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Abstract

A quantum algorithm for the knapsack problem by a numbering method and
its example are reported. When an optimal combination of n pieces of
different weight luggage packed into the knapsack that a weight & can be put is
requested, a computational complexity of a classical computation is 2" — 1.
The computational complexity becomes about 4n by the quantum algorithm
that uses quantum phase inversion gates, quantum inversion about mean gates
and the numbering method. Therefore, a polynomial time process becomes

possible.
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1. Introduction

The very first steps towards building a quantum computer were made by Haroche and
Wineland [1]. Deutsch-Jozsa's algorithm for the rapid solution [2—4], Shor's algorithm
for the factorization [3—5], Grover's algorithms for the database search [3, 6, 7] and so
on are known. A quantum algorithm for the vertex coloring problem by a numbering
method has recently been reported by Fujimura [8]. Its computational complexity
becomes a polynomial time. The knapsack problem [3, 9] is examined by the

numbering method this time. Therefore, its result is reported.

2. Knapsack Problem
As for n pieces of different weight luggage, the knapsack problem requests an optimal
combination of the luggage packed into the knapsack that a weight £ is assumed to be

an upper bound.

3. Quantum Algorithm

It is assumed that there are n pieces of different weight x; [1 <i < n. i is an integer.],
and the upper bound weight k of the knapsack, and a; [1 <i < n. i is the integer.] is 0
or 1. When the number of the » times repeated permutation of 0 and 1 is 2", a; 2" +
a2 4+ +a,20= S icion a; 2" = U is the numbering datum from 0 to 2" — 1 [The
0-th datum is 0, 0, ***, 0 and 0. The (2" — 1)-th datumis 1, 1, -, 1 and 1.]. This method
is named the numbering method for this problem. g is the minimum integer that

follows n/2 < g [2"/1 < 4% = 2%], because a number of combinations of an answer is 1

at least.
First of all, quantum registers |a;>, |a>>, **, |a,>, |b1>, |b2>, |c> and |d> are
prepared. States of |a;>, |ax>, *, |a,>, |b1>, |b2>, |c> and |d> are ay, aa, ", ay, by, by,

and d, respectively.
e Step 1: Each quantum bit [=qubit] of |a;>, |a>>, **, |a,>, |b1>, |b2>, |c> and |d>

is set |0>.
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e Step 2: The Hadamard gate H| [3, 4] acts on each qubit of |a;>, |a>, ", |a,-1>
and |a,>. It changes them for entangled states. The total states are 2" [=I¥].

e Step 3: It is assumed that a quantum gate (4) changes |b;> and |b,> for |b; + a;
x> and |by, + a; 2"">, respectively, at |a¢;>. These actions are repeated
sequentially from |a;> to |a,>. Therefore, |b;> and |b,> become |> =1, a; x; >
and |Y-1on a; 2" = U >, respectively.

e Step 4: It is assumed that a quantum gate (B) doesn't change |c> in b; =k, or it
changes |c> for |c + 1 + b,> in the others of b; from |h;> and |by>.

e Step 5: It is assumed that a quantum gate (C;) changes |[@> for [[>in 0 < ¢ <
(2"/4) — 1, or it changes |@> for |0> in the others of c. As the target state for |[@>
is 1, quantum phase inversion gates (P/) and quantum inversion about mean
gates (IM) [3, 6, 7] act on |d>. The number of the data that is included in 0 < ¢
< (2"4) — 1 is W; = 2"/4. When y, is the minimum even integer that is
(Wo/W)"* or more, the total number that (PI) and (IM) act on |d> is y; = 2,
because they are a couple. Next, an observation gate (OB) observes |d>, and
the data of W remain. Similarly, (C;) [2 <i < g — 1. i is the integer.] changes
|@> for 1> in 0 < ¢ < (2"/4") — 1, or it changes |@> for |0> in the others of c. As
the target state for |@> is 1, (PI) and (IM) act on |@>. The number of the data
that is included in 0 < ¢ < (2"/4") — 1 is W; = 2"/4". When y, is the minimum

even integer that is (W;_/W;)"?

or more, the total number that (P/) and (/M) act
on |d> is y; = 2. Next, (OB) observes |d>, and the data of ; remain. These

actions are repeated sequentially from 2 to g — 1 at i.

(Cy,) changes |d> for |1> at ¢ = 0, or it changes |@> for |0> in the others of c. As the
target state for |@> is 1, (PI) and (IM) act on |d>. The number of the data that is
included at ¢ = 0 is W, = 2"/4%* = 1. When y, is the minimum even integer that is (W,
1/ Wy )1/ 2 or more, the total number that (PI) and (IM) act on |d> is 7e = 2. Next, (OB)
observes |a>, |ax>, **, |a,>, |b1>, |b2>, |c> and |d>, and one of the data of WV, remains.

Therefore, one example of combinations that are b; = k is obtained.
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4. Numerical Computation
It is assumed that there are n =6, x1 =15, x, =3, x3=2, x4 =7, x5 =10, x¢ = 13, k=19

and g=3[6/2=3 <3 =g].

First of all, |a;>, |ax>, ", |as>, |b1>, |b2>, |c> and |d> are prepared. States of |a;>,
lay>, "+, lag>, |b1>, |b2>, |c> and |d> are ay, ay, ***, as, b1, by, ¢ and d, respectively.
e Step 1: Each qubit of |a;>, |a>, *, |as>, |b1>, |b2>, |c> and |d> is set |0>.

e Step 2: H| acts on each qubit of |a;>, |ax>, **, |as> and |a¢>. It changes them for
entangled states. The total states are 26 [=Wo].

e Step 3: (4) changes |b> and |b> for |by + a; x; > and |b, + a; 2" >,
respectively, at |a;>. These actions are repeated sequentially from |a;> to |ac>.
Therefore, |b;> and |b;> become |Y ;=16 @; x> and Y =16 @; 207 = U >,
respectively.

e Step 4: (B) doesn't change |c> at b; = 19, or it changes |c> for |c + 1 + b>> in
the others of b; from |b;> and |b,>.

e Step 5: (C)) changes |@> for |1>in 0 < ¢ < (2%/4) — 1, or it changes |d> for |0>
in the others of c. As the target state for |@> is 1, (PI) and (IM) act on |d>. The
number of the data that is included in 0 < ¢ < (26/4) —-lis W= 2%/4. When 7
is the minimum even integer that is (Wy/ Wl)l/2 ~ 2 <2 =y, the total number
that (PI) and (IM) act on |d> is y; = 2. Next, (OB) observes |d>, and the data of

W, remain.

(C») changes |@> for |1>in 0 < ¢ < (2%4%) — 1, or it changes |d> for |0> in the
others of c. As the target state for |@> is 1, (PI) and (IM) act on |d>. The number of the
data that is included in 0 < ¢ < (2°/4%) — 1 is W, =~ 2°/4*. When », is the minimum even
integer that is (W;/ Wy P=2<2= 2, the total number that (P/) and (/M) act on |d> is
7, = 2. Next, (OB) observes |d>, and the data of ¥, remain.

(C5) changes |@> for [1> at ¢ = 0, or it changes |@> for |0> in the others of c¢. As the
target state for |@> is 1, (PI) and (IM) act on |d>. The number of the data that is
included at ¢ = 0 is W5 = 2%/4° = 1. When 3 is the minimum even integer that is (W,

/W) ?=2<2= 73, the total number that (P/) and (/M) act on |d> is y3 = 2. Next, (OB)
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observes |a;>, |ax>, *, |ag>, |b1>, |b2>, |c> and |d>, and one of the data of W3 remains.
For example, when ay, ay, as, as, as, as, b1, by, cand d are 0,0, 1, 1, 1, 0, 19, 14, 0 and
1, respectively, it is obtained that a; x; + ax x, + a3 x3 + a4 x4 + as xs + ag x6 1s 0 X 15 +

0x3+1x2+1x7+1x10+0x13=19=r¢.

5. Discussion and Summary

The computational complexity of this quantum algorithm [=S] becomes the following.
In the order of the actions by the gates, the number of them is n at , n at (4), 2 at
(B), gat (C) [1 <i<g. iis the integer.], Y i=iq yi = 2g at (PI) and (IM), and g at
(OB). Therefore, S becomes 2n + 2 + 4g. In the example of the section 4, S is 26. The
computational complexity of the classical computation [=Z] is 2" — 1 = 2° — 1 = 63.
After all, S/Z becomes about 1/2. When = is large enough, S becomes about 2n + 2 +
2n = 4n, where g is about n/2. And then, S/Z is about 4n/2" = n/2". For example, as for
n =100, S/Z is about 100/2'" = 1/10%.

Therefore, the polynomial time process becomes possible.
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