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Abstract 

In this paper we have described about the algebraic structure Burnside Ring and 

produces an application by giving an example in chemistry as the labeling of 

atoms in molecules of high symmetry. Also we have discussed on the 

construction of symmetry adapted functions. For showing such applications, we 

have applied the concept of Burnside ring to the icosahedral symmetry. As an 

example we have taken an equilateral triangle in this research paper. But we 

may choose other example too such as regular triangular prism etc. We may use 

the Burnside ring as group ring structure also in some what extent. 

 B(G) = {∑ 𝑎𝑖(
𝑛
1

𝐺
𝐺𝑖

⁄ ) :𝑎𝑖 ∈ Z }. This algebraic structure is looking like 

analogous to group ring structure R[G] = ∑ 𝑎𝑔
𝑛
𝑔∈𝐺 g :𝑎𝑔 ∈ R. So we have 

suggested Burnside ring as a special case group ring structure. 
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1.Introduction 

Burnside idea have been applied to algebra of  ring structure. We will define the 

Burnside ring B(G) of the group G as follow,   B(G) = { ∑ 𝑎𝑖
𝑛
1 (𝐺

𝐺𝑖
⁄ ) :𝑎𝑖 ∈ Z }. Burnside 

ring is commutative ring with the identity 𝐺 𝐺𝑛
⁄    here, any sum( 𝐺 𝐺𝑖

⁄  ) +( 𝐺 𝐺𝑗
⁄ )  is the 

disjoint union of 𝐺 𝐺𝑖
⁄  and 𝐺 𝐺𝑗

⁄   aa well as the product (𝐺
𝐺𝑖

⁄ ) × (𝐺
𝐺𝑗

⁄ )  is the cartesian 

product of  𝐺 𝐺𝑖
⁄    and  𝐺 𝐺𝑗

⁄ , this means, Z is the set of integer. Now we understand 

Burnside’s lemma. For this we will define a group action. If G be a group and X be any 

set then a left group action of G on X is a binary function such that G × X  → X or we 

have (g, x) ↦ gx.  This group action binary function is based on two rules,                                           

(i). (gh).x =g.(hx) ∀ g, h ∈ G  and ∀ x∈ G.   (ii). ex = x for every x in X. Here e is identity 

element of group G. Now we define an orbit on group action of G on X. Further we 
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define orbit. Let us consider G be a group and functioning on X. Let x be element of X, 

then orbit of x is denoted by Gx. We can write Gx = {g.x | g ∈ G }. Thus gx is element 

of X, which shows that x moves by g in X. For each g in G we suppose 𝑋𝑔 be the set of 

fixed points in X. So we have Burnside’s lemma as, |𝑋/𝐺| = 
1

|𝐺|
∑ |𝑋𝑔|𝑔∈𝐺 . Let us 

suppose that Ω = {G=1, 𝐺2, 𝐺3,……….., 𝐺𝑠 = 𝐺} be a full set of nonconjugated 

subgroups of G. The set of transitive G-sets {𝐺
𝐺𝑖

⁄ : i = 1, 2,……, n} will be a complete 

set of orbits. This means every G-set S is isomorphic to a disjoint union of such each 

orbits. S ≅ ⋃ 𝑎𝑖
𝑛
𝑖 (𝐺 𝐺𝑖

⁄ ). The coefficients 𝑎𝑖 are uniquely determined and can be 

computed as the system of linear equations, ∑ 𝑀𝑖𝑗
𝑛
𝑖=1  𝑎𝑗=𝑏𝑗  j = 1, 2, 3…….., n. Thus, 

𝑎𝑖 = ∑ 𝑀−1
𝑖𝑗

𝑛
𝑗=1 𝑏𝑗    i = 1, 2, 3,……., n. Here, 𝑀−1 is known as Burnside matrix. 

Let us suppose that G be a finite group. Two G sets are S and T. Then action of G on S 

× T will be given as g (x, y) = (g(x), g(y)) for any g ∈ G and (x, y) ∈ S × T as well as S 

× T is a G-set. Now the Cartesian product of the G-sets 𝐺 𝐺𝑖
⁄  , 𝐺 𝐺𝑗

⁄ is a G-set, then it is 

isomorphic to a disjoint union of orbits. 𝐺
𝐺𝑖

⁄   × 𝐺
𝐺𝐽

⁄  ≅ ⋃ 𝑛𝑖𝑗,𝑘(𝑛
𝑘

𝐺
𝐺𝑘

⁄ ). If 𝐺𝑙 is 

subgroup of G then the number of fixed points of 𝐺𝑙 in 𝐺 𝐺𝑖
⁄  and 𝐺 𝐺𝑗

⁄  will be 𝑀𝑙𝑖 and 

𝑀𝑙𝑗 respectively. So the number of fixed points of 𝐺𝑙 in ( 𝐺
𝐺𝑖 

⁄ ) × (𝐺
𝐺𝑗

⁄ ) will be  

𝑀𝑙𝑖𝑀𝑙𝑗.Now we get, 𝑛𝑖𝑗,𝑘 = ∑    𝑙 (𝑀−1)𝑘𝑙𝑀𝑙𝑖𝑀𝑙𝑗.  The Burnside ring B(G) of the group 

G will be defined as, B(G) ={ ∑ 𝑎𝑖
𝑛
𝑖=1 (𝐺 𝐺𝑖

⁄ ): 𝑎𝑖 ∈ Z}, Here Z is the set of integer 

numbers. 

 Let us suppose that G be a finite group and R be a ring, then set of all linear 

combinations in the form written as,  R[G] = ∑ 𝑎𝑔𝑔∈𝐺 g: 𝑎𝑔 ∈ R. This group ring  R[G] 

algebraic structure may be regarded as analogous to that of Burnside ring B(G) 

 

2. We produce an example of Burnside ring corresponding to symmetric group  

𝑺𝟑. We use to denote 𝑆3 by G. Therefore G = {e, r, r2, s, rs, r2s}. Now we construct 

subgroups of G. G1 = {e}, G2 = {(e, s), (e, r2s),(e, r2s}, G3 = {e, r, r2}, G4 = {e, r, s, rs, 

r2s}. From these subgroups we construct the subgroup lattice of G, as follow,  

 G 

 

                                       G2                                               G3 

 

 

                                                                    G1 
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Now we arrange a set of quotient group, {𝐺
𝐺1

⁄ , 𝐺
𝐺2

⁄ ,𝐺 𝐺3
⁄ , 𝐺

𝐺4
⁄ } with 𝐺

𝐻⁄  = 

{Gh|g ∈ G}. So we have (i). 𝐺 𝐺1
⁄  = {{e}, {r}, {r2}, {s}, {rs}, {r2s}}     (ii). 𝐺 𝐺2

⁄  = {e, 

r, r2} • {𝑒, 𝑠} = {{e, s}, {r, rs}, {r2, r2s}}              (iii). 𝐺 𝐺3
⁄  = {e, s} • {e, r, r2} = {{e, 

r, r2}, {s, rs, r2s}}       (iv). 𝐺 𝐺4
⁄  = 𝐺 𝐺⁄  = {{e, r, r2, s, rs, r2s}}.                                                              

 

3.Marks, the simplification of the Burnside ring B(G) : Let us suppose that for a 

given group G acting on a set X, and H be subgroup of G, then the mark of H on X 

𝑚𝑥(H) = |𝑋𝐻 | here | 𝑋𝐻 | =  { x ∈ X | h.x  = x, ∀ h ∈ H }. Therefore, the mark of a product 

𝐺𝑖• (
𝐺

𝐺𝑗
⁄ ) will be equal to total number of fixed points.  

 

4. Number of fixed points for each group action:  

(i)  𝐺1•(𝐺
𝐺1

⁄ ) has 6 fixed points, (ii)  𝐺2•(𝐺 𝐺1
⁄ ) has 0 fixed points (iii)  𝐺3(𝐺 𝐺1

⁄ ) has 

0 fixed point,  (iv)  𝐺4•(𝐺 𝐺1
⁄ ) has also 0 fixed point. Therefore, the first row of table 

will be [6, 0, 0, 0].  Similarly group action on 𝐺 𝐺2
⁄  will produce second row of mark 

table as [3, 1, 0, 0] also, third as well as fourth rows of mark table are [2, 0, 2, 0] and 

[1, 1, 1, 1].  We will produce a table of marks of 4×4 matrix M, which is given below,                                                                  

 

  G                  𝐺 𝐺1
⁄             𝐺 𝐺2

⁄                   𝐺 𝐺3
⁄                           𝐺 𝐺4

⁄  

 

G1                      6                   3                        2                                1 

 

G2                       0                   1                       0                                1 

 

G3                        0                   0                       2                               1   

G4                        0                   0                       0                                1 
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Now we obtain 𝑀−1 as follow, 

   

                                                  1 6⁄               −1
2⁄           −1

6⁄           1 2⁄  

 

         𝑀−1       =                          0                    1                  0             -1 

 

                 0                    0              1 2⁄            −1
2⁄  

                         0                     0               0                  1                                                                        

 

 

5. Equilateral triangle and icosahedral symmetry as well as the use of Burnside 

ring: 

Now we consider an equilateral triangle as an example here and use the Burnside ring 

to show icosahedral symmetry.  It is very simple example that will illustrate the use of 

Burnside ring in icosahedral symmetry.            

                                                                  A 

 

 B C 

We take set X as the set of all possible triangles. So we have observed that first vertex 

has 3 choices second has 2 choices while third has 1 choice. Therefore total number of 

triangles possible are 3 × 2 × 1 = 6. Now we compute the coefficient 𝑎𝑖 from the 

Burnside matrix for each coset  𝐺 𝐺𝑖
⁄  .  

  𝑎𝑖 = ∑ ( 𝑀−1)𝑠
𝑗=1 ij 𝑏𝑗 here i= 1, 2, 3,……, s and 𝑏𝑗 is number of elements in X which 

are fixed points to 𝐺𝐽.  Now we get 𝑏𝑗 by putting   j = 1, 2, 3, ……, s. 
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 𝑏1 = 6 6 

 𝑏2 = 0      Thus,  𝑏𝑗 =        0 

 𝑏3 = 0       0 

 𝑏4 = 0 0 

 

 

 

 1
6⁄     −1

2⁄        −1
6⁄       1 2⁄           6                 1 

      0        1             0        -1              0                  0 

Now we compute,   (𝑀−1)ij𝑏𝑗 =            0           0          1 2⁄     −1
2⁄         0           =    0 

                                                               0          0              0          1          0                0 

 

 

Now we find,                                                                                                                                                                                 

𝑎𝑖 = ∑ [1, 0, 0, 0]4
𝑖=1 •𝐺

𝐺𝐼
⁄  = 𝐺 𝐺1

⁄  = {{e}, {r}, {𝑟2}, {s}, {rs}, {r2s}}. Thus each 

element of G generates one of the six possible equilateral triangle. 

 

6. Conclusions 

Burnside ring has analogous structure that of group ring algebraic structure. With the 

help of Burnside ring we have tried to show the action of symmetric group S3 on the set 

of equilateral triangles. But we can apply S3 acting on a larger set.  Here, we have 

showed the labelling of molecules on the vertices of equilateral triangle. But it opens 

the way to apply this ring on complex geometric shapes such as regular triangular prism 

and much more. We have also seen that the Burnside ring helps to simplify and 

decompose the complex geometric structures and makes easier in labelling of 

molecules. As we know that G= S3 on the set of equilateral triangle is an simple 

example, but no matter what the size of the group or the set on which the groups acts, 

the procedure of labelling and simplification of complex geometric shapes will remain 

same as applied on equilateral triangle. We have observed that for the set X its elements 

of the Burnside ring is the vector [1, 0, 0, 0]T  also this set is congruent to 

∑ [1, 0, 0, 0]4
𝑖=1 •𝐺

𝐺𝑖
⁄  = { {e}, {r}, {r2}, {s}, {rs}, {r2s} }. It is clear that each element 

of G generates one of the six possible equilateral triangles.  
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