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ABSTRACT 
 

In [1] right alternative rings satisfying the weak Novikov identity(w, x, yz) = 
y(w, x, z) are studied. Kleinfeld and Smith [2] proved that a semiprime flexible 
ring with weak Novikov identity is associative. In this paper, we replace the 
weak Novikov identity (w, x, yz) = y(w, x, z) with (w, x, yz) = (w, x, y)z. We 
prove that in a nonassociative ring R with [(x, y, x), R] = 0 and the weak 
Novikov identity (w, x, yz) = (w, x, y)z, then it is flexible i.e., (x, y, x) = 0 . 
Next we prove that the associator ideal I is anticommutative and alternative. 
Using these results we show that R is associative. 
 
Keywords : Nonassociative ring, semiprime, center, Associator ideal, Char. ≠ 
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 Throughout this paper, R represents a nonassociative ring of char. ≠ 2 satisfying 
the weak Novikov identity  
 (w, x, yz) = (w, x, y)z,  (1) 
for all w, x, y, z in R. 
 
 A ring R is semiprime if for any ideal A of R, A2 = 0 implies A = 0 and C defined 
as C = {c  N(R) / [c, R] = 0} is called the center of R. A ring R is of char. ≠ n if nx = 
0 implies x = 0 for all x in R and n a natural number. The associator ideal I consists of 
all finite sums of associators and right multiples of associators. As a consequence of 
(1), we observe that the associator ideal I of R consists of all finite sums of 
associators. 
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 First we prove the following Lemmas: 
 
Lemma 1: If R is a nonassociative ring satisfying (x, y, x)  C and (w, x, yz)= 
(w, x, y)z for all w, x, y, z in R, then it is flexible, that is, (x, y, x)=0. 
 
Proof : By hypothesis [(x, y, x), R] = 0 (2) 
 
 By taking w = y = x, x = y and z = (x, y, x) in (1) and using (x, y, x) C, we get  
  (x, y, x(x, y, x)) = (x, y, (x, y, x)x) = (x, y, (x, y, x))x = 0.  
 
 Now by using (1), we get (x, y, x) (x, y, x) = 0. That is, (x, y, x)2 = 0. 
 Since (x, y, x) is in C, this implies that  
  (x, y, x) = 0.  (3) 
 
 This completes the proof of the lemma.  
 We use the Teichmuller identity 
 (wx, y, z) – (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z,  (4) 
 
which is valid in every ring. 
 By using (1) in (4), we get 
 (wx, y, z) – (w, xy, z) = w(x, y, z). (5) 
 
 By replacing w with z in (5) and using (3), we get  
 (zx, y, z) = z(x, y, z).  
 
 Now by using (3) on both sides of the above equation and applying (1), (3), we get 
 (z, y, zx) = z(z, y, x),  
 
 That is  
 (z, y, z)x = 0 = z(z, y, x),  
 
 Therefore  
 z(z, y, x) = 0. (6) 
 
 Linearization of (6) yields  
 z(w, y, x) = – w(z, y, x).  (7) 
 
 For arbitrary element a, b, x, y, z in R, using 1 several times, we observe that  
 p = (a, b, (x, y, z)) = (a, b, (xy)z – x(yz)) = (a, b, xy)z – (a, b, c)yz 
  = ((a, b, x)y)z – (a, b, c)yz = ((a, b, x), y, z). 
 
 Therefore p = (a, b, (x, y, z)) = ((a, b, x), y, z). 
 
 Now by using (3), we get 
 (a, b, (x, y, z)) = – (z, y, (a, b, x)). (8) 
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 By replacing x with z and using (3), we get 
 (z, y, (a, b, z)) = 0.  (9) 
 
 Now by linearizing (9), we get 
 (z, y, (a, b, w)) = – (w, y, (a, b, z)).  (10) 
 
 Now we combine (3) with (10). Then 
 (w, y, (a, b, z)) = (sgn) (w, y, (a, b, z)),   (11) 
 
where  is any permutation on the set {w, a, z}. 
 From(11), we have  
 (a, b, (x, y, z)) = – (x, b, (a, y, z)).  (12) 
 
 By using (12) and (8), we get  
 (a, b, (x, y, z)) = (a, y, (z, b, x)). 
 
 Now using (3), we obtain  
 (a, b, (x, y, z)) = – (a, y, (x, b, z)).  (13)  
 
 Thus we have  
 (w, y, (a, b, z)) = (sgn ) (w, y, (a, b, z)),   (14) 
 
 Where  is any permutation on the set {y, b}. Now by using (7), we get 
 (a, b, c) (x, y, z) = – x ((a, b, c), y, z). 
 
 Using (3) and by taking c = z in above equation, we get 
 (a, b, z) (x, y, z) = x(z, y, (a, b, z)),  
 
now by using (9), we have  
 (a, b, z) (x, y, z) = 0. 
 
 By linearizing this equation, we get 
 (a, b, z) (x, y, c) = – (a, b, c) (x, y, z)  (15) 
 
 At this point (15) and (3) implies 
 (a, b, c) (x, y, z) = (sgn ) (a, b, c) (x, y, z),  (16) 
 
 Where  stands for permutation on the set {a, c, x, z}. Also using (7) and (3), we 
get 
 q = (a, b, c) (x, b, z) = – x((a, b, c), b, z) = x(z, b, (a, b, c)). 
 
 Now by using (14), we obtain  
 q = – x(z, b, (a, b, c)). 
 Therefore  
 q = – q implies 2q = 0. 
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 Since R is of char.  2, we get q = 0. 
 That is  
 (a, b, c) (x, b, z) = 0. 
 
 Now by linearizing this equation, we get 
 (a, b, c) (x, y, z) = – (a, y, c) (x, b, z). (17) 
 
 At this point combining (17) and (14), we get 
 (a, b, c) (x, y, z) = – (x, y, z) (a, b, c). (18) 
 
 This implies the following result. 
 
Lemma 2 : The associator ideal I is anticommutative. 
Next we have 
 
Lemma 3 : The associator ideal I is alternative. 
 
Proof : Let q be an alternative element in I and w, x, y, z are arbitrary elements in R. 
Then by using (7), we get wq(z, x, y) = – z(wq, x, y). 
 Now by using (3) and (1) twice in the same order, we get 
  wq(z, x, y) = – z(wq, x, y) = z(y, x, wq) = z(y, x, w)q = – z(w, x, y)q 
 = – z(w, x, yq) = w((z, x, y)q), by using (7) and (1) 
 = – w(q(z, x, y)), by Lemma 2. 
 
 Therefore wq(z, x, y) = – w(q(z, x, y)). Then 
 (wq)p = – w(qp) or w(qp) = – (wq)p,  (19) 
 
 Where p, q are in I and w in R. 
 Now we assume that r an element of I. Then by using (19), we get 
 (p, q, r) + (p, r, q) = (pq)r – p(qr)+ (pr)q – p(rq) 
 = – p(qr) – p(qr) – p(rq) – p(rq) = – 2p(qr) – 2p(rq)  
 = – 2p(qr + rq) 
 
 From Lemma 2 it implies qr + rq = 0. So that (p, q, r) + (p, r, q) = 0. 
 At this point I is both flexible and right alternative, hence alternative.  
 
Lemma 4 : If S is an anticommutative alternative ring of char.  2, then (S2)(S2) = 0. 
 
Proof : For arbitrary elements w, x, y, z in S, we have (xy)(zx) = x(yz)x = – x2(yz) = 0, 
using alternative identities and anticommutativity. Linearizing this identity results in 
(wy)(zx) = –(xy)(zw). Applying this in conjunction with anticommutativity leads to 
(wy)(zx) = (zx)(wy). However (wy) also anticommutes with (zx) so that 2(wy)(zx) = 0. 
Since S is of char.  2, we have (wy)(zx) = 0. So that (S2)(S2) = 0.  
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Main Result: 
Theorem 1: If R is a semiprime ring of char.  2 with (x, y, x)  C satisfying the 
Novikov identity (w, x, yz) = (w, x, y)z is associative. 
 
Proof : Let p, q be arbitrary elements of I, I the associator ideal of R and z an arbitrary 
element of R. Then z(qp) = – (zp)q by (19). Thus I2 is a left ideal of R. Also (p, q, z) = 
– (z, q, p) = – (zq)p + z(qp) is an element of I2. Hence (pq)z = (p, q, z) + p(qz)  I2. 
Thus I2 is an ideal of R. Then Lemmas 1, 2 and 3 imply that the ideal I2 of R squares 
to 0.  
 Since R is semiprime, I = 0. 
 Hence R is associative. 
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