollam,

India nisharani9028@gmail.com,shiju.s@am.amrita.edu

Eric Renault, Viet Ha Hai

Institute telecom – Telecom Sudparis, Evry, France Franceeric.renault@telecom-

sudparis.eu,

haviethaivn@yahoo.com

Abstract

Researchers have been actively working for the past few decades in

parallelizing programs so as to cut through massive data chunks for faster

response. Current day processors are faster and have more number of cores. So

as to utilize the computational capabilities of the processors to its full extend,

processes need to be run in parallel. A task can be performed in lesser time by

using parallel programming. But writing a parallel programming manually is a

difficult and time consuming task. So we have to use tools to convert a

sequential program to a parallel one automatically. Open-MP (Open Multi-

Processing) is a set of directives which can be used to generate parallel

programs written in c, c++, FORTRAN to efficient parallel programs. A new

paradigm called CAPE (Check-pointing Aided Parallel Execution) is

introduced that uses check-pointing technique to generate parallel programs

from sequential programs provided with Open-MP directives. Map-reduce is a

programming model for performing parallel processing. In this paper we have

compared the performance and coding complexity of map-reduce against

CAPE under different levels of difficulties.

Keywords: CAPE; Check pointing Aided Parallel Execution; Hadoop; Single

Instruction Multiple Data; SIMD

Introduction
Several research initiatives are active in finding new means for improving the

performance of processors for high throughput, faster processing. There are several

advantages for parallel programs over sequential programs. In sequential

programming, the processes execute in a sequential order one after the other. But in

27514 Nisha Rani N

parallel programming, we have multiple processes and threads that execute

simultaneously at the same time. In this paper we are looking into the capabilities of a

new platform CAPE (Check pointing Aided Parallel Execution) for converting

sequential program to parallel program thus improving the overall efficiency. CAPE is

an automatic paradigm for doing this conversion. CAPE is capable of converting

simple as well as complex sequential programs to efficient parallel programs with

ease achieving better performance against similar processing frameworks. CAPE is

able to achieve this conversion with the help of Open MP directives [3].

 Section 2 provides an overview about CAPE, its architecture, working and general

algorithm that is being considered in this paper. In section 3, there is a brief

description about Hadoop and where its architecture and how it works is discussed.

Section 4 details SIMD architecture and how it is used in CAPE and. This section also

explains how both CAPE and uses SIMD architecture. Section 5 does the

performance evaluation of CAPE and. We monitor the behavior of parallel programs

while running in CAPE and in. We evaluate CAPE and on the basis of different

criteria: no of lines of code, complexity in coding, and execution time. Section 6

explains the advantages of using CAPE over based on the above criteria. Section 7

and section 8 deals with conclusion and future work respectively.

Related Works
There are many works related to parallel computing since it is necessary to utilize the

capability of fast processors and to obtain high throughput. Viet Hai Ha and Eric

Renault has proposed checkpoint for converting sequential program to parallel

program [1], [2], [4]. Their works deal with different check pointing approaches that

can be engaged in automatic conversion of sequential programs to run in parallel

mode. The approaches are:

 Continuous check pointing: All the information is considered from the

beginning of execution of a program. Advantage of this approach is its

simplicity. Disadvantage is that the parts that are not modified are also

examined.

 Discontinues check pointing: Modified part since the beginning of a program

is considered. Advantage is the size of the checkpoint. Drawback is the

decrease in efficiency due to continuous monitoring of process memory.

 Incremental discontinuous check pointing: Information regarding where to

add the checkpoints is considered. The drawbacks of above approaches are

eliminated in this approach.

CAPE
CAPE stands for Check pointing Aided Parallel Execution. It transforms a sequential

program to a distributed program. A sequential program is split into different

segments and these segments are distributed over a set of machines called nodes to

execute in parallel. The parts of the original code that have to be executed in parallel

are identified by programmers while using Open MP pragma directives. CAPE is able

Comparison of Checkpointed Aided Parallel Execution Against Mapreduce 27515

to work with the Open MP directives equipped with the programs written in c, c++

programming languages. CAPE is language independent and hence can be extended

to any other programming languages.

Figure 1: Architecture of CAPE

 Check pointing is a technique for inserting fault tolerance into computing systems

[11]. It stores a snapshot of the current application state and uses for resuming the

execution in case of failure. It is the backbone for rollback recovery, playback

debugging, process migration, job swapping, load balancing, periodic backup, and

many other functions. The main attraction is that, they can also be used in order to

transform a sequential program to a parallel program automatically. CAPE use check

pointing to transform a sequential program to a parallel or distributed program.

 CAPE is based on Master-Slave Architecture model. The sequential program

resides in the master node as shown in Figure1. Master node splits the program into

different segments and distributes it into a set of slave nodes. Slave nodes execute the

respective segments and produce pre-output results. The pre-outputs are then fed back

to the master node. Master node combines these pre-outputs from the slave nodes and

produces the target result. Let us take the example of matrix multiplication. The

sequential matrix multiplication program first resides in the master node. Master node

adds check points at different locations. It adds check-points with the help of pragma

directives. By this a parallel executing matrix program is generated. This program is

divided into different segments and given to the slave nodes. Slave nodes execute the

segments they got and send back the results to the master node. Master node merges

the results and produces the final result of matrix multiplication. CAPE work on the

basis of a set of primitives as depicted in Figure 2.

 #pragma omp (i, j, k)

 for (i ; j ; k)

 code segment

 automatically converted to

 1) if (master ())

 2) start ()

27516 Nisha Rani N

 3) for (i ; j ; k)

 4) create (original)

 5) send (original, slave_n)

 6) stop ()

 7) wait for (target)

 8) inject (targeti)

 9) if (! last parallel ())

 10) merge (final, targeti)

 11) broadcast (final)

 12) else

 13) receive (targeti)

 14) inject (targeti)

 15) start ()

16) else

 17) create (targeti)

 18) stop ()

 19) send (targeti , master)

Figure 2: Check pointing Enabled General algorithm for Open MP directives

Line 1 & 2 : The master node starts the checkpointing.

3 to 7 : Master node creates checkpoints and sends the same to a set of

slave node. It stops checkpointing and wait for the result from

slave nodes.

8 : Inject the result from slave nodes to a final file.

9 & 10 : If the result received by the master node is the last output from

the slave node, then it merge all the result and form the final

target parallel program.

11 : Master node broadcast the final result to the slave nodes.

12 to 15 : If the received result from slave node is not the final one then

master node continue step 8

16 & 17 : Each slave node creates checkpoints and process the segment

which they get from the master node.

18 &19 : After processing they stop checkpointing and send their

respective results to the master node.

Hadoop
Hadoop is a radical approach to the problem of distributed computing [6], [12]. It is

actually a software platform that lets one to write and execute applications that

process huge amounts of data. Hadoop is also designed as master-slave architecture.

In Hadoop the master node is called name node and slave nodes are called data nodes.

Hadoop consists of two core components: Hadoop Distributed File System and.

HDFS is responsible for storing data in a cluster. It consists of two phases: map and

Comparison of Checkpointed Aided Parallel Execution Against Mapreduce 27517

reduce. Map perform the mapping of input data given and reduce function reduce the

intermediate output and produce the reduced final output.

Figure 3: Architecture of Map Reduce

The main steps as shown in Figure 3 are:

1. Data in the name node is split into blocks and distributed across multiple data

nodes in the cluster.

2. These blocks are given to the map function in each data nodes. Each Map task

operates on a single block of data.

3. Then is passed to shuffle and sort function which sorts the intermediate data

from all map functions.

4. This result is passed to the reducers and they operate on these intermediate

results and produce the final output file.

5. The output file is stored in HDFS.

SIMD Concepts and Implementation In CAPE and Mapreduce
Single Instruction Multiple Data (SIMD) is a type of parallel execution architectural

model [7]. It is classified under Flynn's taxonomy. This consist of a set of processors

each having its own local memory. Each processor executes same set of instructions

simultaneously. Each of them works on different pieces of data which are stored in

their local memory. Both CAPE and are based on SIMD architecture. In SIMD model

same instruction is passed to all parallel executing nodes and each node work on

different data sets. In CAPE same instruction is passed to the slave nodes but each

slave node perform their task on different segments. In same instruction is carried out

in map function but each data node is operating on different sets of data. In reduction

function also the instruction is same but the data nodes are working on different data

sets.

27518 Nisha Rani N

Evaluation between CAPE and Map Reduce

In this section we identified three tasks that range in complexity from medium to

semi-complex problems: 'matrix multiplication', 'K-Means' algorithm and word count.

Matrix multiplication and K-Means were used to compare the coding complexities

where as matrix multiplication and word count were used to compare the overall

performance in CAPE and environments. K-Means was excluded from performance

comparison.

Size of the Program in CAPE and Map Reduce
Lines of the code, in the case of CAPE program was very much less than that of

program. This is evident from the code shown under Fig.4 and Fig.5 associated with

matrix multiplication program and the code snippets in Fig.6 and Fig.7 associated

with K-Means. In Map Reduce there was separate driver class section for matrix

multiplication and for K-Means programs. Similarly separate map and reduce section

for these programs. But in CAPE, for implementing a new program it was much

simpler. It expected to just specify the program name, its path and number of nodes

in already built program block. Another major difference in CAPE was that there

were no separate map/reducer sections.

Complexity of the Program in CAPE and Map Reduce

In CAPE, was up to the programmer to identify how & where to partition the given

problem into mapping and reducing module. The programmers need to separate the

problem into map and reduce block. But in CAPE programmers need not be worried

about the same. CAPE expects developers to push the new code segment into an

already built program block. In short, the programmer need to set driver class,

identify and code the map and reduce sections etc in case of whereas in CAPE there

is no need to develop map and reduce functionalities as the complier with the help of

check-points will detect where to map and reduce.

folder=/home/abc

prog=matrix

num_nodes=2

//Parallel block(i,j,k)

 for (i = 0 ; i < m ; i++)

 for (j = 0 ; j < q ; j++)

 for (k = 0 ; k < p ; k++)

 sum = sum + first[i][k]*second[k][j];

Figure 4: pseudo code of CAPE program for matrix multiplication

Driver class section begins:

public class matrix {

 public static void main(String[] args)throws Exception{

Job job = new Job();

Comparison of Checkpointed Aided Parallel Execution Against Mapreduce 27519

 job.setJarByClass(matrix.class);

 job.setJobName(“matix multiplication”);

 FileInputFormat.setInputPaths(job,new

Path(args[0]));

 FileOutputFormat.setOutputPath(job,new

Path(args[1]));

 job.setMapperClassMapper.class);

 job.setReducerClass(Reducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 boolean success = job.waitForCompletion(true);

 System.exit(success ? 0 : 1);

} }

Driver class section ends

Map function begins:

if (indicesAndValue[0].equals("A"))

for (int k = 0; k < p; k++)

outputKey.set(indicesAndValue[1] + "," + k);

outputValue.set("A," + indicesAndValue[2] + "," + indicesAndValue[3]);

Map function ends:

 --

Reduce function begins:

for (int j = 0; j < n; j++) {

a_ij = hashA.containsKey(j) ? hashA.get(j) : 0.0f;

b_jk = hashB.containsKey(j) ? hashB.get(j) : 0.0f;

result += a_ij * b_jk;

Reduce function ends:

Figure 5: pseudo code of program for matrix multiplication

folder=/home/abc

 prog=kmeans

 num_nodes=2

 for(;;)

 cenLx=newcentral[i][0]-oldcentral[i][0];

 cenLy=newcentral[i][1]-oldcentral[i][1];

 cenL=sqrt(cenLx*cenLx+cenLy*cenLy);

Figure 6: Pseudo code of CAPE program for k-means algorithm

27520 Nisha Rani N

Driver class begins:
 public class matrix {

 public static void main(String[] args)throws Exception{

 Job job = new Job();

 job.setJarByClass(kmeans.class);

 job.setJobName("kmeans clustering");

 fileInputFormat.setInputPaths(job, new Path(args[0]));

 fileOutputFormat.setOutputPath(job,new path(args[1]));

 job.setMapperClassMapper.class);

 job.setReducerClass(Reducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 boolean success = job.waitForCompletion(true);

 System.exit(success ? 0 : 1);

 } }

Driver class ends:

Map function begins:

 while ((line = readCentroids.readLine()) != null) {

 StringTokenizer centroidTokenizer =newStringTokenizer (line,delim);

 numAttributes =

centroidTokenizer.countTokens();

 double[] point = new double[numAttributes];

 for (int I = 0; I < numAttributes; i++) {

 String token =

centroidTokenizer.nextToken();

 point[i] = Double.parseDouble(token);

 }

 centroids.add(point);}

Map function ends:

Reduce function begins:
for (int i = 0; i < numAttributes; i++)

sum[i] += Double.parseDouble(temp[i].toString());

for (int i = 0; i < numAttributes; i++)

 average[i] = sum[i] / length;

 for (int i = 1; i <= numAttributes; i++)

 csv += d[i - 1];

 if (i == numAttributes)

 csv += "\n";

 else

 csv += delim;

Reduce function ends:

Figure 7: pseudo code of program for k-means program

Comparison of Checkpointed Aided Parallel Execution Against Mapreduce 27521

Speed of the Program in CAPE and Map Reduce

Test environment consist of three virtual machines where in, one of them was

configured as the master node while the remaining two were configured as slave

nodes. CAPE program executed much faster than and hence CAPE could cut through

large volume data sets in a much shorter time. This can be observed by analyzing the

Figure 8. and Table 1.

Figure 8: Time of execution (in sec) vs. matrix size

 This figure highlights the execution speed for different matrix sizes. It is evident

that when the size of matrix is 100 x 100, the execution time for is 2 seconds and that

for CAPE is 0 seconds (negligible in value to measure). For a 10000 x 10000 matrix,

the execution time for CAPE is 55.92 seconds and that for is 115 seconds. Reason

behind this is that does not differentiate between the code segments that can be

executed sequentially or in parallel mode. Name node transfers the entire program to

the data nodes to execute. But in CAPE the sequential part of a program is executed

by the master node itself. After completing sequential part it split the code into

segments which can execute in parallel and send to the slave nodes.

Table 1: Execution time in seconds for matrix multiplication

Row size x column size CAPE (in sec) Map Reduce (in sec)

100 x 100 0 2

500 x 500 .22 4

1000 x 1000 .56 10

2000 x 2000 42.8 66

5000 x 5000 53.08 101

10000 x 10000 55.92 115

CAPE

MapReduce

27522 Nisha Rani N

 Table 2 compares the execution time for the word count program. In case of word

count program CAPE took only 6 seconds to work through an input file of size

200MB and took 14 seconds. A 750 MB file was processed by CAPE in 43 seconds

whereas took 122 seconds.

 K-Means is excluded from the comparison because CAPE is not able to process

larger data sets against the algorithm. Large data sets against K-Means algorithm

failed with heap error. Current version of CAPE supports only OpenMP parallel for

directive; CAPE can only extract the calculated results in the data memory region and

it cannot extract in the heap region. K-means algorithm uses dynamically allocated

variables (in the heap), and hence will need to modify CAPE.

Table 2: Execution time in seconds for Word Count

Input size in MB CAPE (in sec) Map Reduce (in sec)

100 6 14

200 15 50

500 25 99

750 43 122

Working of Program in CAPE and Map Reduce

In CAPE first the master node split the original program into different blocks. These

blocks are assigned to a set of slave nodes. The slave nodes perform their task on the

block segment which they received from the master node. Each slave node sends their

results back to the master node. Master node merges the results and furnishes the

target program and then broadcast to the slave nodes. In short, mapping is done by the

slave nodes and reducing function is done by the master node. But in the slave nodes

perform both mapping and reducing part. I.e. the results of each slave nodes are

merged by the slave nodes and the final or target program is stored in the distributed

file system (HDFS).

Advantages of CAPE
1. Performance: CAPE increases speed of a program by converting a sequential

program to a distributed program in easy steps with least programming

hassles. It does the required conversions automatically using Open MP

pragma directives.

2. Flexibility: It allows selecting those sections or segments to be checkpointed

in a given program.

3. Size: Size of code is fewer than that of since in CAPE there is no need of map

and reduce function for each program.

4. Lesser complex: The programmer need not bother about the complexity in

partitioning the problem for separate map and reduce function as encountered

in programming.

Comparison of Checkpointed Aided Parallel Execution Against Mapreduce 27523

Conclusion
CAPE is a new but evolving technique in transforming a sequential program to a

distributed program. It is capable of doing this conversion automatically so that the

programmer need not worry about the underlying complexities. The programmer

only needs to push his code segment to an already built CAPE program block. More

than 75% of the work is done by installing the CAPE package as it is. With its

current capabilities and limitations, CAPE is performing much faster than map-

reduce.

Future Works
For CAPE to be widely accepted it need to support majority of the features currently

provided by. CAPE does not have the capability to connect itself with Hadoop File

System (HDFS) so that large volume data can be read from the file system. This can

be done by using libhdfs. so file in HDFS library. CAPE as of now has several

restrictions. Large data sets against K-Means algorithm failed with heap error.

Current version of CAPE supports only Open MP parallel for directive; it can extract

the calculated results in the data memory region and it cannot extract in the heap

region. K-means algorithm uses dynamically allocated variables (in the heap), and

hence will need to modify CAPE. A team is working in adding this feature to CAPE

so that larger data sets can be tested against K-means and other clustering and

classification algorithms.

References

[1] Viet Hai Ha & Eric Renault, Discontinuous Incremental: A new approach

towards extremely lightweight checkpoints, International Symposium on

Computer Networks and Distributed Systems, Tehran : Iran, Islamic

Republic, 2011, pp. 1-6

[2] Viet Hai Ha & Eric Renault, Improving Performance of CAPE using

Discontinuous Incremental Checkpointing, IEEE International Conference

on High Performance Computing and Communications, 2011, pp. 1-6

[3] Viet Hai Ha, Eric Renault, Design and Performance Analysis of CAPE

based on Discontinuous Incremental Checkpoints, IEEE Pacific Rim

Conference on Communications, Computers and Signal Processing, 2011,

pp. 1-6.

[4] Rabi Prasad Padhy, Big Data Processing with Hadoop-MapReduce in

Cloud Systems. International Journal of Cloud Computing and Services

Science (IJ-CLOSER), 2013, pp. 4-10.

[5] Xuejun Yang, Panfeng Wang, Hongyi Fu, Yunfei Du, Zhiyuan Wang,

Compiler-Assisted Application-Level Checkpointing for MPI Programs,

The 28th International Conference on Distributed Computing Systems,

2008, pp. 252-256.

27524 Nisha Rani N

[6] Mandeep Kaur, Rajdeep Kaur, A Comparative Analysis of SIMD and

MIMD Architectures. International Journal of Advanced Research in

Computer Science and Software Engineering, 2013, pp. 1154-1155.

