

K-Extensibility in Graph with Unique Maximum Independent Set

K.Angaleeswari¹, P.Sumathi² and V.Swaminathan³

1. Department of Mathematics, Thiagarajar College of Engineering, Madurai.

2. Department of Mathematics, C.K.N.College for men, Chennai.

3.Ramanujan Research Centre, Saraswathi Narayanan College, Madurai.

*Email: aadeshangal@gmail.com, sumathipaul@yahoo.co.in,
sulanesri.swaminathan@gmail.com*

Abstract

Let G be a simple graph. An independent set S of G of cardinality k is said to be extendable if S is contained in a maximum independent set of G . If S is a maximal independent set of cardinality k and S is not a maximum independent set of G , then S is not extendable. G is said to be completely extendable if every independent set of G is contained in a maximum independent set of G . In such a case G is also called a well covered graph. G is said to be trivially extendable if no independent set of cardinality less than $\beta_0(G)$ is extendable. In [9, 10] k -extendable graphs are studied. In this paper we consider graphs with unique maximum independent set and study extendability in such graphs. Also k -extendability with specific exceptions is also considered.

Keywords: Berge graph, k - extendability, well-covered graphs.

1. Introduction:

A set of vertices in a graph is independent if no two vertices in the set are joined by an edge. The maximum size of a set of independent vertices in a graph G is called the independence number of G and is denoted by $\beta_0(G)$. A set of independent vertices which attains the maximum size is referred to as a maximum independent set. A set S of independent vertices in a graph is maximal (with respect to set inclusion) if the addition to S of any other vertex in the graph destroys the independence. A maximal independent set in a graph is not necessarily maximum.

A simple graph G is called a Berge graph if every vertex of the graph is contained in a maximum independent set of the graph. Claude Berge introduced this concept in

1980. This led to the idea of k - extendability and well-covered graphs. Many papers have come out on well-covered graphs. A survey by Plummer in 1993 gives a good account of the results derived in well-covered graphs. Connected, well-covered, bipartite graphs were characterized by Ravindra.

A simple graph is said to be well covered if it has no isolated vertex and if $\beta_0(G) = i(G)$, that is every maximal independent set is maximum. This notion has been introduced by Plummer in 1970[5] and studied for bipartite graphs by Ravindra in 1977[6] and also by Berge[1]. We call a graph k -extendable if every independent set of size k is contained in a maximum independent set. This generalizes the concept of a B-graph ((i.e) 1-extendable graph) introduced by Berge and the concept of a well-covered graph. A fair amount of study has been devoted to B-graphs, for example see [1, 2, 7]. In general, there is no connection between k -extendability and j -extendability for $k \neq j$, and there are graphs which are not well-covered and which are k -extendable for given values of k . Also k -extendability does not imply $(k-1)$ -extendability (or) vice versa.

2. k -extendable graphs

Definition :1

Let $G = (V, E)$ be a simple graph. Let k be a positive integer, G is said to be k -extendable if every independent set of cardinality k in G is contained in a maximum independent set of G .

Example 1 In C_6 with vertex set $\{u_1, u_2, u_3, u_4, u_5, u_6\}$. $\{u_1, u_3, u_5\}$ and $\{u_2, u_4, u_6\}$ are maximum independent sets. $\beta_0(G) = 3$. C_6 is 1-extendable but not 2-extendable.

Definition 2

- i. G is said to be trivially extendable if G is k -extendable only for $k = \beta_0(G)$. For example, P_5 is trivially extendable .
- ii. A graph G is said to be completely extendable if G is k -extendable for every k , $1 \leq k \leq \beta_0(G)$. For example, C_4 is completely extendable.

Definition 3

A graph G is said to be well covered if every maximal independent set of G is a maximum independent set of G .

Definition 4

Let S be an independent set of G . A vertex u in $V - S$ is called a public neighbor with respect to S , if u is adjacent to at least two vertices in S . Let $S = \{u_1, u_2, \dots, u_k\}$ be an independent set of G . If $u \in V - S$ is a public neighbor with respect to S and u is adjacent with $u_{i_1}, u_{i_2}, \dots, u_{i_r}$ in S , $r \geq 2$ then $(S - \{u_{i_1}, u_{i_2}, \dots, u_{i_r}\}) \cup \{u\}$ is an independent set of cardinality $(k - r + 1) < k$.

Definition 5

Let S be an independent set of G . Let $u \in V - S$ be a public neighbor with respect to S . The public neighbor of u with respect to S is defined as $pbl(u, S) = \{x \in S : u \text{ and } x \text{ are adjacent}\} = N(u) \cap S$. $|pbl(u, S)|$ is called public neighbor count of u with respect to S .

Theorem 1

Let G be a simple graph with a unique maximum independent set say S . Let $t = \max\{|pbl(u, S)| : u \in V - S\}$. Then G is not k -extendable for $k = \beta_0(G) - t + 1$.

Proof.

Let $S = \{u_1, u_2, \dots, u_{\beta_0}\}$. Let $v \in V - S$ be such that $|pbl(v, S)| = t$.

Let $pbl(v, S) = \{u_{i_1}, u_{i_2}, \dots, u_{i_t}\} \subset S$. Let $T = (S - pbl(v, S)) \cup \{v\}$. $|T| = \beta_0(G) - t + 1$. Since $v \in T$ and $v \in V - S$, T is not a subset of S . Therefore for the integer $k = \beta_0(G) - t + 1$, there exists an independent set namely T , which is not extendable to the unique maximum independent set S of G . Hence the proof.

Remark 1

With the hypothesis of the above theorem, G is not k -extendable, for $1 \leq k \leq \beta_0(G) - t + 1$.

Theorem 2

Let G be a graph with a unique maximum independent set say S . Let T be a maximal independent set of G of cardinality t , ($t \neq \beta_0$). Let $T = \{u_1, u_2, \dots, u_t\}$. Let $t_i = |pn(u_i, T)| \geq 1, \forall i$. Then G is not k -extendable for $k = t, t + t_i - 1$ except for at most one $i, 1 \leq i \leq t$.

Proof.

Since G has a unique maximum independent set and T is a maximal independent set of G of cardinality t , T is not extendable. Therefore G is not k -extendable for $k = t$. Let $u_i \in T$. Let $T_i = pn(u_i, T)$. Then $(T - \{u_i\}) \cup T_i$ is a maximal independent set of G .

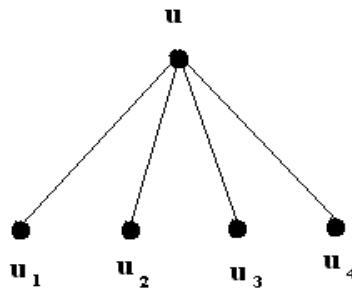
For: Suppose $T' = (T - \{u_i\}) \cup T_i$ is not maximal. Let $x \in V - T'$ be such that $T' \cup \{x\}$ is independent. If $x = u_i$, then $(T - \{x\}) \cup T_i = (T - \{u_i\}) \cup T_i$, $T' \cup \{x\} = T \cup T_i$ is not independent, since $u_i \in T$ and $|T_i| \geq 1$, a contradiction. Then x is not adjacent with every $u_j \in T, j \neq i$ and x is not adjacent with any element of T_i . Since, $x \notin T_i$, x is not a private neighbor of u_i . Suppose x is a neighbour of u_i . Since x is not adjacent with every $u_i \in T, j \neq i$, x is a private

neighbor of u_i with respect to T a contradiction. Therefore x is not adjacent to u_i . Therefore $T \cup \{x\}$ is an independent set of G , a contradiction, since T is a maximal independent set.

Suppose $(T - \{u_i\}) \cup T_i$ is extendable. Then as $(T - \{u_i\}) \cup T_i$ is maximal, $(T - \{u_i\}) \cup T_i$ coincides with the unique maximum independent set S . Therefore $T - \{u_i\}$ is a subset of S . If $T - \{u_i\}$, $T - \{u_j\}$ are subsets of S , where $i \neq j$, then $T \subset S$, a contradiction. Therefore for atmost one u_i , $(T - \{u_i\}) \cup T_i = S$. Therefore G is not k -extendable for $k = t, t + t_j - 1$, $j \neq i, 1 \leq j \leq t$.

Example 2

Let G :



$S = \{u_1, u_2, u_3, u_4\}$ is the unique maximum independent set of G . Let the maximal independent Set $T = \{u\}$. $|T| = 1$. $pn(u, T) = \{u_1, u_2, u_3, u_4\}$ and $t_i = |pn(u_i, T)| = 4$. $(T - \{u\}) \cup pn(u, T) = \{u_1, u_2, u_3, u_4\} = S$. Therefore G is not k -extendable for $k = 1$. That is G is not k -extendable for $k = 1, t + t_i - 1$, for all except one i . since T contains only one element, G is not k -extendable for $k = 1$.

Theorem 3

Let $u, v \in V(G)$ be such that any maximum independent set of G does not contain both u and v . Suppose there exists an independent set of G of cardinality $(\beta_0(G) - 1)$ containing u (or) v . Then G is trivially k -extendable. i.e., G is not k -extendable, for $1 \leq k \leq (\beta_0(G) - 1)$.

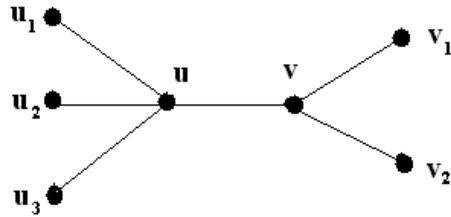
Proof.

Let S be an independent set of G of cardinality $(\beta_0(G) - 1)$ containing u . Let $S = \{v_1, v_2, \dots, v_t\}$, where $t = (\beta_0(G) - 1)$. Let without loss of generality $v_1 = u$. Then, $S - \{v_2\}$, $S - \{v_2, v_3\}$, \dots , $S - \{v_2, v_3, \dots, v_t\}$ are independent sets of G containing u . Therefore these sets are not contained in any maximum independent

set of G . Therefore G is not k -extendable for $1 \leq k \leq (\beta_0(G) - 1)$.

Example 3

Let G :



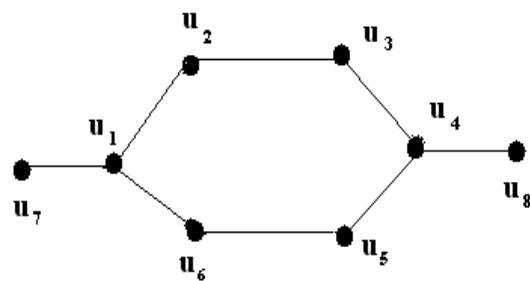
Consider the double star $D_{3,2}$. Let u and v be the centers. Let u_1, u_2, u_3 be adjacent with u and v_1, v_2 be adjacent with v in $D_{3,2}$. $D_{3,2}$ contains a unique maximum independent set namely $\{u_1, u_2, u_3, v_1, v_2\}$. u and v are not contained in this unique β_0 -set. $\{u_1, u_2, u_3, v\}$ is a $(\beta_0(D_{3,2}) - 1)$ -set of $D_{3,2}$ which is independent and this set contains v . $D_{3,2}$ is not k -extendable for $1 \leq k \leq 4$ since, $\{u\}, \{u, v_2\}, \{u, v_1, v_2\}, \{v, u_1, u_2, u_3\}$ are independent sets of $D_{3,2}$ which are not extendable.

In fact, $D_{r,2}$ where $r \geq 2$ is also an example.

Example 4

There are graphs in which $2 \leq i(G) < \beta_0(G)$ such that G is not k -extendable only for $k = i(G)$.

Let G :



$i(G) = 2$ and $\beta_0(G) = 4$. $\{u_1, u_4\}$ is the unique $i(G)$ -set. $\{u_2, u_4, u_6, u_7\}, \{u_1, u_3, u_5, u_8\}, \{u_3, u_6, u_7, u_8\}, \{u_2, u_5, u_7, u_8\}, \{u_2, u_6, u_7, u_8\}, \{u_3, u_5, u_7, u_8\}$ are

maximum independent sets.

G is 1-extendable, 3-extendable but not 2-extendable.

Theorem 4

If $i(G) = \beta_0(G)$, then G is k -extendable for all k , $1 \leq k \leq \beta_0(G)$.

Proof.

Let G be not k -extendable for some k , say k_1 , $1 \leq k_1 \leq \beta_0(G)$. Let S be a maximal independent set of G of cardinality k_1 such that S is not extendable. Therefore S is an independent dominating set of G with $|S| < \beta_0(G) = i(G)$, a contradiction since, $i(G)$ is independent dominating number of G . Therefore G is k -extendable for all k , $1 \leq k \leq \beta_0(G)$.

Theorem 5

Let G be a simple graph in which $\beta_0(G) = (i(G) + 1)$. Suppose G is $(i(G) - 1)$ -extendable then G is k -extendable for all k , $1 \leq k \leq (i(G) - 1)$.

Proof.

Let S be an independent set of G of cardinality k , $1 \leq k \leq (i(G) - 1)$. S is not a maximal independent set since $i(G) > |S|$. Therefore S is properly contained in a maximal independent set say T . Clearly, $|T| \geq i(G)$. If $|T| > i(G)$, then $|T| = \beta_0(G)$. Therefore S is extendable. Suppose $|T| = i(G)$. Consider $T_1 = T - \{u\}$, where $u \notin S$. T_1 is an independent set of cardinality $(i(G) - 1)$ and $S \subset T_1$. T_1 is extendable by hypothesis and hence S is extendable. Hence the theorem.

Theorem 6

Let G be a simple graph which is not well covered. Suppose G is k -extendable for all $k \leq \beta_0(G) - 2$. Then $i(G) + 1 = \beta_0(G)$.

Proof.

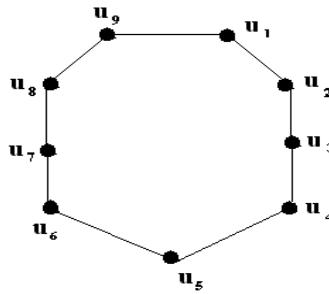
Let G be extendable for all $k \leq i(G) - 2$. If $i(G) = \beta_0(G)$, then G is $(\beta_0(G) - 1)$ -extendable. For:

Let S be an independent set of cardinality $(i(G) - 1)$. S is not a maximal independent set, since $|S| < i(G)$. Therefore S is contained in a maximal independent set of cardinality $> |S|$. Since $i(G) = \beta_0(G)$, any super set of S which is independent is of cardinality $i(G) = \beta_0(G)$. That is S is contained in a maximum independent set. Therefore G is well covered, a contradiction. Therefore $i(G) < \beta_0(G)$. That is $i(G) \leq \beta_0(G) - 1$. By hypothesis, G is k -extendable for all $k \leq \beta_0(G) - 2$. If

$i(G) \leq \beta_0(G) - 2$, then G is $i(G)$ -extendable, a contradiction, since, $i(G) < \beta_0(G)$. Therefore $i(G) > \beta_0(G) - 2$. That is $i(G) \geq \beta_0(G) - 1$. But $i(G) \leq \beta_0(G) - 1$. Therefore $i(G) = \beta_0(G) - 1$. That is $i(G) + 1 = \beta_0(G)$.

Example 5

Let $G = C_9$



$i(G) = 3$ and $\beta_0(G) = 4$. $\{u_1, u_4, u_7\}$ is an $i(G)$ -set. $\{u_1, u_3, u_5, u_7\}$, $\{u_2, u_4, u_6, u_8\}$, $\{u_1, u_3, u_5, u_8\}$, $\{u_2, u_4, u_6, u_9\}$, $\{u_1, u_4, u_6, u_8\}$, $\{u_2, u_5, u_7, u_9\}$, $\{u_1, u_3, u_6, u_8\}$, $\{u_3, u_5, u_7, u_9\}$, $\{u_2, u_4, u_7, u_9\}$ are maximum independent sets. Clearly, G is 1-extendable, 2-extendable but not 3-extendable, since $\{u_1, u_4, u_7\}$ is not contained in any maximum independent sets of C_9 .

Therefore G is k -extendable for $1 \leq k \leq 2$. i.e., G is k -extendable for $1 \leq k \leq (\beta_0(G) - 2)$.

Here $i(G) + 1 = \beta_0(G)$.

Theorem 7

Let G be a graph. G is k -extendable for all k except $k = (\beta_0(G) - 1)$ iff $i(G) + 1 = \beta_0(G)$ and G is $(\beta_0(G) - 2)$ -extendable.

Proof.

Suppose $i(G) + 1 = \beta_0(G)$ and G is $(\beta_0(G) - 2)$ -extendable. Let $1 \leq k \leq \beta_0(G) - 3$. Let S be an independent set of cardinality k . Since $k < i(G)$, S is not maximal. Therefore S is properly contained in a maximal independent set say T . Since T is maximal $|T| \geq i(G)$. Suppose $|T| = i(G) = (\beta_0(G) - 1)$. Let $u \in T - S$. Let $T_1 = T - \{u\}$. Then T_1 is an independent set of cardinality $(\beta_0(G) - 2)$. Therefore T_1 is contained in a β_0 -set of G . Since $S \subseteq T_1$, S is contained in a $\beta_0(G)$ -set of G . If $|T| > i(G)$, then $|T| = \beta_0(G)$. Therefore S is contained in a maximum independent set of G . i.e., G is k -extendable for all k , except $k = (\beta_0(G) - 1)$.

Conversely, Suppose G is k -extendable for all k , except $k = (\beta_0(G) - 1)$. Then clearly G is $(\beta_0(G) - 2)$ -extendable $i(G) < \beta_0(G)$ and $i(G) \geq (\beta_0(G) - 1)$. Therefore $i(G) = (\beta_0(G) - 1)$.

References:

- [1] C.Berge, Some common properties for regularizable graphs, edge critical graphs and B-graphs, Tohoku univ. Tsukcen symp. on Graph Theory and Algorithms, oct 1980.
- [2] O.T.George and M.R.sridharan On B-graphs, Indian J.pure App. Math. 12(1981), 1088-1093.
- [3] F.Harary, Graph Theory, Addison Wesley, Reading, Mass.(1969).
- [4] O.Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publication, 38, Providence, (1962).
- [5] M.D.Plummer, Some covering concepts in graphs, J.Combin, Theory(1970) 91-98.
- [6] G.Ravindra, Well covered graphs, J.combin.Inform, system. sci 2(1) (1977) 20-21.
- [7] G.Ravindra, B-graphs, in : proc. symp. Graph Theory, vol 4 (Macmillan India, 1979) 268- 280.
- [8] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc.(1998).
- [9] K.Angaleeswari, P.Sumathi and V.Swaminathan, “k-extendable graphs and weakly k- extendable graphs” at Two Day National Conference on Recent Developments in Application of Graph Theory (NCRDAGT –2013) in Raja Doraisingam Government Arts College, Sivagangai, Aug 2nd and 3rd, 2013.
- [10] K.Angaleeswari, P.Sumathi and V.Swaminathan, “k-extendability in graphs” at International Conference on Mathematical Computer Engineering (ICMCE – 2013) in VIT University, Chennai-127, Nov 29th and 30th, 2013.