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Abstract 

 

This work reports on a theoretical investigation of a band gap energy in the 

case of Cd1-xZnxS quantum dots embedded in an insulating material by the Sol 

gel method. Calculations have been computed as a function of Zn composition 

going from CdS to ZnS taking account on the excitonic binding energy. The 

obtained results showed a good agreement with experimental data. Thus, this 

study confirms the validity of the adopted model and can be considered as a 

helpful support for designing a variety of devices. 

 

Keywords: Quantum dots, Cd1-xZnxS, band gap energy, excitonic binding 
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INTRODUCTION 

Since several decades, Films of Cd1−xZnxS are technologically useful materials [1-10]. 

This is due to the potentiality of this material which is used as a window material in 

hetero junction solar cells with a p-type absorber layer such as CuInSe2 [6] or for 

fabricating p – n junctions without lattice difference in devices based on quaternary 

compounds like   CuInxGa1-xSe2 or CuSnSzSe1-z [5]. 

 

Concerning Cd1-xZnxS quantum dots (QDs), the study of their properties is being one 

of the main interests in both fundamental and applied research. Moreover, their 
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technological potentialities do not cease to be proved [11-15]. From a fundamental 

view point, it is well known that QDs exhibit a quantum confinement effect [16-21]. 

Thus, when the radius R of a quantum dot is smaller than double the exciton Bohr 

radius ax, electrons and holes are supposed as two confined particles bound by an 

enforced Coulomb interaction. Consequently, in QDs with relatively low radii, the 

energies of both electrons and holes are quantized and this effect leads to a widening in 

the band gap [16-20, 6]. To study the electronic properties of Cd1-xZnxS QDs, we have, 

adopted, in a first time, the spherical geometry and a potential with a finite barrier at 

the boundary [22, 23]. We have suggested, in a second time, the flattened cylindrical 

geometry with a finite potential barrier at the boundary [24-33]. In this context, we 

have studied the electronic properties for a single and double quantum dot [24-25, 33] 

and also for super lattices based on Cd1-xZnxS QDs embedded in an insulating material 

[26-32]. Nevertheless, in all these works, we have not taken account on the Coulomb 

potential associated with the electron – hole interaction. 

 

The goal of the present work is to study the band gap energy of Cd1-xZnxS QDs having 

a spherical geometry with an infinite potential barrier at the boundary. Calculations 

have been computed as a function of Zn composition going from CdS to ZnS taking 

account on the excitonic binding energy. The paper is organized as follows: after an 

introduction, modeling, results and discussion are presented. Conclusion of this study 

is reported in the last section. 

 

 

MODELING 

As a system, we consider a pair of an electron and a hole, both confined in a spherical 

quantum dot of radius R. The semiconductor material is capped inside a dielectric 

matrix [6].  

 

The band gap energy for a QD is given by the following relation: 

Eg
QD =  Eg

bulk +  
ℏ2 π2

2R2 (
1

me
∗ +

1

mh
∗ ) −

1.8 q2

4π0 r R
      (1) 

 

where bulk

gE  is the band gap for bulk Cd1-xZnxS,   is the Plank’s constant, m∗  

is the effective mass of free carriers, q is the elementary charge, 0 is the dielectric 

constant vacuum  and r  is the relative permittivity. The subscripts e and h refer to the 

electron and hole particles respectively. In deriving Equation (1), we have adopted the 

effective mass theory (EMT)    and the band parabolicity approximation (BPA) as 

well.  

 

 

RESULTS AND DISCUSSION 

Table 1. shows the exciton Bohr radius ax in the case of Cd1-xZnxS alloys. 

Consequently, it is clear that, for all the compositions studied, the adequate values of 

quantum dot radius should approximately be inferior to 3.5 nm. 
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Table 1. The exciton Bohr radius ax in the case of Cd1-xZnxS alloys 

 

Compound CdS Cd0.8Zn0.2S Cd0.6Zn0.4S Cd0.4Zn0.6S Cd0.2Zn0.8S ZnS 

aB (nm) 2.36 2.16 2.01 1.98 1.80 1.75 

 

Values of parameters used in these calculations are summarized in Table.2. These 

parameters are taken from Ref [22]. The effective masses and the dielectric constant 

for    Cd1-xZnxS with different Zn compositions have been deduced using the Vegard’s 

law.  

 

We have calculated the band gap energy Eg
QD

 for Cd1-xZnxS quantum dots using the Eq 

(1). Table 3 shows the obtained results.  

 

Table 2. Parameters used to calculate the band gap energy (eV) for Cd1-xZnxS QDs. 

(m0 is the free electron mass) 
 

x 

0

*

e

m

m

 
0

*

h

m

m

 

r

 

)(eVEbulk

g

 

0.0 0.16 5.00 8.5 2.42 

0.2    2.61 

0.4    2.82 

0.6    3.05 

0.8    3.31 

1.0 0.28 1.76 8.0 3.60 

 

Table 3. The band gap energy Eg
QD

 as a function of radius for Cd1-xZnxS quantum dots 

 

x 

R(nm) 

0 0.2 0.4 0.6 0.8 1.0 

2.0 2.755 2.988 3.141 3.228 3.596 3.814 

2.1 2.716 2.946 3.104 3.295 3.564 3.787 

2.2 2.683 2.909 3.072 3.266 3.436 3.764 

2.3 2.656 2.878 3.045 3.236 3.512 3.744 

2.4 2.631 2.851 3.021 3.221 3.491 3.727 
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2.5 2.610 2.827 3.001 3.202 3.472 3.712 

2.6 2.591 2.806 2.982 3.186 3.456 3.698 

2.7 2.574 2.788 2.966 3.172 3.442 3.687 

2.8 2.559 2.772 2.952 3.159 3.429 3.677 

2.9 2.546 2.757 2.939 3.148 3.418 3.668 

3.0 2.535 2.744 2.928 3.138 3.408 3.660 

3.1 2.524 2.732 2.918 3.129 3.399 3.653 

3.2 2.515 2.721 2.909 3.121 3.392 3.646 

3.3 2.506 2.712 2.901 3.144 3.384 3.641 

3.4 2.498 2.703 2.893 3.143 3.378 3.635 

3.5 2.492 2.695 2.886 3.102 3.372 3.631 

 

One can easily remark that, (i) for the all compositions studied, Eg
QD

 decreases 

with increased R, (ii) for any composition, Eg
QD

 is sufficiently superior to the bulk band 

gap for the radius inferior to 3.0 nm, (iii) Eg
QD

 is slightly superior to the bulk band gap 

when the radii R exceeds 3.0 nm independently of the composition, (iv) For all the 

cases, the confinement of carriers becomes insignificant when R exceeds 3.5 nm, (v)  

Eg
QD

 shows a increasing tendency with increased zinc composition independently to 

the radii R. This result is mainly due to the hole effective masse which decreases with 

the zinc content x and to the bulk band gap which increases as a function of x, (vi) The 

Eg
QD values as deduced from our calculations do not show a significant discrepancy 

with respect to the relevant experimental values given by Refs [6, 21, 34-36]. This 

confirms the validity of the model used in the present work. 

 

 

CONCLUSION 

In summary, we have calculated the band gap energy as a function of radius for Cd1-

xZnxS quantum dots. A particular attention has been paid to their compositional 

dependencies. Both electrons and holes are assumed to be confined in nanospheres 

with an infinite potential barrier at the boundary but taking account on the excitonic 

binding energy. The obtained results showed a good agreement with several 

experimental data. Moreover, in technological applications, this study is of great 

interest more especially for designing devices based on Cd1-xZnxS quantum dots. 
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