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Abstract 

 

A quantum algorithm for the knapsack problem by a numbering method and 

its example are reported. When an optimal combination of n pieces of 

different weight luggage packed into the knapsack that a weight k can be put is 

requested, a computational complexity of a classical computation is 2n − 1. 

The computational complexity becomes about 4n by the quantum algorithm 

that uses quantum phase inversion gates, quantum inversion about mean gates 

and the numbering method. Therefore, a polynomial time process becomes 

possible. 
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1. Introduction 
The very first steps towards building a quantum computer were made by Haroche and 

Wineland [1]. Deutsch-Jozsa's algorithm for the rapid solution [2−4], Shor's algorithm 

for the factorization [3−5], Grover's algorithms for the database search [3, 6, 7] and so 

on are known. A quantum algorithm for the vertex coloring problem by a numbering 

method has recently been reported by Fujimura [8]. Its computational complexity 

becomes a polynomial time. The knapsack problem [3, 9] is examined by the 

numbering method this time. Therefore, its result is reported. 

 

 

2. Knapsack Problem 
As for n pieces of different weight luggage, the knapsack problem requests an optimal 

combination of the luggage packed into the knapsack that a weight k is assumed to be 

an upper bound. 

 

 

3. Quantum Algorithm 
It is assumed that there are n pieces of different weight xi [1 ≤ i ≤ n. i is an integer.], 

and the upper bound weight k of the knapsack, and ai [1 ≤ i ≤ n. i is the integer.] is 0 

or 1. When the number of the n times repeated permutation of 0 and 1 is 2n, a1 2n−1 + 

a2 2n−2 + ··· + an 20 = ∑i=1→n ai 2n−i = U is the numbering datum from 0 to 2n − 1 [The 

0-th datum is 0, 0, ···, 0 and 0. The (2n − 1)-th datum is 1, 1, ···, 1 and 1.]. This method 

is named the numbering method for this problem. g is the minimum integer that 

follows n/2 ≤ g [2n/1 ≤ 4g = 22g], because a number of combinations of an answer is 1 

at least. 

 First of all, quantum registers |a1>, |a2>, ···, |an>, |b1>, |b2>, |c> and |d> are 

prepared. States of |a1>, |a2>, ···, |an>, |b1>, |b2>, |c> and |d> are a1, a2, ···, an, b1, b2, c 

and d, respectively. 

• Step 1: Each quantum bit [=qubit] of |a1>, |a2>, ···, |an>, |b1>, |b2>, |c> and |d> 

is set |0>. 
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• Step 2: The Hadamard gate H [3, 4] acts on each qubit of |a1>, |a2>, ···, |an−1> 

and |an>. It changes them for entangled states. The total states are 2n [=W0]. 

• Step 3: It is assumed that a quantum gate (A) changes |b1> and |b2> for |b1 + ai 

xi> and |b2 + ai 2n−i>, respectively, at |ai>. These actions are repeated 

sequentially from |a1> to |an>. Therefore, |b1> and |b2> become |∑i=1→n ai xi > 

and |∑i=1→n ai 2n−i = U >, respectively. 

• Step 4: It is assumed that a quantum gate (B) doesn't change |c> in b1 = k, or it 

changes |c> for |c + 1 + b2> in the others of b1 from |b1> and |b2>. 

• Step 5: It is assumed that a quantum gate (C1) changes |d> for |1> in 0 ≤ c ≤ 

(2n/4) − 1, or it changes |d> for |0> in the others of c. As the target state for |d> 

is 1, quantum phase inversion gates (PI) and quantum inversion about mean 

gates (IM) [3, 6, 7] act on |d>. The number of the data that is included in 0 ≤ c 

≤ (2n/4) − 1 is W1 ≈ 2n/4. When γ1 is the minimum even integer that is 

(W0/W1)1/2 or more, the total number that (PI) and (IM) act on |d> is γ1 ≈ 2, 

because they are a couple. Next, an observation gate (OB) observes |d>, and 

the data of W1 remain. Similarly, (Ci) [2 ≤ i ≤ g − 1. i is the integer.] changes 

|d> for |1> in 0 ≤ c ≤ (2n/4i) − 1, or it changes |d> for |0> in the others of c. As 

the target state for |d> is 1, (PI) and (IM) act on |d>. The number of the data 

that is included in 0 ≤ c ≤ (2n/4i) − 1 is Wi ≈ 2n/4i. When γi is the minimum 

even integer that is (Wi−1/Wi)1/2 or more, the total number that (PI) and (IM) act 

on |d> is γi ≈ 2. Next, (OB) observes |d>, and the data of Wi remain. These 

actions are repeated sequentially from 2 to g − 1 at i. 

 

 (Cg) changes |d> for |1> at c = 0, or it changes |d> for |0> in the others of c. As the 

target state for |d> is 1, (PI) and (IM) act on |d>. The number of the data that is 

included at c = 0 is Wg ≈ 2n/4g ≈ 1. When γg is the minimum even integer that is (Wg 

−1/Wg )1/2 or more, the total number that (PI) and (IM) act on |d> is γg ≈ 2. Next, (OB) 

observes |a1>, |a2>, ···, |an>, |b1>, |b2>, |c> and |d>, and one of the data of Wg remains. 

Therefore, one example of combinations that are b1 = k is obtained. 
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4. Numerical Computation 
It is assumed that there are n = 6, x1 = 15, x2 = 3, x3 = 2, x4 = 7, x5 = 10, x6 = 13, k = 19 

and g = 3 [6/2=3 ≤ 3 = g]. 

 First of all, |a1>, |a2>, ···, |a6>, |b1>, |b2>, |c> and |d> are prepared. States of |a1>, 

|a2>, ···, |a6>, |b1>, |b2>, |c> and |d> are a1, a2, ···, a6, b1, b2, c and d, respectively. 

• Step 1: Each qubit of |a1>, |a2>, ···, |a6>, |b1>, |b2>, |c> and |d> is set |0>. 

• Step 2: H acts on each qubit of |a1>, |a2>, ···, |a5> and |a6>. It changes them for 

entangled states. The total states are 26 [=W0]. 

• Step 3: (A) changes |b1> and |b2> for |b1 + ai xi > and |b2 + ai 2n−i >, 

respectively, at |ai>. These actions are repeated sequentially from |a1> to |a6>. 

Therefore, |b1> and |b2> become |∑i=1→6 ai xi> and |∑i=1→6 ai 26−i = U >, 

respectively. 

• Step 4: (B) doesn't change |c> at b1 = 19, or it changes |c> for |c + 1 + b2> in 

the others of b1 from |b1> and |b2>. 

• Step 5: (C1) changes |d> for |1> in 0 ≤ c ≤ (26/4) − 1, or it changes |d> for |0> 

in the others of c. As the target state for |d> is 1, (PI) and (IM) act on |d>. The 

number of the data that is included in 0 ≤ c ≤ (26/4) − 1 is W1 ≈ 26/4. When γ1 

is the minimum even integer that is (W0/W1)1/2 ≈ 2 ≤ 2 = γ1, the total number 

that (PI) and (IM) act on |d> is γ1 ≈ 2. Next, (OB) observes |d>, and the data of 

W1 remain.  

 

 (C2) changes |d> for |1> in 0 ≤ c ≤ (26/42) − 1 , or it changes |d> for |0> in the 

others of c. As the target state for |d> is 1, (PI) and (IM) act on |d>. The number of the 

data that is included in 0 ≤ c ≤ (26/42) − 1 is W2 ≈ 26/42. When γ2 is the minimum even 

integer that is (W1/W2)1/2 ≈ 2 ≤ 2 = γ2, the total number that (PI) and (IM) act on |d> is 

γ2 ≈ 2. Next, (OB) observes |d>, and the data of W2 remain. 

 (C3) changes |d> for |1> at c = 0, or it changes |d> for |0> in the others of c. As the 

target state for |d> is 1, (PI) and (IM) act on |d>. The number of the data that is 

included at c = 0 is W3 ≈ 26/43 ≈ 1. When γ3 is the minimum even integer that is (W2 

/W3)1/2 ≈ 2 ≤ 2 = γ3, the total number that (PI) and (IM) act on |d> is γ3 ≈ 2. Next, (OB) 
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observes |a1>, |a2>, ···, |a6>, |b1>, |b2>, |c> and |d>, and one of the data of W3 remains. 

For example, when a1, a2, a3, a4, a5, a6, b1, b2, c and d are 0, 0, 1, 1, 1, 0, 19, 14, 0 and 

1, respectively, it is obtained that a1 x1 + a2 x2 + a3 x3 + a4 x4 + a5 x5 + a6 x6 is 0 × 15 + 

0 × 3 + 1 × 2 + 1 × 7 + 1 × 10 + 0 × 13 = 19 = k. 

 

 

5. Discussion and Summary 
The computational complexity of this quantum algorithm [=S] becomes the following. 

In the order of the actions by the gates, the number of them is n at H, n at (A), 2 at 

(B), g at (Ci) [1 ≤ i ≤ g. i is the integer.], ∑ i=1→g γi ≈ 2g at (PI) and (IM), and g at 

(OB). Therefore, S becomes 2n + 2 + 4g. In the example of the section 4, S is 26. The 

computational complexity of the classical computation [=Z] is 2n − 1 = 26 − 1 = 63. 

After all, S/Z becomes about 1/2. When n is large enough, S becomes about 2n + 2 + 

2n ≈ 4n, where g is about n/2. And then, S/Z is about 4n/2n ≈ n/2n. For example, as for 

n = 100, S/Z is about 100/2100 ≈ 1/1028. 

 Therefore, the polynomial time process becomes possible. 
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