

Rings with (x, y, x) in the Center

¹**K. Madhusudhan Reddy and ²K. Suvarna**

¹*School of Advanced Sciences, VIT University, Vellore 632 104, Tamilnadu.*

²*Dept. of Mathematics, Sri Krishnadevaraya University,
Anantapur, Andhra Pradesh*

drkmsreddy@yahoo.com & prof.suvarna@yahoo.com

ABSTRACT

In [1] right alternative rings satisfying the weak Novikov identity $(w, x, yz) = y(w, x, z)$ are studied. Kleinfeld and Smith [2] proved that a semiprime flexible ring with weak Novikov identity is associative. In this paper, we replace the weak Novikov identity $(w, x, yz) = y(w, x, z)$ with $(w, x, yz) = (w, x, y)z$. We prove that in a nonassociative ring R with $[(x, y, x), R] = 0$ and the weak Novikov identity $(w, x, yz) = (w, x, y)z$, then it is flexible i.e., $(x, y, x) = 0$. Next we prove that the associator ideal I is anticommutative and alternative. Using these results we show that R is associative.

Keywords : Nonassociative ring, semiprime, center, Associator ideal, Char. $\neq n$.

AMS Classifications : 17D05

Throughout this paper, R represents a nonassociative ring of char. $\neq 2$ satisfying the weak Novikov identity

$$(w, x, yz) = (w, x, y)z, \quad (1)$$

for all w, x, y, z in R .

A ring R is semiprime if for any ideal A of R , $A^2 = 0$ implies $A = 0$ and C defined as $C = \{c \in N(R) / [c, R] = 0\}$ is called the center of R . A ring R is of char. $\neq n$ if $nx = 0$ implies $x = 0$ for all x in R and n a natural number. The associator ideal I consists of all finite sums of associators and right multiples of associators. As a consequence of (1), we observe that the associator ideal I of R consists of all finite sums of associators.

First we prove the following Lemmas:

Lemma 1: If R is a nonassociative ring satisfying $(x, y, x) \in C$ and $(w, x, yz) = (w, x, y)z$ for all w, x, y, z in R , then it is flexible, that is, $(x, y, x) = 0$.

Proof: By hypothesis $[(x, y, x), R] = 0$ (2)

By taking $w = y = x$, $x = y$ and $z = (x, y, x)$ in (1) and using $(x, y, x) \in C$, we get $(x, y, x(x, y, x)) = (x, y, (x, y, x)x) = (x, y, (x, y, x))x = 0$.

Now by using (1), we get $(x, y, x)(x, y, x) = 0$. That is, $(x, y, x)^2 = 0$.

Since (x, y, x) is in C , this implies that

$$(x, y, x) = 0. \quad (3)$$

This completes the proof of the lemma.

We use the Teichmuller identity

$$(wx, y, z) - (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z, \quad (4)$$

which is valid in every ring.

By using (1) in (4), we get

$$(wx, y, z) - (w, xy, z) = w(x, y, z). \quad (5)$$

By replacing w with z in (5) and using (3), we get

$$(zx, y, z) = z(x, y, z).$$

Now by using (3) on both sides of the above equation and applying (1), (3), we get $(z, y, zx) = z(z, y, x)$,

That is

$$(z, y, z)x = 0 = z(z, y, x),$$

Therefore

$$z(z, y, x) = 0. \quad (6)$$

Linearization of (6) yields

$$z(w, y, x) = -w(z, y, x). \quad (7)$$

For arbitrary element a, b, x, y, z in R , using 1 several times, we observe that

$$\begin{aligned} p &= (a, b, (x, y, z)) = (a, b, (xy)z - x(yz)) = (a, b, xy)z - (a, b, c)yz \\ &= ((a, b, x)y)z - (a, b, c)yz = ((a, b, x), y, z). \end{aligned}$$

Therefore $p = (a, b, (x, y, z)) = ((a, b, x), y, z)$.

Now by using (3), we get

$$(a, b, (x, y, z)) = -z(x, y, a, b, x). \quad (8)$$

By replacing x with z and using (3), we get
 $(z, y, (a, b, z)) = 0$. (9)

Now by linearizing (9), we get
 $(z, y, (a, b, w)) = -(w, y, (a, b, z))$. (10)

Now we combine (3) with (10). Then
 $(w^\alpha, y, (a^\alpha, b, z^\alpha)) = (\text{sgn } \alpha) (w, y, (a, b, z))$, (11)

where α is any permutation on the set $\{w, a, z\}$.

From (11), we have
 $(a, b, (x, y, z)) = -(x, b, (a, y, z))$. (12)

By using (12) and (8), we get
 $(a, b, (x, y, z)) = (a, y, (z, b, x))$.

Now using (3), we obtain
 $(a, b, (x, y, z)) = -(a, y, (x, b, z))$. (13)

Thus we have
 $(w, y^\beta, (a, b^\beta, z)) = (\text{sgn } \beta) (w, y, (a, b, z))$, (14)

Where β is any permutation on the set $\{y, b\}$. Now by using (7), we get
 $(a, b, c) (x, y, z) = -x ((a, b, c), y, z)$.

Using (3) and by taking $c = z$ in above equation, we get
 $(a, b, z) (x, y, z) = x(z, y, (a, b, z))$,

now by using (9), we have

$$(a, b, z) (x, y, z) = 0.$$

By linearizing this equation, we get
 $(a, b, z) (x, y, c) = -(a, b, c) (x, y, z)$ (15)

At this point (15) and (3) implies
 $(a^\gamma, b, c^\gamma) (x^\gamma, y, z^\gamma) = (\text{sgn } \gamma) (a, b, c) (x, y, z)$, (16)

Where γ stands for permutation on the set $\{a, c, x, z\}$. Also using (7) and (3), we get

$$q = (a, b, c) (x, b, z) = -x ((a, b, c), b, z) = x(z, b, (a, b, c)).$$

Now by using (14), we obtain
 $q = -x(z, b, (a, b, c))$.

Therefore

$$q = -q \text{ implies } 2q = 0.$$

Since R is of char. $\neq 2$, we get $q = 0$.

That is

$$(a, b, c)(x, b, z) = 0.$$

Now by linearizing this equation, we get

$$(a, b, c)(x, y, z) = -(a, y, c)(x, b, z). \quad (17)$$

At this point combining (17) and (14), we get

$$(a, b, c)(x, y, z) = -(x, y, z)(a, b, c). \quad (18)$$

This implies the following result.

Lemma 2 : The associator ideal I is anticommutative.

Next we have

Lemma 3 : The associator ideal I is alternative.

Proof : Let q be an alternative element in I and w, x, y, z are arbitrary elements in R . Then by using (7), we get $wq(z, x, y) = -z(wq, x, y)$.

Now by using (3) and (1) twice in the same order, we get

$$\begin{aligned} wq(z, x, y) &= -z(wq, x, y) = z(y, x, wq) = z(y, x, w)q = -z(w, x, y)q \\ &= -z(w, x, yq) = w(z, x, yq), \text{ by using (7) and (1)} \\ &= -w(q(z, x, y)), \text{ by Lemma 2.} \end{aligned}$$

Therefore $wq(z, x, y) = -w(q(z, x, y))$. Then

$$(wq)p = -w(qp) \text{ or } w(qp) = -(wq)p, \quad (19)$$

Where p, q are in I and w in R .

Now we assume that r an element of I . Then by using (19), we get

$$\begin{aligned} (p, q, r) + (p, r, q) &= (pq)r - p(qr) + (pr)q - p(rq) \\ &= -p(qr) - p(qr) - p(rq) - p(rq) = -2p(qr) - 2p(rq) \\ &= -2p(qr + rq) \end{aligned}$$

From Lemma 2 it implies $qr + rq = 0$. So that $(p, q, r) + (p, r, q) = 0$.

At this point I is both flexible and right alternative, hence alternative.

Lemma 4 : If S is an anticommutative alternative ring of char. $\neq 2$, then $(S^2)(S^2) = 0$.

Proof : For arbitrary elements w, x, y, z in S , we have $(xy)(zx) = x(yz)x = -x^2(yz) = 0$, using alternative identities and anticommutativity. Linearizing this identity results in $(wy)(zx) = -(xy)(zw)$. Applying this in conjunction with anticommutativity leads to $(wy)(zx) = (zx)(wy)$. However (wy) also anticommutes with (zx) so that $2(wy)(zx) = 0$. Since S is of char. $\neq 2$, we have $(wy)(zx) = 0$. So that $(S^2)(S^2) = 0$.

Main Result:

Theorem 1: If R is a semiprime ring of char. $\neq 2$ with $(x, y, x) \in C$ satisfying the Novikov identity $(w, x, yz) = (w, x, y)z$ is associative.

Proof : Let p, q be arbitrary elements of I , I the associator ideal of R and z an arbitrary element of R . Then $z(qp) = -(zp)q$ by (19). Thus I^2 is a left ideal of R . Also $(p, q, z) = -(z, q, p) = -(zq)p + z(qp)$ is an element of I^2 . Hence $(pq)z = (p, q, z) + p(qz) \in I^2$. Thus I^2 is an ideal of R . Then Lemmas 1, 2 and 3 imply that the ideal I^2 of R squares to 0.

Since R is semiprime, $I = 0$.

Hence R is associative.

References

- [1] Kleinfeld, E. and Smith, H.F. "On right alternative weakly Novikov Rings", Nova Journal of Algebra and Geometry, vol. 3, No. 1 (1994), 73–81.
- [2] Kleinfeld, E. and Smith, H.F. "Semiprime flexible weakly Novikov rings are associative", Comm. Algebra, 23 (13) (1995) , 5077 – 5083.

