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Abstract

Invariance and inverse invariance of topological properties has been
investigated using continuous functions and almost continuous functions from
one topological space to another topological space. This has been done in both
discrete and indiscrete spaces. In this paper we show the invariance of some
topological properties using almost continuous functions from a cofinite space
to a Euclidean R™ space.

1. Introduction and Literature Review

The concept of almost continuous function was studied for real valued functions on
Euclidean spaces (Blumberg, 1922). Almost continuous function had been defined
differently by different authors as indicated by Prakash and Srivastava (1977). Almost
continuity generalizes the notion of continuity and every continuous function is an
almost continuous function even though the reciprocal may not hold. To visualize
this, consider X =Y = the set of all real numbers with the usual topology where the
open sets are taken to be the open intervals in the real line, then the function

1
sin=,x #0 . . . ]
x is an almost continuous function that is

f:X — Y defined by: f(x) = {
0,x=0
not continuous. Clearly this function oscillates near the point x = 0 hence its limit
cannot exist at that point implying that the function cannot be continuous. Almost
continuous mapping have been introduced in several spaces and its properties and
characterization have been studied. Some of the properties and several results
concerning almost continuous functions have been studied and proved (Long and
McGehee, 1970). Invariance and inverse invariance of some topological properties

with respect to continuous functions and almost continuous functions have been
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studied by Gichuki (1996). Since all continuous functions are subsets of almost
continuous functions, a property that is not preserved by continuous functions cannot
be preserved by almost continuous functions. It had been established that among the
class of T;- spaces, invariance of topological properties with respect to continuous
bijections implies invariance of the same topological properties with respect to almost
continuous bijections, and that if a property 2 is invariant of continuous functions, it
must be invariant of continuous bijections and hence invariant of continuous
bijections in the class of T;- spaces (Gichuki, 1996). A remark was made that most of
the interesting results with almost continuous functions are obtained with the class of
T;- spaces (Naimpally, 1966).Various notion of compactness such as countably
compactness, limit  point  compactness, sequentially  compactness and
pseudocompactness have been studied by Yu (2012). The article looked at their useful
properties and their relations on arbitrary topological spaces as well as on metric
spaces.

2. Preliminaries

This paper considers the concept of almost continuous function as defined by
Stallings (1959) in showing the invariance of topological properties from the cofinite
space to the Euclidean space R™. The cofinite space here is a T, - space and the n
dimensional Euclidean R™ space is a T, - space. Since every Hausdorff space is a
T;- space, the Euclidean R™ space satisfies the conditions of a T;- space. Some of the
topological properties shown include separability, compactness and its other notions
like limit point compactness, pseudocompactness and sequential compactness.

3. Main results

A property is said to be a topological invariant (or topological property) if whenever
one space possesses a given property, any space homeomorphic to it also possesses
the same property. The properties of topological spaces that remain unchanged when
space X is mapped onto a space Y by means of a function are said to be invariant of
that function. Thus if a property 2 is known to be invariant of the function f and we
want to check whether a topological space Y has the property P, we will only need to
show that Y = f(X) for some function f and some topological space X having
property P. We study the behaviours of these topological properties with respect to
almost continuous functions from the cofinite space to the Euclidean R™ spaces.
These are done with respect to continuous functions and then the remark 1 noted
below is used to make a conclusion.

Remark 1:

It has been shown by Gichuki (1996) that if a property 2 is invariant of continuous
functions, it must be invariant of continuous bijections and hence invariant of
continuous bijections in the class of T;- spaces. Those topological properties which
are invariant of continuous functions are also invariant of almost continuous functions
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in the class of T, - spaces.

Theorem 1

Let f be a continuous function from a separable cofinite space C to the Euclidean
space R™. If A is a countable dense subset of C, then f(A) is a countable dense subset
of £(€) in the Euclidean space R™.

Proof

Consider a continuous function f:C — R™ where C is a separable cofinite space.
Since A is a countable dense subset of C, that is A = C, we then check that £(4) is
dense in f(C) which is a subset of the Euclidean R™ space due to the continuity of f.
Now for f:X — Y where X and Y are topological spaces being continuous and
A C X, letting x € A implying that f(x) € f(A). We let V be a neighborhood of
f(x). By continuity of £, f~1(V) is an open set in X containing x. Thus we have
fX(V)NA # @ implying that f(x) € f(A). Therefore f(A) < f(A). From this, we
can then let X to be our separable cofinite space C and Y to be our Euclidean space
R™. But AC 4 and 4 € C. We then have f(4) € f(4) € f(A) € f(€). Clearly
f(A) < f£(€) which would imply that f(A) = f(C). That is f(€) has a countable
dense subset f (Z) showing that f(C) is separable as a subset of R™. Therefore
separability is invariant of continuous functions from cofinite space C to Euclidean
R™ space. From remark 1; separability is invariant of almost continuous functions
from cofinite space C to Euclidean R™ space.

Theorem 2
Suppose C is a compact cofinite space and f: C — R™ is a continuous function, then
f(C) is a compact subset of the Euclidean R™ space.

Proof

Let A = {U,: @ € (} be any open cover for f(C). Then one of the members of U, say
Ug covers all but finitely many points of f(C) since Ug = f(C) \ {a4, ay, ..., ap,} for
SOMe a4, Ay, ..., Ay, IN f(C). Therefore f(C) = Uger Uqg

e=rJue )= wo

a€d a€d

Since f is continuous, f~1(U,) is open in € for some a € {. Then {f 1 (U,): a € {}
is an open cover for C . Because C is compact there exists a4, a,, ..., @,, € ¢ such that
€ =7 (Up)U|UE: f 7' (Ua)] = £ (Up)Uf T [URE1 Uy | = £ [UpU(UEL1 Ua)]
£(©) = UpU(U, Uy,). Hence {UgUU,,: i = 1, ..., m} is a finite subcover for A. We
therefore have compactness being invariant of continuous functions from a compact
cofinite space C to the Euclidean R™ space. From remark 1; compactness is invariant
of almost continuous functions from the cofinite space C to the Euclidean R™ space.
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Theorem 3

Let f be a continuous function from a sequentially compact cofinite space C to a
closed and bounded subset B of the Euclidean R™ space. Then f(C) is a sequentially
compact subset of the Euclidean space R".

Proof

Consider a continuous function f: C — B where C is a sequentially compact cofinite
space and B is a closed and bounded subset of the Euclidean R™ space. Because of
continuity of f, we have f(C) < B. Let (y;,y,, ...) be asequence in f(C). Then there
exists xi,x,, .. € C such that f(x,) =y, for every n € N. But C is sequentially
compact, so the sequence (xy,x,,..) contains a subsequence (xil'xizv--) which
converges to a point p € C. Now f is continuous and hence sequentially continuous,
so {f(xi,),f(xi,), -} ={vi,yi, -} converges to f(p) € f(C). Thus f(C) is
sequentially compact with a sequence (yq,y,,..) having a convergent
subsequence (yl-l, Vigs+ ) Therefore sequential compactness is invariant of continuous
functions from a cofinite space C to Euclidean R"™ space. From remark 1; Sequential
compactness is invariant of almost continuous functions from a cofinite space C to the
Euclidean space R™.

Theorem 4

Let f be a continuous function from a pseudocompact cofinite space C to the
Euclidean space R™. Then f(C) is a pseudocompact subset of the Euclidean space
R™.

Proof

Since a compact space is pseudocompact we show that a cofinite space C is also
pseudocompact. A cofinite space C is a compact space. The image of a compact space
under any continuous function is compact. By Heine - Borel theorem, the compact
subsets of the Euclidean space R™ are precisely the closed and bounded subsets.
Hence a cofinite space is pseudocompact as its image under any continuous function
to R™ is compact. To show the continuity invariance of pseudocompactness to the
Euclidean R™ space, we consider a continuous function f: ¢ — R™. Clearly f(C) is a
compact subset of R™ by continuity of f. By Heine - Borel theorem f(C) is bounded,
that is f is a bounded function and f(C) is closed since it is a compact subset of R™.
This implies that the continuous function f attains its bounds as the supremum and
infimum of f(€) which are either in f(C) or are the limit points. Since f(C) is the
continuous image of pseudocompact space C, it follows that £ (C) is pseudocompact.
Hence pseudocompactness is invariant of continuous functions from the
pseudocompact cofinite space C to the Euclidean R™ space. From the remark 1;
pseudocompactness is invariant of almost continuous functions from the cofinite
space C to the Euclidean R™ space.
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Theorem 5

Let C be a limit point compact cofinite space and f be a continuous function from C
to the Euclidean space R™, then f(C) is a limit point compact space in the Euclidean
space R™.

Proof

Suppose K is a closed and bounded subset of R"™, then it is compact since the closed
and bounded subsets of the Euclidean R™ space are compact. If B is an infinite subset
of ¥, then B is also bounded and by Bolzano - Weierstrass theorem, B has a limit
point p. Since X is closed, the limit point p of B belongs to K, that is X is limit point
compact. We consider a continuous function f: ¢ — K and because of continuity of
f, we have f(C) c K. Since C contains an infinite set A whose limit point is in C,
then f(C) c K contains an infinite set f(A4) whose limit point is in f(C). But f(C) is
a subset of a closed and bounded set K < R™ which is also limit point compact.
Clearly the cofinite space that is limit point compact is continuous invariant to the
Euclidean R™ space. Therefore limit point compactness is continuity invariant from
cofinite space C to the Euclidean R™ space. Hence from remark 1; limit point
compactness is invariant with respect to almost continuous function from cofinite
space C to the Euclidean R™ space.
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