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Abstract 
 

We adapt the definitions of ordered vector space and locally convex lattice to 
the setting of the complex scalar field. As a consequence of the generalization 
of the result by Garrett Birkhoff that the order dual of a Banach lattice 
coincides with its topological dual, to Fréchet end LF lattices that we obtain, 
we show that O being a open set in the complex plane, the space H(O) being a 
Fréchet lattice through a partial order, the analytic functionals in O are the 
order bounded linear functionals. Each analytic functional in O is the 
difference of two positive analytic functionals. Next, we consider a LF lattice 
E(Ω) related to the space D(Ω) of test functions and we show that each 
positive linear functional on E(Ω) corresponds to an unique distribution in Ω 
and conversely. This way we obtain the positive distributions, each 
distribution in Ω being the difference of two positive distributions. We obtain 
an application to bounded linear opeators on the Sobolev space to a Banach 
space. 

 
 
Introduction 
We consider the partial order z≤z′ meaning that Rez≤Rez′ and Imz≤Imz′ for complex 
numbers z and z′ and the concepts of ordered vector space and locally convez lattice 
follow with the corresponding condition for the scalar product. In paragraph 2, The 
setting for complex locally convex lattices, we obtain the generalization of the result 
by Garrett Birkhoff to Frréchet and LF lattices in the Abstract. The characterization of 
Radon measures in Ω as the order bounded linear functionals on C_{c}⁰(Ω) follows 
in paragraph 3, Applications to distributions and analytic functionals. We consider a 
partial order ≺ in H(O), O an open subset of the complex plane, for which H(O) is a 
complex LF lattice. The order dual and the topological dual of the space coincide, 
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hence the analytic functionals in Ω are the order bounded linear functionals. Also we 
consider a LF lattice (E(Ω),≺) such that each continuous linear functional on E(Ω) 
corresponds to an unique distribution in Ω and conversely. In this way, we obtain the 
positive distributions in Ω, which are such that they correspond to positive linear 
functionals on E(Ω). Each distribution in Ω is the difference of two positive 
distributions. 
 The setting for complex locally convex lattices 
 Recall that X being a real vector space equipped with a partial order ≤, we say that 
X is a vector lattice ([1], [4]) if x+z≤y+z whenever x≤y, αx≥0 if x≥0 and α is a non 
negative scalar and, further, there exist in X the elements x∨y=sup{x,y} and 
x∧y=inf{x,y} for each x,y∈X. We may adapt the definition to complex vector 
spaces putting λx≥0 for x≥0 and complex λ≥0 in the understanding of the 
Introduction. We then put x⁺=x∨0,x⁻=(-x)∨0 and ∣x∣=x∨(-x). Notice that  x=x⁺-
x⁻ and ∣x∣=x⁺+x⁻ ([1]) hence ∣x∣≥0. This way we obtain complex vector lattices and 
we may as well consider, following [4], the <definition/>X being a complex 
Hausdorff locally convex space that also is a vector lattice, we say that X is a locally 
convex lattice if it has a base P={p_{α}:α∈A} of continuos seminorms such that 
each p_{α}(x)≤p_{α}(y) whenever ∣x∣≤∣y∣. 
 X being a vector lattice, we denote X⁺={x⁺:x∈X}. We consider a complex vector 
lattice X in the folowing. 
 
<definition/>(Following [1]) We say that the linear functional T on X is positive if 
Tx≥0 for each x∈X⁺. 
 
<notation/>For x,y∈X such that x≤y, we write [x,y] for the interval 
[x,y]={z∈X:x≤z≤y}. 
 
<definition/>(Following [1]) For X a vector lattice and T a linear functional on X, we 
say that T is order bounded if the image T([x,y])={Tz:z∈[x,y]} is a bounded set of 
scalars for each interval [x,y]. 
 
 We see easily that each positive linear functional on X is order bounded, due of 
Tx≤Tz≤Ty for each z∈[x,y]. 
 
<lemma/>Each order bounded linear functional T on X is the difference Tx=T⁺x⁺-
T⁻x⁻. Here, T⁺x⁺=sup{Ty:0≤y≤x} and T⁻x⁻=sup{-Ty:0≤-y≤x} are positive operators 
on X⁺. 
 
<proof/>See [1], p. 15. 
 
<definition/>We say that a Fréchet space which is a locally convex lattice is a Fréchet 
lattice. 
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<definition/>If the LF space X=lim_{M∈N}X_{M} is equipped with a partial order 
≺  such that each space (X_{M},≺) is a Fréchet lattice, we say that X is a LF lattice. 
 
<theorem/>For X a Fréchet lattice or a LF lattice and T a positive linear functional on 
X, it holds that T is continuous. 
 
<proof/>Let P={p_{n}:n=0,1,2,...} be a base of continuous seminorms for the Fréchet 
lattice X such that p₁≤p₂≤... Suppose that T is linear positive, not continuous. We 
then have that, for each n=1,2,..., there is some x_{n}∈X such that p_{n}(x_{n})=1 
and ∣Tx_{n}∣≥n³. Here, we may ∣x_{n}∣>0 for some given x_{n}. Consider the 
series ∑_{n=1}^{∞}x_{n}/n². We have that 
p_{m}(∑_{j=n}^{M}x_{j}/j²)≤∑_{j=n}^{M}p_{m}(x_{j}/j²)≤∑_{j=n}^{M}p_{j}(
x_{j}/j²)≤∑_{j=n}^{M}1/j²→_{n,M→∞}0 (we consider m≤n). Hence the series is a 
Cauchy sequence, it converges to x=∑_{n=1}^{∞}x_{n}/n² and we find that each 
x_{n}/n²≤∑_{j=1}ⁿx_{j}/j²≤x (we see that for 0≤u_{n+1}≤u_{n},n=1,2,... and 
u_{n}→u it follows u≥0, for u<0 implies u_{n}-u≥-u>0, p_{m}(u_{n}-
u)≥p_{m}(u)>0 (n=1,2,...) for p_{m}∈P, contradicting that 
lim_{n→∞}p_{m}(u_{n}-u)=0). Thus n≤∣Tx_{n}/n²∣≤Tx for each n, we obtain a 
contradiction. As for X=lim_{n∈N}X_{n} a LF lattice, each X_{n} a Fréchet space, 
if T is not continuous then it is not continuous on some X_{n} and the theorem 
follows from the above. 
 Recall ([1]) that the vector space of all order bounded functionals on a vector 
lattice X is the order dual of X. Clearly that the definition adapts to complex vector 
lattices. 
 
<corollary/>The order dual of a Fréchet or a LF lattice coincides with its topological 
dual. Each continuous linear functional is the difference of two positive linear 
functionals. 
 
<proof/>Clearly that for T a continuos linear functional on the space, each z in the 
interval [x,y] satisfying that ∣z∣≤∣x∣∨∣y∣, we have that p_{α}(z)≤p_{α}(∣x∣∨∣y∣) 
for each seminorm p_{α}; [x,y] being bounded, its image through T is a bounded set 
of scalars, T is order bounded. The theorem follows from Theorem 2.7. and Lemma 
2.4. as wished. 
 
 
Applications to Radon measures and analytic functionals 
Recall ([5]) the spaces C^{m}(Ω) where Ω is a open subset of R^{N}. We consider 
the seminorms ‖ϕ‖_{j,K}=max_{∣α∣≤j}{max{∣D^{α}ϕ(x)∣:x∈K}} on C^{m}(Ω) 
(j≤m<∞) and {‖.‖_{j,K}:j=0,1,2,...} on C^{∞}(Ω) where K ranges over the class K of 
the compact subsets of Ω, D^{α}=((∂/(∂x₁)))^{α₁}...((∂/(∂x_{N})))^{α_{N}}, 
α=(α₁,...,α_{N})∈N₀^{N}. Also recall the spaces 
C_{K}^{m}(Ω)={ϕ∈C^{m}(Ω):supp(ϕ)⊂K} 
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C_{c}^{m}(Ω)={ϕ∈C^{m}(Ω):supp(ϕ) is compact} (0≤m≤∞) where, 
supp(ϕ)={x∈Ω:ϕ(x)≠0}. Leting C_{c}⁰(Ω) equipped with the LF space topolgy that 
is the strict indutive limit of the Fréchet spaces 
C_{K}⁰=({ϕ∈C⁰(Ω):supp(ϕ)⊂K},‖.‖_{0,K}}), K ranging over K, its dual is the 
space of Radon measures in Ω. 
 Consider the ordering for scalar functions ϕ≤ψ meaning that ϕ(x)≤ψ(x) for each 
x, the ordering in the compex plane as above. We have that 
sup{ϕ,ψ},inf{ϕ,ψ}∈C_{K}⁰(Ω) if ϕ,ψ∈C_{K}⁰(Ω), these spaces are vector 
lattices. Also for each seminorm ‖.‖_{0,K} on C_{K}⁰(Ω), clearly that ∣ϕ∣≤∣ψ∣ 
implies ‖ϕ‖_{0,K}≤‖ψ‖_{0,K}. Here, ∣ϕ∣(x)=∣ϕ(x)∣,∣ψ∣(x)=∣ψ(x)∣. We thus 
have that C_{K}⁰(Ω) is a Fréchet lattice, C_{c}⁰(Ω) is a LF lattice when equipped 
with the LF space topology lim_{K∈K}(C_{K}⁰(Ω),‖.‖_{0,K}). 
 
<theorem/>The linear functional T on C_{c}⁰(Ω) is a Radon measure if and only if it 
is order bounded, in which case there exist positive Radon measures T₁,T₂ in Ω such 
that <T,ϕ>=<T₁,ϕ⁺><-T₂,ϕ⁻> for each ϕ∈C_{c}⁰(Ω). 
 
<proof/>This follows by Theorem 2.7. and Corollary 1. 
 Recall that O being a open subset of the complex plane, the space H(O) is 
determined by the analytic complex functions in O, equipped with the Fréchet space 
topology of (C⁰(Ω),{‖.‖_{0,K}:K∈K}) where we cosider Ω⊂R² through the 
identification x+iy↔(x,y). The dual H′(O) is the space of analytic functionals in O. 
 We consider the partial order ϕ≺ψ in H(O) meaning that D^{j}ϕ(z)≤D^{j}ψ(z) 
(z∈Ω,j=0,1,2,...) 
 
<theorem/>Letting O be as above, the space H(O) is a Fréchet lattice. 
 
<proof/>In fact, H(O) is a Fréchet space. Also, there exist ϕ∨ψ=∑_{n=0}^{∞}(a_{n}∨b_{n})(z-a)ⁿ for each ϕ(z)=∑_{n=0}^{∞}a_{n}(z-a)ⁿ 
and ψ(z)=∑_{n=0}^{∞}b_{n}(z-a)ⁿ in {z∈O:∣z-a∣<r, r the least of the radius of 
convergence of the power series at each point a∈O. Analogously for ϕ∧ψ, we see 
easily that H(O) is a vector lattice. We have that for∣ϕ∣≺∣ψ∣, ∣ϕ(z)∣≤∣ψ(z)∣ holds 
for ∣z-a∣<r and it follows ‖ϕ‖_{0,K}≤‖ψ‖_{0,K} for each seminorm ‖.‖_{0,K},K∈K defined analogously as above. The theorem follows. 
 Following Theorem 2.7., we have that each positive linear functional on H(O) is 
continuous. We put 
 
<definition/>We say that the analytic functional T in O is positive if it is a positive 
linear functional on H(O). 
 
<theorem/>For O a open subset of C, the analytic functionals in O are the order 
bounded linear functionals on (H(O),≺). Each analytic functional in O is the difference 
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of two positive analytic functionals. 
 
<proof/>This follows from Theorem 2.8. and Corollary 1. 
 
 
Positive distributions 
In the following, we consider a non empty subset Ω of R^{N} and the test functions ϕ 
in C_{c}^{∞}(Ω). 
 Recall that D(K,Ω)=(C_{K}^{∞}(Ω),{‖.‖_{j,K}:j∈N₀}) is a Fréchet space, the 
space of distributions in Ω is the LF space D(Ω)=limD(K(M),Ω) where 
(K(M))_{M=1}^{∞} is an increasin sequence of compact subsets of Ω such that 
⋃_{M=1}^{∞}K(M)=Ω. 
 Also recall that S being a subset of R^{N} we say that S is of the first category if 
it is the countable union of sets C such that int(S)=φ. 
 
<remark/>If S is a subset of R^{N} of the first category, then λ(S)=0, λ for the 
Lebesgue measure. 
 
<proof/>In fact we have λ(S)≤λ(S)=inf{λ(O):O open,S⊂O}=0 ([2], Theorem 15.5., 
Definition 15.4., pp. 113, 112). 
 
<remark/>For ϕ a test function in Ω, the set Z of the points x in supp(ϕ) such that ϕ(x)=0 is of the first category. 
 
<proof/>In fact, notice that ϕ(x)=0 (x∈Z). If int(Z) contains a non void open set C 
we conclude the contradiction that supp(ϕ)⊂supp(ϕ)\C (see above). 
 
<definition/>For two functions ϕ,ψ in C_{c}^{∞}(Ω) we put ϕ≺ψ meaning that 
D^{α}ϕ≤D^{α}ψ in Ω for each α∈N₀^{N}. 
 
<lemma/>Given a test functions ϕ the fuction ∣ϕ∣ is differentiable a.e. 
 
<proof/>In fact, we have that ϕ(x)≠0 a.e. in supp(ϕ) by Remark 4.2 and Remark 4.1. 
Hence ∣ϕ∣(x)=∣ϕ(x)∣>0 a.e. in supp(ϕ) and it follows that for x∈supp(ϕ)\C, either ϕ(x)>0 or ϕ(x)<0 where λ(C)=0. Hence, assuming ϕ(x)>0, we have that 
∣ϕ∣(y)=ϕ(y) (y∈(x-δ,x+δ) and there exists D^{α}∣ϕ∣(x)=D^{α}ϕ(x). For ϕ(x)<0 
we have D^{α}∣ϕ∣(x)=-D^{α}ϕ(x), the lemma follows. 
 
<proposition/>For ϕ,ψ test functions in Ω, the functions ϕ∨ψ and ϕ∧ψ are 
differentiable a.e. 
 
<proof/>This follows by the above lemma using that ϕ∨ψ=(ϕ+ψ+∣ϕ-ψ∣)/2 and ϕ∧ψ=(ϕ+ψ-∣ϕ-ψ∣)/2 ([1], Theorem 1.7. (2), p. 5). 
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<proposition/>For ψ=ϕ a.e, where ϕ is a test function, it holds that there exists 
D^{α}ψ(x) a.e. for each α∈N₀^{N}. 
 
<proof/>In fact, for each x∈Ω\Z(α) related to D^{α}ϕ,D^{α}ψ (see Remark 4.2.) we 
have ψ(y)=ϕ(y) in a neighborhood of x, hence there exists D^{α}ψ(x) where 
λ(Z(α))=0 if ∣α∣=1. Next, if ∣β∣=2, there exists D^{β}ψ(x) for all x∈Ω\(Z(α)∪Z(β)) 
where λ(Z(α)∪Z(β))≤λ(Z(α))+λ(Z(β))=0. The remark follows. 
 We consider the space F(Ω) that is the span of the set S(Ω) of all functions ϕ₁∨...∨ϕ_{n} where ϕ₁,...,ϕ_{n}∈C_{c}^{∞}(Ω). It follows from above that 
F(Ω)⊂I(Ω)={ψ∈C^{Ω}:∃ϕ∈C_{c}^{∞}(Ω),ψ(x)=ϕ(x) a.e.}. Clearly that 
(F(Ω),≺) is a Riesz space due of ϕ∧ψ=-((-ϕ)∨(-ψ)). 
 
<notation/>We denote by E(Ω) the vector space that is determined by the equivalence 
classes [ϕ]={ψ:ψ(x)=ϕ(x) a.e.} where ϕ∈D(Ω). 
 
<definition/>(Folowing [7]) We say that the ubspace W of the Riesa space (X;≺) is an 
ideal if a∈W whenever ∣a∣≤∣b∣ where b∈W 
 
<lemma/>The subspace [0] is an ideal of F(Ω). 
 
<proof/>In fact, if ∣ψ∣≺∣ϕ∣ and ‖ϕ‖_{j,K}=0 clearly that ‖ψ‖_{j,k}=0. 
 
<definition/>For ϕ,ψ∈EΩ) we put [ϕ]≺[ψ] if and only if there exist elements ϕ₁∈[ϕ],ψ₁∈[ψ] such that ϕ₁≺ψ₁. 
 Notice that given ψ₂∈[ψ] in the above definition, also ϕ₁≺ψ₂. This follows from ϕ≺ψ if and only if D^{α}ϕ(x)≤D^{α}ψ(x) a.e., ϕ,ψ∈E(Ω), ψ₁(x)=ψ₂(x) a.e. 
 
<remark/>The space E(Ω) is a Riesz space such that [ϕ]∨[ψ]=[ϕ∨ψ] and 
[ϕ]∧[ψ]=[ϕ∧ψ]. 
 
<proof/>This follow by [7], Theorem 19.5. p. 127 and p. 128. 
 
<notation/>For [ϕ]∈E(Ω), we let supp([ϕ])= supp(ϕ). 
 For [ϕ]∈E(Ω),ψ∈[ϕ] it holds that 
essup{∣D^{α}ψ(x)∣:x∈K}=sup{∣D^{α}ϕ(x):x∈K} where K is any compact subset 
of Ω. Putting p_{m,K}([ϕ])=‖ϕ‖_{m,K} (m=0,1,2,...) we see easily that p_{m,K} is 
a seminorm in E_{K}(Ω)={[ϕ]∈E(Ω):supp([ϕ])⊂K}. Letting ([ϕ_{n}]) be a 
Cauchy sequence in (E(Ω),{p_{m,K}:m=0,1,2,...}) we have that ϕ_{n}→ϕ in D(Ω), 
some ϕ∈C_{c}^{∞}(Ω) hence [ϕ_{n}] converges to [ϕ] in 
(E(Ω),{p_{m,K}:m=0,1,2,...}), hence (E(Ω),{p_{m,K}:m=0,1,2,...}) is a  Fréchet 
space. 
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<theorem/>The spaces (E_{K}(Ω),{p_{m,K}:m=0,1,2,...}) are Fréchet lattices. 
 
<proof/>In fact we have that p_{m,K}([ϕ])≤p_{m,K}([ψ]) for [ϕ]≺[ψ] (see above). 
The theorem follows by definition. 
 
<definition/>Following the analogue to the LF space D(Ω) in [5], we may consider 
the LF space E(Ω)=lim(E_{K(M)}(Ω),{p_{m,K}:m=0,1,2,...}) where 
E_{K(M)}(Ω)={[ϕ]∈E(Ω):supp(ϕ)⊂K(M)}, (K(M)) a sequence of compact subsets 
of Ω such that ⋃[K(M):M=1,2,...]=Ω. 
 
<theorem/>For Ω a open subset of R^{N}, E(Ω) is a LF lattice. 
 
<proof/>This follows from above. 
 
<definition/>We say that a continuous linear functional on E(Ω) is a global 
distribution in Ω. 
 
<definition/>We call global positive distributions in Ω the positive linear functions on 
the LF lattice E(Ω). 
 Notice that for ϕ₁,ϕ₂∈[ϕ] we have ϕ₁(x)=ϕ₂(x) a.e. hence <T,ϕ₁-ϕ₂>=0,<T,ϕ₁>=<T,ϕ₂> for T a global distribution on Ω. 
 For each distribution T in Ω, if we put <T,[ϕ]>=<T,ϕ> we have that it holds that 
to every compact subset K of Ω there is a constant C such that, for all [ϕ]∈E(Ω) such 
that supp(ϕ)⊂K, we have ∣<T,[ϕ]>∣=∣<T,ϕ>≤C‖ϕ‖_{m,K}. We have that the 
associated T  to T is a global distribution in Ω if and only if T is a distribution in Ω. 
This follows from Proposition 21.1. in [5], p. 222. 
 
<theorem/>The global distributions T in Ω are the order bounded linear functionals on 
E(Ω). There exist positive global distributions T₁,T₂ in Ω such that 
<T,[ϕ]>=<T₁,[ϕ]⁺>-<T₂,[ϕ]⁻> for each [ϕ]∈E(Ω). 
 
<proof/>This follows by Theorem 2.7. and Corollary 1. as wished. 
 
<definition/>Letting Ω be a open subset of R^{N} we say that the distribution T in Ω 
is a positive distribution in Ω if the associated global distribution T in Ω is positive. 
 
<theorem/>Each distribution T in Ω satisfies that there exist two positive distributions 
in Ω such that <T,ϕ>=<T₁ϕ⁺>-<T₂,ϕ⁻> for each test function ϕ. 
 
<proof/>This follows by Corollary 1. 
 As an application of the foregoing, consider the related even Sobolev space 
W_{even}^{k,p}(Ω) where Ω is a open subset of R^{N}, 1≤p<∞,k=1,2,... of the 
complex functions f on Ω such that the derivatives D^{α}f are in L^{p}(Ω) (∣α∣≤k) 
([6]). Here, we identify f with the distribution <T_{f},ϕ>=∫_{Ω}fϕ (ϕ∈D(Ω)). 
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Following Definition 4.7. and Definition 4.3. we have that, putting 
T_{f}≽T_{g}⇔D^{α}T_{f}≻D^{α}T_{g} for ∣α∣ even, W^{k,p}(Ω) is a Banach 
lattice (we equip the space with the norm ‖f‖_{k,p}=(max{∫_{Ω}∣D^{α}f∣^{p}:∣α∣≤k,α even})^{1/p}). We have that 
<D^{α}T_{f},ϕ>≥0 (∣α∣ even, we then have that T_{f} is positive if and only if ϕ≥0, see just before Theorem 3.1.) and we may apply Theorem 2.7. to the Banach 
space W_{even}^{k,p}(Ω) obtaining 
 
<theorem/>Each positive operator T:W_{even}^{k,p}(Ω)→X where X is a Banach 
lattice, is continuous. 
 
<proof/>This follows from the above as wished. 
 Notice that, using that each Banach space actually being a Banach lattice through 
a given order (see ([3]), the above theorem has possible applications in general 
settings. 
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