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Abstract 

 

Invariance and inverse invariance of topological properties has been 

investigated using continuous functions and almost continuous functions from 

one topological space to another topological space. This has been done in both 

discrete and indiscrete spaces. In this paper we show the invariance of some 

topological properties using almost continuous functions from a cofinite space 

to a Euclidean ℝ𝑛 space. 

 

 

1. Introduction and Literature Review 
The concept of almost continuous function was studied for real valued functions on 

Euclidean spaces (Blumberg, 1922). Almost continuous function had been defined 

differently by different authors as indicated by Prakash and Srivastava (1977). Almost 

continuity generalizes the notion of continuity and every continuous function is an 

almost continuous function even though the reciprocal may not hold. To visualize 

this, consider 𝑋 = 𝑌 = the set of all real numbers with the usual topology where the 

open sets are taken to be the open intervals in the real line, then the function     

𝑓: 𝑋 ⟶ 𝑌 defined by: 𝑓(𝑥) = {
sin

1

𝑥
, 𝑥 ≠ 0

0, 𝑥 = 0
 is an almost continuous function that is 

not continuous. Clearly this function oscillates near the point 𝑥 = 0 hence its limit 

cannot exist at that point implying that the function cannot be continuous. Almost 

continuous mapping have been introduced in several spaces and its properties and 

characterization have been studied. Some of the properties and several results 

concerning almost continuous functions have been studied and proved (Long and 

McGehee, 1970). Invariance and inverse invariance of some topological properties 

with respect to continuous functions and almost continuous functions have been 
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studied by Gichuki (1996). Since all continuous functions are subsets of almost 

continuous functions, a property that is not preserved by continuous functions cannot 

be preserved by almost continuous functions. It had been established that among the 

class of 𝑇1- spaces, invariance of topological properties with respect to continuous 

bijections implies invariance of the same topological properties with respect to almost 

continuous bijections, and that if a property 𝒫 is invariant of continuous functions, it 

must be invariant of continuous bijections and hence invariant of continuous 

bijections in the class of 𝑇1- spaces (Gichuki, 1996). A remark was made that most of 

the interesting results with almost continuous functions are obtained with the class of 

𝑇1- spaces (Naimpally, 1966).Various notion of compactness such as countably 

compactness, limit point compactness, sequentially compactness and 

pseudocompactness have been studied by Yu (2012). The article looked at their useful 

properties and their relations on arbitrary topological spaces as well as on metric 

spaces. 

 

 

2. Preliminaries 
This paper considers the concept of almost continuous function as defined by 

Stallings (1959) in showing the invariance of topological properties from the cofinite 

space to the Euclidean space ℝ𝑛. The cofinite space here is a 𝑇1 - space and the 𝑛 

dimensional Euclidean ℝ𝑛 space is a 𝑇2 - space. Since every Hausdorff space is a    

𝑇1- space, the Euclidean ℝ𝑛 space satisfies the conditions of a 𝑇1- space. Some of the 

topological properties shown include separability, compactness and its other notions 

like limit point compactness, pseudocompactness and sequential compactness. 

 

 

3. Main results 
A property is said to be a topological invariant (or topological property) if whenever 

one space possesses a given property, any space homeomorphic to it also possesses 

the same property. The properties of topological spaces that remain unchanged when 

space 𝑋 is mapped onto a space 𝑌 by means of a function are said to be invariant of 

that function. Thus if a property 𝒫 is known to be invariant of the function 𝑓 and we 

want to check whether a topological space 𝑌 has the property 𝒫, we will only need to 

show that 𝑌 = 𝑓(𝑋) for some function 𝑓 and some topological space 𝑋 having 

property 𝒫. We study the behaviours of these topological properties with respect to 

almost continuous functions from the cofinite space to the Euclidean ℝ𝑛 spaces. 

These are done with respect to continuous functions and then the remark 1 noted 

below is used to make a conclusion. 

 

Remark 1:  

It has been shown by Gichuki (1996) that if a property 𝒫 is invariant of continuous 

functions, it must be invariant of continuous bijections and hence invariant of 

continuous bijections in the class of 𝑇1- spaces. Those topological properties which 

are invariant of continuous functions are also invariant of almost continuous functions 
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in the class of 𝑇1- spaces. 

 

Theorem 1  

Let 𝑓 be a continuous function from a separable cofinite space 𝒞 to the Euclidean 

space ℝ𝑛. If 𝐴 is a countable dense subset of 𝒞, then 𝑓(𝐴) is a countable dense subset 

of 𝑓(𝒞) in the Euclidean space ℝ𝑛. 

 

Proof 

Consider a continuous function 𝑓: 𝒞 ⟶ ℝ𝑛 where 𝒞 is a separable cofinite space. 

Since 𝐴 is a countable dense subset of 𝒞, that is  𝐴 = 𝒞, we then check that 𝑓(𝐴) is 

dense in 𝑓(𝒞) which is a subset of the Euclidean ℝ𝑛 space due to the continuity of 𝑓. 

Now for 𝑓: 𝑋 ⟶ 𝑌 where 𝑋 and 𝑌 are topological spaces being continuous and     

 𝐴 ⊆ 𝑋, letting 𝑥 ∈ 𝐴 implying that 𝑓(𝑥) ∈ 𝑓(𝐴). We let 𝒱 be a neighborhood of 

𝑓(𝑥). By continuity of 𝑓, 𝑓−1(𝒱) is an open set in 𝑋 containing 𝑥. Thus we have 

𝑓−1(𝒱)⋂𝐴 ≠ ∅ implying that 𝑓(𝑥) ∈ 𝑓(𝐴). Therefore 𝑓(𝐴) ⊆ 𝑓(𝐴). From this, we 

can then let 𝑋 to be our separable cofinite space 𝒞 and 𝑌 to be our Euclidean space 

ℝ𝑛. But 𝐴 ⊆ 𝐴 and 𝐴 ⊆ 𝒞. We then have 𝑓(𝐴) ⊆ 𝑓(𝐴) ⊆ 𝑓(𝐴) ⊆ 𝑓(𝒞). Clearly 

𝑓(𝐴) ⊆ 𝑓(𝒞) which would imply that 𝑓(𝐴) = 𝑓(𝒞). That is 𝑓(𝒞) has a countable 

dense subset 𝑓(𝐴), showing that 𝑓(𝒞) is separable as a subset of ℝ𝑛. Therefore 

separability is invariant of continuous functions from cofinite space 𝒞 to Euclidean 

ℝ𝑛 space. From remark 1; separability is invariant of almost continuous functions 

from cofinite space 𝒞 to Euclidean ℝ𝑛 space. 

 

Theorem 2 

Suppose 𝒞 is a compact cofinite space and 𝑓: 𝒞 ⟶ ℝ𝑛 is a continuous function, then 

𝑓(𝒞) is a compact subset of the Euclidean ℝ𝑛 space. 

 

Proof  

Let 𝒜 = {𝑈𝛼: 𝛼 ∈ ζ} be any open cover for 𝑓(𝒞). Then one of the members of 𝑈𝛼 say 

𝑈𝛽 covers all but finitely many points of 𝑓(𝒞) since 𝑈𝛽 = 𝑓(𝒞) ∖ {𝑎1, 𝑎2, … , 𝑎𝑚} for 

some 𝑎1, 𝑎2, … , 𝑎𝑚 in 𝑓(𝒞). Therefore 𝑓(𝒞) = ⋃ 𝑈𝛼𝛼∈𝜁  

 𝒞 = 𝑓−1 (⋃ 𝑈𝛼

𝛼∈𝜁

) = ⋃ 𝑓−1(𝑈𝛼)

𝛼∈𝜁

 

 

Since 𝑓 is continuous, 𝑓−1(𝑈𝛼) is open in 𝒞 for some 𝛼 ∈ 𝜁. Then {𝑓−1(𝑈𝛼): 𝛼 ∈ 𝜁} 

is an open cover for 𝒞 . Because 𝒞 is compact there exists 𝛼1, 𝛼2, … , 𝛼𝑚 ∈ 𝜁 such that 

𝒞 = 𝑓−1(𝑈𝛽)⋃[⋃ 𝑓−1(𝑈𝛼𝑖
)𝑚

𝑖=1 ] = 𝑓−1(𝑈𝛽)⋃𝑓−1[⋃ 𝑈𝛼𝑖

𝑚
𝑖=1 ] = 𝑓−1[𝑈𝛽⋃(⋃ 𝑈𝛼𝑖

𝑚
𝑖=1 )] 

𝑓(𝒞) = 𝑈𝛽⋃(⋃ 𝑈𝛼𝑖

𝑚
𝑖=1 ). Hence {𝑈𝛽⋃𝑈𝛼𝑖

: 𝑖 = 1, … , 𝑚} is a finite subcover for 𝒜. We 

therefore have compactness being invariant of continuous functions from a compact 

cofinite space 𝒞 to the Euclidean ℝ𝑛 space. From remark 1; compactness is invariant 

of almost continuous functions from the cofinite space 𝒞 to the Euclidean ℝ𝑛 space. 
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Theorem 3 

Let 𝑓 be a continuous function from a sequentially compact cofinite space 𝒞 to a 

closed and bounded subset 𝐵 of the Euclidean ℝ𝑛 space. Then 𝑓(𝒞) is a sequentially 

compact subset of the Euclidean space ℝ𝑛. 

 

Proof  

Consider a continuous function 𝑓: 𝒞 ⟶ 𝐵 where 𝒞 is a sequentially compact cofinite 

space and 𝐵 is a closed and bounded subset of the Euclidean ℝ𝑛 space. Because of 

continuity of 𝑓, we have 𝑓(𝒞) ⊂ 𝐵. Let (𝑦1, 𝑦2, … ) be a sequence in 𝑓(𝒞). Then there 

exists 𝑥1, 𝑥2, … ∈  𝒞 such that 𝑓(𝑥𝑛) = 𝑦𝑛 for every 𝑛 ∈ ℕ. But 𝒞 is sequentially 

compact, so the sequence (𝑥1, 𝑥2, … ) contains a subsequence (𝑥𝑖1
, 𝑥𝑖2

, … ) which 

converges to a point 𝑝 ∈ 𝒞. Now 𝑓 is continuous and hence sequentially continuous, 

so {𝑓(𝑥𝑖1
), 𝑓(𝑥𝑖2

), … } = {𝑦𝑖1
, 𝑦𝑖2

, … } converges to 𝑓(𝑝) ∈ 𝑓(𝒞). Thus 𝑓(𝒞) is 

sequentially compact with a sequence (𝑦1, 𝑦2, … ) having a convergent 

subsequence (𝑦𝑖1
, 𝑦𝑖2

, . . ). Therefore sequential compactness is invariant of continuous 

functions from a cofinite space 𝒞 to Euclidean ℝ𝑛 space. From remark 1; Sequential 

compactness is invariant of almost continuous functions from a cofinite space 𝒞 to the 

Euclidean space ℝ𝑛. 
 

Theorem 4 

Let 𝑓 be a continuous function from a pseudocompact cofinite space 𝒞 to the 

Euclidean space ℝ𝑛. Then 𝑓(𝒞) is a pseudocompact subset of the Euclidean space 

ℝ𝑛. 

 

Proof  

Since a compact space is pseudocompact we show that a cofinite space 𝒞 is also 

pseudocompact. A cofinite space 𝒞 is a compact space. The image of a compact space 

under any continuous function is compact. By Heine - Borel theorem, the compact 

subsets of the Euclidean space ℝ𝑛 are precisely the closed and bounded subsets. 

Hence a cofinite space is pseudocompact as its image under any continuous function 

to ℝ𝑛 is compact. To show the continuity invariance of pseudocompactness to the 

Euclidean ℝ𝑛 space, we consider a continuous function 𝑓: 𝒞 ⟶ ℝ𝑛. Clearly 𝑓(𝒞) is a 

compact subset of ℝ𝑛 by continuity of 𝑓. By Heine - Borel theorem 𝑓(𝒞) is bounded, 

that is 𝑓 is a bounded function and 𝑓(𝒞) is closed since it is a compact subset of ℝ𝑛. 

This implies that the continuous function 𝑓 attains its bounds as the supremum and 

infimum of 𝑓(𝒞) which are either in 𝑓(𝒞) or are the limit points. Since 𝑓(𝒞) is the 

continuous image of pseudocompact space 𝒞, it follows that 𝑓(𝒞) is pseudocompact. 

Hence pseudocompactness is invariant of continuous functions from the 

pseudocompact cofinite space 𝒞 to the Euclidean ℝ𝑛 space. From the remark 1; 

pseudocompactness is invariant of almost continuous functions from the cofinite 

space 𝒞 to the Euclidean ℝ𝑛 space.  
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Theorem 5 

Let 𝒞 be a limit point compact cofinite space and 𝑓 be a continuous function from 𝒞 

to the Euclidean space ℝ𝑛, then 𝑓(𝒞) is a limit point compact space in the Euclidean 

space ℝ𝑛. 

 

Proof  

Suppose 𝒦 is a closed and bounded subset of ℝ𝑛, then it is compact since the closed 

and bounded subsets of the Euclidean ℝ𝑛 space are compact. If 𝐵 is an infinite subset 

of 𝒦, then 𝐵 is also bounded and by Bolzano - Weierstrass theorem, 𝐵 has a limit 

point 𝑝. Since 𝒦 is closed, the limit point 𝑝 of 𝐵 belongs to 𝒦, that is 𝒦 is limit point 

compact. We consider a continuous function 𝑓: 𝒞 ⟶ 𝐾 and because of continuity of 

𝑓, we have 𝑓(𝒞) ⊂ 𝐾. Since 𝒞 contains an infinite set 𝐴 whose limit point is in 𝒞, 

then 𝑓(𝒞) ⊂ 𝐾 contains an infinite set 𝑓(𝐴) whose limit point is in 𝑓(𝒞). But 𝑓(𝒞) is 

a subset of a closed and bounded set 𝒦 ⊂ ℝ𝑛 which is also limit point compact. 

Clearly the cofinite space that is limit point compact is continuous invariant to the 

Euclidean ℝ𝑛 space. Therefore limit point compactness is continuity invariant from 

cofinite space 𝒞 to the Euclidean ℝ𝑛 space. Hence from remark 1; limit point 

compactness is invariant with respect to almost continuous function from cofinite 

space 𝒞 to the Euclidean ℝ𝑛 space. 
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