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Abstract

We adapt the definitions of ordered vector space and locally convex lattice to
the setting of the complex scalar field. As a consequence of the generalization
of the result by Garrett Birkhoff that the order dual of a Banach lattice
coincides with its topological dual, to Fréchet end LF lattices that we obtain,
we show that O being a open set in the complex plane, the space H(O) being a
Fréchet lattice through a partial order, the analytic functionals in O are the
order bounded linear functionals. Each analytic functional in O is the
difference of two positive analytic functionals. Next, we consider a LF lattice
E(Q) related to the space D(Q) of test functions and we show that each
positive linear functional on E(Q) corresponds to an unique distribution in Q
and conversely. This way we obtain the positive distributions, each
distribution in Q being the difference of two positive distributions. We obtain
an application to bounded linear opeators on the Sobolev space to a Banach
space.

Introduction

We consider the partial order z<z' meaning that Rez<Rez' and Imz<Imz' for complex
numbers z and z' and the concepts of ordered vector space and locally convez lattice
follow with the corresponding condition for the scalar product. In paragraph 2, The
setting for complex locally convex lattices, we obtain the generalization of the result
by Garrett Birkhoff to Frréchet and LF lattices in the Abstract. The characterization of
Radon measures in Q as the order bounded linear functionals on C_{c}°(Q) follows
in paragraph 3, Applications to distributions and analytic functionals. We consider a
partial order < in H(O), O an open subset of the complex plane, for which H(O) is a
complex LF lattice. The order dual and the topological dual of the space coincide,
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hence the analytic functionals in Q are the order bounded linear functionals. Also we
consider a LF lattice (E(Q2),<) such that each continuous linear functional on E(Q)
corresponds to an unique distribution in Q and conversely. In this way, we obtain the
positive distributions in €, which are such that they correspond to positive linear
functionals on E(Q). Each distribution in Q is the difference of two positive
distributions.

The setting for complex locally convex lattices

Recall that X being a real vector space equipped with a partial order <, we say that
X 1s a vector lattice ([1], [4]) if x+z<y+z whenever x<y, ax>0 if x>0 and a is a non
negative scalar and, further, there exist in X the elements x\ y=sup{x,y} and
x\y=inf{x,y} for each x,y&X. We may adapt the definition to complex vector
spaces putting Ax>0 for x>0 and complex A>0 in the understanding of the
Introduction. We then put x '=x\V0,x =(-x) V0 and |x|=xV/(-x). Notice that x=x"-
x~ and |x|=x"+x" ([1]) hence |x|>0. This way we obtain complex vector lattices and
we may as well consider, following [4], the <definition/>X being a complex
Hausdorff locally convex space that also is a vector lattice, we say that X is a locally

convex lattice if it has a base P={p {a}:a=A} of continuos seminorms such that
eachp {a}(x)<p_{a}(y) whenever |x|<|y].

X being a vector lattice, we denote X '={x ":x & X}. We consider a complex vector
lattice X in the folowing.

<definition/>(Following [1]) We say that the linear functional T on X is positive if
Tx>0 for each xEX".

<notation/>For x,yEX such that x<y, we write [x,y] for the interval
[X,y]={z € X:x<z<y}.

<definition/>(Following [1]) For X a vector lattice and T a linear functional on X, we
say that T is order bounded if the image T([x,y])={Tz:z&[x,y]} is a bounded set of
scalars for each interval [x,y].

We see easily that each positive linear functional on X is order bounded, due of
Tx<Tz<Ty for each zE[x,y].

<lemma/>Each order bounded linear functional T on X is the difference Tx=T 'x"-
T x . Here, T'x "=sup{Ty:0<y<x} and T x =sup{-Ty:0<-y<x} are positive operators
on X".

<proof/>See [1], p. 15.

<definition/>We say that a Fréchet space which is a locally convex lattice is a Fréchet
lattice.
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<definition/>If the LF space X=lim {MEN}X {M} is equipped with a partial order
< such that each space (X {M},<) is a Fréchet lattice, we say that X is a LF lattice.

<theorem/>For X a Fréchet lattice or a LF lattice and T a positive linear functional on
X, it holds that T is continuous.

<proof/>Let P={p {n}:n=0,1,2,...} be a base of continuous seminorms for the Fréchet
lattice X such that p:<p:<... Suppose that T is linear positive, not continuous. We
then have that, for each n=1,2,..., there is some x_{n} X such that p_{n}(x_{n})=1
and |Tx_{n}|>n® Here, we may |x_{n}[>0 for some given x_{n}. Consider the
series > {n=1}"{oo}x {n}/n2 We have that
p_{m} (X _{j=n}"{M}x_{j}/j)=<3. {j=n}"{Mip_{m}(x_{j}/)<x_{j=n}*{Mjp_{j}(
{0 Pt M PP— {inM—o}0 (we consider m<n). Hence the series is a
Cauchy sequence, it converges to x=y, {n=1}"{oo}x {n}/n*> and we find that each
x_{n}/n*<y {=1ex {j1j<x (we see that for 0<u {n+1}<u {n},n=1,2,... and
u {n}—u it follows u>0, for u<0 implies u {n}-u>-u>0, p {m}(u_{n}-
u)>p_ {m}(u)>0 (n=1,2,...) for p _{m} <P, contradicting that
lim {n—oo}p {m}(u_{n}-u)=0). Thus n<|Tx_ {n}/n?|<Tx for each n, we obtain a
contradiction. As for X=lim_{nEN}X {n} a LF Ilattice, each X {n} a Fréchet space,
if T is not continuous then it is not continuous on some X {n} and the theorem
follows from the above.

Recall ([1]) that the vector space of all order bounded functionals on a vector
lattice X is the order dual of X. Clearly that the definition adapts to complex vector
lattices.

<corollary/>The order dual of a Fréchet or a LF lattice coincides with its topological
dual. Each continuous linear functional is the difference of two positive linear
functionals.

<proof/>Clearly that for T a continuos linear functional on the space, each z in the
interval [x,y] satisfying that |z|<|x |V |y|, we have that p_{a}(z)<p_{a}(Ix|V |yl)
for each seminorm p {a}; [X,y] being bounded, its image through T is a bounded set

of scalars, T is order bounded. The theorem follows from Theorem 2.7. and Lemma
2.4. as wished.

Applications to Radon measures and analytic functionals

Recall ([5]) the spaces C*{m}(Q) where Q is a open subset of R*"{N}. We consider
the seminorms ||| {j,K}=max_{|a|<j}{max{|D o}dp(x)|:xEK}} on CM{m}(Q)
(j<m<co) and {||.|| _{j,.K}:j=0,1,2,...} on C*{o}(Q2) where K ranges over the class K of
the compact subsets of Q, D™a}=((0/(0x1))) {a1}...((0/(0x_{N})){a_ {N}},
a=(0t1,...,0. {N})ENN{N}. Also recall the spaces

C_{Kj"{m}(Q)={¢p = C"{m}(Q):supp(dp) K}
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C {c}"{m}(Q)={p=C"{m}(Q):supp(d) is  compact} (0<m<w)  where,
supp(d)={xEQ:Pp(x)#0}. Leting C_{c} °(Q) equipped with the LF space topolgy that
is the strict indutive limit of the Fréchet spaces
C {K}°’=({d=C°(Q):supp(p) K}, ||.|l_{0,K}}), K ranging over K, its dual is the
space of Radon measures in Q.

Consider the ordering for scalar functions ¢p<y meaning that ¢(x)<y(x) for each
X, the ordering in the compex plane as above. We have that
sup{d,y},inf{dp,y} =C {K}°(Q) if db,yeC {K}°(Q), these spaces are vector
lattices. Also for each seminorm ||.|| {0,K} on C {K}°(Q), clearly that | |<|y]
implies ||d]_{0.K}<|ly|]l_{0.K}. Here, [¢lx)=ldx)|,lv|x)=lyx)|. We thus
have that C_{K}°(Q) is a Fréchet lattice, C_{c}°(Q) is a LF lattice when equipped
with the LF space topology lim {KEK}(C {K}°(Q),||.]|_{0,K}).

<theorem/>The linear functional T on C_{c}°(QQ) is a Radon measure if and only if it
is order bounded, in which case there exist positive Radon measures T1,T: in Q such
that <T,p>=<T1,p "><-T2,p > foreach p=C {c}°(Q).

<proof/>This follows by Theorem 2.7. and Corollary 1.

Recall that O being a open subset of the complex plane, the space H(O) is
determined by the analytic complex functions in O, equipped with the Fréchet space
topology of (C°(Q),{||.||_{0,K}:KEK}) where we cosider QCR? through the
identification x+iy<«>(X,y). The dual H'(O) is the space of analytic functionals in O.

We consider the partial order <y in H(O) meaning that D"{j} p(z)<D"{j} y(z)
(z€Q,j=0,1,2,...)

<theorem/>Letting O be as above, the space H(O) is a Fréchet lattice.

<proof/>In  fact, H(O) is a  Fréchet space. Also, there exist
¢ Vy=Y_{n=0}"{o}(a_{n} Vb_{n})(z-a) for each p(z)=Y_{n=0}"{o}a_{n}(z-a)"
and y(z)=Y_ {n=0}"{oo}lb {n}(z-a)" in {zEO0:|z-a|<r, r the least of the radius of
convergence of the power series at each point a< O. Analogously for ¢ Ay, we see
easily that H(O) is a vector lattice. We have that for|$ |<|y|, [d(z)[<|y(z)| holds
for |z-al<r and it follows |¢|_{0.K}<|ly||_{0,K} for each seminorm
|.]l_{0,K}, K&K defined analogously as above. The theorem follows.

Following Theorem 2.7., we have that each positive linear functional on H(O) is
continuous. We put

<definition/>We say that the analytic functional T in O is positive if it is a positive
linear functional on H(O).

<theorem/>For O a open subset of C, the analytic functionals in O are the order
bounded linear functionals on (H(O),<). Each analytic functional in O is the difference



Characterizations of Distributions in a Open Subset of R". Positive distributions 509
of two positive analytic functionals.

<proof/>This follows from Theorem 2.8. and Corollary 1.

Positive distributions
In the following, we consider a non empty subset Q of R*{N} and the test functions ¢
in C_{c}"{o}(Q).

Recall that D(K,Q)=(C {K}"{o}(Q),{]||.||_{j,K}:}ENo}) is a Fréchet space, the
space of distributions in Q is the LF space D(Q)=limD(K(M),Q2) where
(K(M)) {M=1}"{e0} is an increasin sequence of compact subsets of Q such that
U {M=1}"oo}K(M)=Q.

Also recall that S being a subset of R"{N} we say that S is of the first category if
it is the countable union of sets C such that int(S)=¢.

<remark/>If S is a subset of R*"{N} of the first category, then A(S)=0, A for the
Lebesgue measure.

<proof/>In fact we have A(S)<M(S)=inf{M(O):0 open,SCO}=0 ([2], Theorem 15.5.,
Definition 15.4., pp. 113, 112).

<remark/>For ¢ a test function in Q, the set Z of the points x in supp(¢) such that
$(x)=0 1s of the first category.

<proof/>In fact, notice that ¢(x)=0 (x=Z). If int(Z) contains a non void open set C
we conclude the contradiction that supp(¢p) C supp(p)\C (see above).

<definition/>For two functions ¢,y in C_{c}"{0}(Q) we put ¢p<y meaning that
DMoa}p<D"{a}y in Q for each a ENo"{N}.

<lemma/>Given a test functions ¢ the fuction | ¢ | is differentiable a.e.

<proof/>In fact, we have that ¢p(x)#0 a.e. in supp(¢) by Remark 4.2 and Remark 4.1.
Hence | |(x)=|d(x)|>0 a.e. in supp(¢p) and it follows that for x =supp($p)\C, either
¢x)>0 or ¢(x)<O0 where A(C)=0. Hence, assuming ¢(x)>0, we have that
b | (y)=d(y) (yE (x-8,x+8) and there exists D {a} [ ¢ | (x)=D*{o} P(x). For ¢p(x)<0
we have D" {a} | ¢ | (x)=-D"{a}d(x), the lemma follows.

<proposition/>For ¢,y test functions in Q, the functions ¢Vy and ¢ /\y are
differentiable a.e.

<proof/>This follows by the above lemma using that ¢\ y=(¢p+y+|dp-y|)/2 and
& Ay=(d+y-| p-y|)/2 ([1], Theorem 1.7. (2), p. 5).
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<proposition/>For y=¢ a.e, where ¢ is a test function, it holds that there exists
D™ a}y(x) a.e. for each a ENo"{N}.

<proof/>In fact, for each x = Q\Z(a) related to D" {a}$,D*{a}y (see Remark 4.2.) we
have y(y)=¢(y) in a neighborhood of x, hence there exists D"{a}y(x) where
MZ(0))=0 if |a|=1. Next, if | B|=2, there exists D*{B}y(x) for all x € Q\(Z(c) U Z(B))
where MZ(a)) U Z(B))<MZ(a))+MZ(B))=0. The remark follows.

We consider the space F(Q) that is the span of the set S(Q) of all functions
¢ V..V _{n} where ¢pi1,...0 {n}EC_{c}"{0}(Q). It follows from above that
FQ)CIQ)={yECMNQ}:APEC {c}Mwo}(Q),y(x)=d(x) ae.}. Clearly that
(F(Q),<) is a Riesz space due of ¢ A\ y=-((-d) V (-y)).

<notation/>We denote by E(Q) the vector space that is determined by the equivalence
classes [P]={v:y(x)=d(x) a.e.} where ¢ ED(Q).

<definition/>(Folowing [7]) We say that the ubspace W of the Riesa space (X;<) is an
ideal if a& W whenever |a|<|b| where bEW

<lemma/>The subspace [0] is an ideal of F(Q).
<proof/>In fact, if |y[<[d[ and [|p||_{j,K}=0 clearly that |ly]|_{jk}=0.

<definition/>For ¢,y EEQ) we put [¢]<[y] if and only if there exist elements

&1 E[d],y1 E[y] such that ¢ <y.
Notice that given y: &[y] in the above definition, also ¢ 1 <y:. This follows from

¢<y if and only if D™ {a} d(x)<DMa}y(x) a.e., ,y EE(Q), y1(X)=y:(X) a.e.

<remark/>The space E(Q) is a Riesz space such that [¢]V[y]=[dVy] and
[PIN[VI=[D A w].

<proof/>This follow by [7], Theorem 19.5. p. 127 and p. 128.

<notation/>For [p] EE(Q), we let supp([d])= supp(d).

For [P]EEQ),yE[P] it holds that
essup{ | Dol y(x) | :x EK}=sup{|D"{a} p(x):x EK} where K is any compact subset
of Q. Putting p_ {m,K}([d])=]||d||_{m,K} (m=0,1,2,...) we see easily that p {m,K} is
a seminorm in E {K}(Q)={[d]=EE(Q):supp([d])CK}. Letting ([¢_{n}]) be a
Cauchy sequence in (E(Q),{p {m,K}:m=0,1,2,...}) we have that ¢ {n}—¢ in D(Q),
some GEC {c}Mo}(Q) hence [ {n}] converges  to [}] in
(E(Q),{p_{m,K}:m=0,1,2,...}), hence (E(Q),{p {m,K}:m=0,1,2,...}) is a Fréchet
space.
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<theorem/>The spaces (E_{K}(Q),{p_{m,K}:m=0,1,2,...}) are Fréchet lattices.

<proof/>In fact we have that p {m,K}([d])<p_ {m,K}([y]) for [d]<[y] (see above).
The theorem follows by definition.

<definition/>Following the analogue to the LF space D(Q2) in [5], we may consider
the LF space E(Q)=lim(E {K(M)}(Q),{p {m,K}:m=0,1,2,...}) where
E {KIM)}(Q)={[d]=E(Q):supp(d) “K(M)}, (K(M)) a sequence of compact subsets
of Q such that UUK(M):M=1,2,...]=Q.

<theorem/>For Q a open subset of R*{N}, E(Q2) is a LF lattice.
<proof/>This follows from above.

<definition/>We say that a continuous linear functional on E(Q) is a global
distribution in Q.

<definition/>We call global positive distributions in € the positive linear functions on
the LF lattice E(Q).

Notice that for ¢i,0:S[p] we have ¢i1(x)=¢d:2(x) a.e. hence <T,Pp:-
¢ 2:>=0,<T,p:>=<T,p-> for T a global distribution on Q.

For each distribution T in Q, if we put <T,[p]>=<T,p> we have that it holds that
to every compact subset K of  there is a constant C such that, for all [¢p] <= E(Q) such
that supp(¢p)CK, we have |<T,[d]>|=]<T,p><C||d|| {m,K}. We have that the

associated T to T is a global distribution in Q if and only if T is a distribution in Q.
This follows from Proposition 21.1. in [5], p. 222.

<theorem/>The global distributions T in Q are the order bounded linear functionals on
E(Q). There exist positive global distributions T:,T: in €Q such that
<T,[¢p]>=<T1,[¢p] >-<T=,[p] > for each [p] =E(€2).

<proof/>This follows by Theorem 2.7. and Corollary 1. as wished.

<definition/>Letting Q be a open subset of R*{N} we say that the distribution T in Q
is a positive distribution in Q if the associated global distribution T in € is positive.

<theorem/>Each distribution T in Q satisfies that there exist two positive distributions
in Q such that <T,p>=<T1¢ ">-<T:,p > for each test function .

<proof/>This follows by Corollary 1.

As an application of the foregoing, consider the related even Sobolev space
W_{even}"{k,p}(Q) where Q is a open subset of R*"{N}, 1<p<owok=1,2,... of the
complex functions f on Q such that the derivatives D*{a}f are in L {p}(Q) (| a|<k)
([6]). Here, we identify f with the distribution <T {f},d>=] {Q}fd (dp=D(Q)).
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Following Definition 4.7. and Definition 4.3. we have that, putting
T {(fi>T {gt©DMNa}T {fi>DMa}T {g} for |a| even, W {kp}(Q) is a Banach
lattice (we equip the space with the norm
Ifll_{k.p}=(max{] {Q} D {a}f[ {p}:|al<ka even}) {1/p}). We have that
<DMa}T {f},d>>0 (|o| even, we then have that T {f} is positive if and only if
$>0, see just before Theorem 3.1.) and we may apply Theorem 2.7. to the Banach
space W_{even}"{k,p}(€2) obtaining

<theorem/>Each positive operator T:W_{even}"{k,p}(Q2)—X where X is a Banach
lattice, is continuous.

<proof/>This follows from the above as wished.

Notice that, using that each Banach space actually being a Banach lattice through
a given order (see ([3]), the above theorem has possible applications in general
settings.

Acknowledgement
This work was developped in CIMA-UE with finantial support from FCT (Programa
TOCTI-FEDER)

REFERENCES

[1] ALIPRANTIS, C. D. and BURKINSHAW, O. Positive Operators, Springer
(2006)

[2] ALIPRANTIS, C. D. and BURKINSHAW, O. Principles of Real Analyisis,
Second Edition Academic Press, Inc. Harcourt Brace Jovanovich, Publishers
Boston San Diego New York Berkeley London Sydney Tokyo Toronto (1990)

[3] NUNO C. FREIRE and MARIA FERNANDA VEIGA, Note on a property of
the Banach spaces Stud. Univ. Babes-Bolyai Math. 57 (2012), No. 1, 107-110

[4] PERESSINI, ANTHONY L. Ordered Topological Vector Spaces, Harper’s
Series in Modern Mathematics  Editors: Israel N. Hernstein, University of
Chicago; Gian-Carlo Rota, Rockefeller University (1967)

[5] TREVES, FRANCOIS Topological vector spaces, distributions and kernels
Academic Press, Inc. (1967)

[6] YOSIDA, K. Functional Analysis Fifth Edition Grundlehren der
mathematischen Wissenschaften 123, Springer-Verlag Berlin Heidelberg New
York (1978)

[7] ZAANEN, ADRIAN C. Introduction to Operator Theory in Riesz Spaces
Springer Berlin Heidelberg New York Barcelona budapest Hong Kong London
Milan Paris Santa Clara Singapore Tokyo (1997)



