The Band Gap Energy Calculated for Cd_{1-x}Zn_xS Quantum Dots grown by the Sol gel Method

Zoubeida Khéfacha¹, Nabil Safta^{2*} and Mohamed Dachraoui³

¹Département de Chimie, Faculté des Sciences, Université de Monastir, Avenue de l'Environnement, 5000 Monastir, Tunisia.

²Unité de Physique Quantique, Faculté des Sciences, Université de Monastir, Avenue de l'Environnement, 5000 Monastir, Tunisia.

³ Laboratoire de Chimie Analytique et Electrochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire, 2092 Tunis, Tunisia.

*'Corresponding author

Abstract

This work reports on a theoretical investigation of a band gap energy in the case of $Cd_{1-x}Zn_xS$ quantum dots embedded in an insulating material by the Sol gel method. Calculations have been computed as a function of Zn composition going from CdS to ZnS taking account on the excitonic binding energy. The obtained results showed a good agreement with experimental data. Thus, this study confirms the validity of the adopted model and can be considered as a helpful support for designing a variety of devices.

Keywords: Quantum dots, Cd_{1-x}Zn_xS, band gap energy, excitonic binding energy, devices.

INTRODUCTION

Since several decades, Films of $Cd_{1-x}Zn_xS$ are technologically useful materials [1-10]. This is due to the potentiality of this material which is used as a window material in hetero junction solar cells with a p-type absorber layer such as $CuInSe_2$ [6] or for fabricating p - n junctions without lattice difference in devices based on quaternary compounds like $CuIn_xGa_{1-x}Se_2$ or $CuSnS_zSe_{1-z}$ [5].

Concerning Cd_{1-x}Zn_xS quantum dots (QDs), the study of their properties is being one of the main interests in both fundamental and applied research. Moreover, their

technological potentialities do not cease to be proved [11-15]. From a fundamental view point, it is well known that ODs exhibit a quantum confinement effect [16-21]. Thus, when the radius R of a quantum dot is smaller than double the exciton Bohr radius ax, electrons and holes are supposed as two confined particles bound by an enforced Coulomb interaction. Consequently, in QDs with relatively low radii, the energies of both electrons and holes are quantized and this effect leads to a widening in the band gap [16-20, 6]. To study the electronic properties of Cd_{1-x}Zn_xS QDs, we have, adopted, in a first time, the spherical geometry and a potential with a finite barrier at the boundary [22, 23]. We have suggested, in a second time, the flattened cylindrical geometry with a finite potential barrier at the boundary [24-33]. In this context, we have studied the electronic properties for a single and double quantum dot [24-25, 33] and also for super lattices based on Cd_{1-x}Zn_xS QDs embedded in an insulating material [26-32]. Nevertheless, in all these works, we have not taken account on the Coulomb potential associated with the electron – hole interaction.

The goal of the present work is to study the band gap energy of Cd_{1-x}Zn_xS QDs having a spherical geometry with an infinite potential barrier at the boundary. Calculations have been computed as a function of Zn composition going from CdS to ZnS taking account on the excitonic binding energy. The paper is organized as follows: after an introduction, modeling, results and discussion are presented. Conclusion of this study is reported in the last section.

MODELING

As a system, we consider a pair of an electron and a hole, both confined in a spherical quantum dot of radius R. The semiconductor material is capped inside a dielectric matrix [6].

The band gap energy for a QD is given by the following relation:
$$E_g^{QD} = E_g^{bulk} + \frac{\hbar^2 \pi^2}{2R^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right) - \frac{1.8 \text{ q}^2}{4\pi\epsilon_0 \epsilon_r R} \tag{1}$$

where E_g^{bulk} is the band gap for bulk $Cd_{1-x}Zn_xS$, \hbar is the Plank's constant, m^* is the effective mass of free carriers, q is the elementary charge, ϵ_0 is the dielectric constant vacuum $% \left(\varepsilon \right) =0$ and $\varepsilon _{r}$ is the relative permittivity. The subscripts e and h refer to the electron and hole particles respectively. In deriving Equation (1), we have adopted the effective mass theory (EMT) and the band parabolicity approximation (BPA) as well.

RESULTS AND DISCUSSION

Table 1. shows the exciton Bohr radius a_x in the case of $Cd_{1-x}Zn_xS$ alloys. Consequently, it is clear that, for all the compositions studied, the adequate values of quantum dot radius should approximately be inferior to 3.5 nm.

Table 1. The exciton Bohr radius a_x in the case of $Cd_{1-x}Zn_xS$ alloys

Compound	CdS	$Cd_{0.8}Zn_{0.2}S$	$Cd_{0.6}Zn_{0.4}S$	$Cd_{0.4}Zn_{0.6}S$	$Cd_{0.2}Zn_{0.8}S$	ZnS
a _B (nm)	2.36	2.16	2.01	1.98	1.80	1.75

Values of parameters used in these calculations are summarized in **Table.2**. These parameters are taken from Ref [22]. The effective masses and the dielectric constant for $Cd_{1-x}Zn_xS$ with different Zn compositions have been deduced using the Vegard's law.

We have calculated the band gap energy E_g^{QD} for $Cd_{1-x}Zn_xS$ quantum dots using the Eq (1). Table 3 shows the obtained results.

Table 2. Parameters used to calculate the band gap energy (eV) for $Cd_{1-x}Zn_xS$ QDs. (m₀ is the free electron mass)

x	$\frac{m_e^*}{m_0}$	$\frac{m_h^*}{m_0}$	$\epsilon_{ m r}$	$E_g^{\text{bulk}}(eV)$
0.0	0.16	5.00	8.5	2.42
0.2				2.61
0.4				2.82
0.6				3.05
0.8				3.31
1.0	0.28	1.76	8.0	3.60

Table 3. The band gap energy E_g^{QD} as a function of radius for $Cd_{1\text{-}x}Zn_xS$ quantum dots

X	0	0.2	0.4	0.6	0.8	1.0
R(nm)						
2.0	2.755	2.988	3.141	3.228	3.596	3.814
2.1	2.716	2.946	3.104	3.295	3.564	3.787
2.2	2.683	2.909	3.072	3.266	3.436	3.764
2.3	2.656	2.878	3.045	3.236	3.512	3.744
2.4	2.631	2.851	3.021	3.221	3.491	3.727

2.5	2.610	2.827	3.001	3.202	3.472	3.712
2.6	2.591	2.806	2.982	3.186	3.456	3.698
2.7	2.574	2.788	2.966	3.172	3.442	3.687
2.8	2.559	2.772	2.952	3.159	3.429	3.677
2.9	2.546	2.757	2.939	3.148	3.418	3.668
3.0	2.535	2.744	2.928	3.138	3.408	3.660
3.1	2.524	2.732	2.918	3.129	3.399	3.653
3.2	2.515	2.721	2.909	3.121	3.392	3.646
3.3	2.506	2.712	2.901	3.144	3.384	3.641
3.4	2.498	2.703	2.893	3.143	3.378	3.635
3.5	2.492	2.695	2.886	3.102	3.372	3.631

One can easily remark that, (i) for the all compositions studied, E_g^{QD} decreases with increased R, (ii) for any composition, E_g^{QD} is sufficiently superior to the bulk band gap for the radius inferior to 3.0 nm, (iii) E_g^{QD} is slightly superior to the bulk band gap when the radii R exceeds 3.0 nm independently of the composition, (iv) For all the cases, the confinement of carriers becomes insignificant when R exceeds 3.5 nm, (v) E_g^{QD} shows a increasing tendency with increased zinc composition independently to the radii R. This result is mainly due to the hole effective masse which decreases with the zinc content x and to the bulk band gap which increases as a function of x, (vi) The E_g^{QD} values as deduced from our calculations do not show a significant discrepancy with respect to the relevant experimental values given by Refs [6, 21, 34-36]. This confirms the validity of the model used in the present work.

CONCLUSION

In summary, we have calculated the band gap energy as a function of radius for $Cd_{1-x}Zn_xS$ quantum dots. A particular attention has been paid to their compositional dependencies. Both electrons and holes are assumed to be confined in nanospheres with an infinite potential barrier at the boundary but taking account on the excitonic binding energy. The obtained results showed a good agreement with several experimental data. Moreover, in technological applications, this study is of great interest more especially for designing devices based on $Cd_{1-x}Zn_xS$ quantum dots.

REFERENCES

- [1] Liu, J., Zhang, D., Pu X., Liu, J., and Zhang, R. (2014)., "Combustion synthesis of Zn1-xCdxS and its photodegradation performance of methylene blue," Materials Letters. 117, pp.158-161.
- [2] Sakly, A., Safta, N., and Ben Lamine, A. (2004)., "Interpretation of the bowing phenomenon in Cd1-xZnxS alloy," J. Mater. Sci.-Mater. Electron. 15, pp.351-354.
- [3] Shah, N. A., Nazir, A., Mahmood, W., Syed, W. A., Butt, S., Ali, Z. (2012)., and Maqsood, A., "Physical properties and characterization of Ag doped CdS thin films," J. Alloys Compd. 512, pp. 27–32.
- [4] Kumar, T. P., Saravanakumar, S., and Sankaranayanan, K. (2011)., "Effect of annealing on the surface and band gap alignment of CdZnS thin films," Appl. Surf. Sci. 257, pp. 1923-1927.
- [5] Safta, N. (2004)., "Fluctuations mode of the gap as a function of composition of Cd1-xZnxS ternaries," Ann. Chim. Sci. Mat. 29, pp. 105-112.
- [6] Bhattacharjee, B., Mandal, S. K., Chakrabarti, K., Ganguli, D., and Chaudhui, S. (2002)., "Optical properties of Cd1-xZnxS nanocrystallites in sol–gel silica matrix," J. Phys. D: Appl. Phys. 35, pp. 2636-2642.
- [7] Gawedang, N. and Gawedang, T. (2005)., "Investigations on chemically deposited Cd1-xZnxS thin films with low Zn content," Materials Letters. 59, pp. 3577-3584.
- [8] Khéfacha. Z, Mnari. M, Dachraoui. M. (2002)., « Caractérisation des couches minces de Cd1–xZnxS préparées par dépôt chimique » Comptes Rendus Chimie, 5(3), pp. 149-155.
- [9] Khéfacha. Z, Benzarti. Z, Mnari. M, Dachraoui.M, (2004) "Electrical and optical properties of Cd₁-xZnxS (0≤x≤0.18) grown by chemical bath deposition", 260, pp 400-409.
- [10] Khéfacha. Z, Mnari. M, Dachraoui. M. (2003) « Opto electronical of thin films prepared by chemical bath deposition », Physical and Chemical News. 14, pp 77-84.
- [11] Cho, N.-K, Yu, J.-W., Kim, Y. H., and Kang, S. J. (2014)., "Effect of oxygen plasma treatment on CdSe/CdZnS quantum-dot light-emitting diodes," Jpn. J. Appl. Phys. 53, 032101.
- [12] Wang, Y., Leck, K. S., Ta, V. D., Chen, R., Nalla, V., Gao, Y., He, T., Demir, H. V., and Sun, H. (2014)., "Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping," Adv. Mater. doi: 10.1002/adma.201403237.
- [13] Beato-López, J. J., Fernández-Ponce, C., Blanco, E., Barrera-Solano, C., Ramírez-del-Solar, M., Domínguez, M., García-Cozar, F. and Litrán, R. (2012)., "Preparation and characterization of fluorescent CdS quantum dots used for the direct detection of GST fusion proteins," Nanomaterials and Nanotechnology, Art. 2, 10.
- [14] Guzelturk, B., Kelestemur, Y., Gungor, K., Yeltik, A., Akgul, M. Z., Wang, Y., Chen, R., Dang, C., Sun, H. and Demir, H. V. (2015)., "Stable and Low-

- Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser," Adv. Mater. doi: 10.1002/adma.201500418.
- [15] Deepa, K., Senthil, S., Shriprasad, S. and Madhavan, J. (2014).," CdS quantum dots sensitized solar cells," International Journal of Chem Tech Research. 6, pp. 1956–1958.
- [16] Efros, Al. L., Efros, A.L., Sov. Phys. Semiconduc. 16 (1982) 722.
- [17] Brus, L.E, Phys. Chem. 90 (1986) 2555.
- [18] Schmitt_Rink, A., Miller, A. B., Chelma, D.S., Phys. Rev. B. 35 (1987) 8113.
- [19] Kayanuma, Y. (1988)., "Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape," Phys. Rev. B. 38, pp. 9797-9805.
- [20] Brus, L.E, Nanostruc. Mater.1 (1992) 71.
- [21] Nanda, K. K., Sarangi, S. N., Mohanty, S. and Sahu, S.N. (1998)., "Optical properties of CdS nanocrystalline films prepared by a precipitation technique," Thin Solid Films. 322, pp. 21-27.
- [22] Safta, N., Sakly, A., Mejri, H., and Bouazra, Y. (2006)., "Electronic and optical properties of Cd1-xZnxS nanocrystals," Eur. Phys. J. B. 51, pp. 75-78.
- [23] Sakly, A., Safta, N., Mejri, A., Mejri, H., and Ben Lamine, A. (2010)., "The excited electronic states calculated for Cd1-xZnxS quantum dots grown by the sol-gel technique," J. Nanomater, ID746520.
- [24] Safta, N., Sakly, A., Mejri, H., and Zaïdi, M. A. (2006)., "Electronic properties of multi-quantum dot structures in Cd1-xZnxS alloy semiconductors," Eur. Phys. J. B. 53, pp. 35-38.
- [25] Marzougui, S. and Safta, N. (2015)., "The excited electronic states and the oscillator strength calculated for flattened cylindrical Cd1-xZnxS quantum dots," International Journal of Chemistry and Materials Research.3, pp. 17-26.
- [26] Sakly, A., Safta, N., Mejri, H., and Ben Lamine, A. (2009)., "The electronic band parameters calculated by the Kronig-Penney method for Cd 1-xZnxS quantum dot superlattices," J. Alloys Compd. 476, pp. 648-652.
- [27] Sakly, A., Safta, N., Mejri, H., and Ben Lamine, A. (2011)., "The electronic states calculated using the sinusoidal potential for Cd1-xZnxS quantum dot superlattices," J. Alloys Compd. 509, pp. 2493-2495.
- [28] Marzougui, S. and Safta, N. (2014)., "The electronic band parameters calculated by the triangular potential model for Cd1-xZnxS quantum dot superlattices," IOSR-JAP. 5, pp. 36-42.
- [29] Marzougui, S. and Safta, N. (2014)., "The electronic band parameters calculated by the tight binding approximation for Cd1-xZnxS quantum dot superlattices," IOSR-JAP. 6, pp. 15-21.
- [30] Marzougui, S. and Safta, N. (2014)., "A theoretical study of the electronic properties of Cd1-xZnxS quantum dot superlattices," American Journal of Nanoscience and Nanotechnology. 2, pp. 45-49.
- [31] Marzougui, S. and Safta, N. (2014), "A theoretical study of the heavy and light hole properties of Cd1-xZnxS quantum dot superlattices.," International Journal of Materials Science and Applications. 3, pp. 274-278.

- [32] Marzougui, S. and Safta, N. (2015)" The Electronic Band Parameters Calculated by a Novel Potential Model for Cd1-xZnxS Quantum Dot Super lattices," Research journal of Materials science. 3, pp. 9-14.
- [33] Marzougui, S. and Safta, N. (2015), "The electron transmission coefficient calculated for Cd1-xZnxS quantum dots-Application in the non volatile memories" International Journal of Applied Engineering Research. 10 (21), pp 42275-42278.
- [34] Alexander, G. et al. (2013), «CdZnS quantum dots formed by the Langmuir–Blodgett technique, » J. Vac. Sci. Technol. B 31(4), pp. 04D 109-1, 04D 109-7.
- [35] Leea, C. W and Petera, A.J (2012) "Electronic and optical properties of CdS/CdZnS nanocrystals" Chin. Phys. B. 21(8) pp. 087302-1,8.
- [36] Sethi, R., Kumar, L., Sharma, K. and Pandey, A.C. (2010) "Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots" Nanoscale Res. Lett. 5 (96) pp.96-102.