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Abstract

A partial module M over a partial ring K (strong semilattice of rings) is
defined so as to obtain a structure theorem of strong sort. Formally, M is
proved to be precisely a strong semilattice of modules over K. It is proved
that in the category of partial modules over K, all products and coproducts
exist. Some generalizations concerning exact sequences including a five
Lemma, for partial modules are obtained.
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1.Introduction and preliminaries

In [2] a partial ring is defined and characterized as a strong semilattice of rings,
embeddable in a partial ring of partial mappings. Analogous structure theorems and
representations by partial mappings have been established, for partial groups in [1]
and for partial monoids in [4]. Certain types of partial groups in which the structure
maps are epimorphisms have been studied in [5] and [6], and referred to as g partial
groups. In the present work, we proceed in the same direction and introduce the
notion of a partial module over a partial ring, proving that a partial module M over a
partial ring K (i.e. a strong semilattice of rings) is precisely a "strong semilattice of
modules"” over the maximal subrings of K. We then introduce the notion of a K —
partial module homomorphism between K — partial modules, for a fixed partial ring
K, proving that the category PMod-K, whose objects are all left K— partial
modules and whose morphisms are the K — partial module homomorphisms has all
products and coproducts (direct sums). We claim that many of the standard notions
and constructions in Ring - Module theory can be introduced for partial rings and
partial modules. In the present work, we are mainly concerned with the structure
theorem of partial modules over a given partial ring, their categorical products, and
exact sequences. In a subsequent paper we introduce and study other basic categorical
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properties of partial modules. In order for this paper to be self contained, we introduce
from [1] and [2] the required definitions and results concerning partial groups and
partial rings respectively. A partial group is a multiplicative semigroup S subject to
the axioms:

1. for every xeS, there is a necessarily unique, element denoted e, and called

the partial identity of x such that, (i) xe, =e x=X, and (ii) if yx=xy=Xx,
for some y eSS, then e,y = ye, =¢,.

2. for every xeS, there is a necessarily unique, element denoted x™* (or —x if
S is commutative) and called the partial inverse of x such that, (i)
xx ' =x"x=¢e, and (ii) e, x ' =x"'e, =x7".

3. The partial identity map, X+ e, is a homomorphism, that is e,, = e,e , for all
X,y €S. The partial inverse map, x> x™ is an anti homomorphism, that is
(xy)*=y'x?, forall x,yeS.

If S is a partial group, the set {e, :x e S} of all partial identities in S is denoted
by E, it is precisely the set of all idempotents in S. Every idempotent in S is its
own partial identity, whence €, =€ forall xe S, also e(x_l) =e, forall xeS. Eg is

central in S, and is a semilattice with e> f ifand only if ef = f (forall e, f €E;).

Theorem 1.1 For a semigroup S, the following statements are equivalent
(@) S is a partial group

(b) S is a Clifford semigroup, i.e. S is regular with central idempotents
(c) S is a semilattice of groups

(d) S is a strong semilattice of groups.

It follows that a partial group S is precisely the strong semilattice of groups
S = p[Es; S,. 4, ;] where S, is the maximal subgroup of S with identity e, and for

exf in Eg, ¢, :S, =S, isthe homomorphism of groups given by x> xf, for all

XeS,.

Notions such as a subpartial group, homomorphism (monomorphism,
epimorphism, etc.) of partial groups are defined as usual. In particular. A subpartial
group B of a partial group S is called wide (or full) if E,cB. If f:S—>T isa

homomorphism of partial groups, then f(e,)=¢,, and f(x™M)=(f(x))™, for all

X eS.
A generalized ring is a set K with two binary operation, addition"+" and
multilication "." subject to the axioms:
I (K,+) is an abelian partial group, (ii) (K,.) is a semigroup, and (iii) left
and right distributive laws hold.
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il A generalized ring K is commutative if (K,.) is so, and said to have a
necessarily unique unit, if (K,.) has a one, which is then the unit of K. A

mapping 1:K — K , between partial rings, is a homomorphism if for all
r,sekK, (i) A(r+s)=A(r)+A(s), (i) A(rs)=A(r)A(s) and
iii. /1(1):1', whenever K and K have units 1 and 1 respectively.

Monomorphisms, epimorphisms and isomorphisms of generalized rings
are defined as usual.

Proposition 1.1 Let K be a generalized ring. For all r,s e K, we have :
() e,s=e, =re,, (ii) e, = e, and (iii) (-r)s=—(rs) =r(-s).

In a generalized ring K, the set of all additive idempotents, i.e. the idempotents in
(K,+), is denoted by E., whearse E; denotes the set of all idempotents in (K,.). It

follows that E, is precisely the set of all partial identities in the commutative partial

group (K,+), when no confusion exists, E, will be denoted simply by E, . It can be

shown that an additive idempotent in K need not be a multiplicative idempotent, and
hence that a generalized ring K need not be, even, a union of rings.

A partial ring is a generalized ring K in which E, c E; .(i.e. every idempotent
in (K,+) is an idempotent in (K,.)).

The notion of a strong semilattice of algebras of a certain type has been introduced
in literature and referred to as a plonka sum. As we are concerned with generalized
rings, we formally define a strong semilattice of rings K = p[Y;K ¥, ] to be a

disjoint union of rings K =U{K,:ueY} indexed by a semilattice Y such that, for
every u,veY with u=>v, there exists a ring homomorphism ¥, : K, — K, such that

(i) ¥, is the identical automorphism of K, for every ueY

(i) ¥, -, =¥, forall u,v,weY withuxv=w.

There are two associative binary operations, addition and multiplication on K
(extending the operations of each K|,) defined as follows:

For any r,seK, say reK, and seK, r+s=(¥,,rnN+(¥,,s),
rs = (¥, (¥, .s)

Theorem 1.2 Let K =(K,+,.) be a set with two binary operations, such that (K,+) is
a semigroup and (K,.) is a monoid. The following two statements are equivalent:
(A) K isa partial ring
(B) K is a strong semilattice of rings.

In the proof (A) implies (B) of the above theorem (cf.[2]), it is proved that
uv=u+v, forall u,veE,,. That is addition and multiplication in E, coincide. The
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above theorem implies also that a partial ring K is precisely the strong semilattice of
rings K = p[E,;K,,'¥,,], where K, is the maximal subring of K with additive

identity u (for every ueE,), and for ux=v in E., ¥, :K,—>K, is ring
homomorphism given by r - r+v for every r e K,.

If a partial ring K has a multiplicative unit 1, then for every ue E,, K, has a
(multiplicative) unit 1+u, and these units are preserved by the structure maps ‘¥, ,.

These properties of a partial ring will be used freely, when needed, without further
references.

2.Partial modules over partial rings
Let K=p[E;K,¥, ] be a partial ring. An abelian partial group

M = p[E,;M., 0, ;] is called a left K —generalized module if there is a function
KxM — M, (r,x)— rx

called scalar multiplication, such that the following axioms hold

PMP1 r(x+y)=rx+ry,(r+s)x=rx+sx forall r,seK and x,ye M
PMP2 (rs)x=r(sx), forall r,seK and xe M
PMP3 1x = x, forall xe M whenever K has a unit 1.

Right K —generalized modules may be defined analogously.
Throughout this section, unless sated otherwise, K denotes an arbitrary, but fixed,
partial ring K = p[E; K,V ].

Lemma 2.1 Let M be a left K —generalized module. For all reK and xe M, we
have
(i) erx = erX = reX = erex’

(i) (=r)x=—=(rx) = r(=x).

Proof. (i) rx+ex=(r+e)x=rx, and if y+rx=rx, for some yeM, then
eX+Y=(-r+nNx+y=(=nNx+(x+y)==nNx+(y+rx)=(-r)x+rx=(-r+r)x=ex.
Thus e, =eX. Similarly, we can show that e, =re,. It follows immediately that

e X € E,,, and hence that e x = €. X) = e.e,. (i) Follows from (i).

A left K—partial module M is a left K —generalized module that satisfies the
following two additional axioms
PMP4 There is an isomorphism of semilattices o:E,, > E, such that
o(e)e=e, forall ecE,,.
PMP5 o(ue)=uoc(e), forallueE, and ecE,,.
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Lemma 2.2 Let M be a left K —partial module. Then
(i) M, isa left K, -module for all ue E, and ee E,, with u>o(e). In particular,

M is a left K

[

module, for every ec E,,.

o(e)

(ii) ue=oc*(u)+e, (in particular e>ue), forall uc E, and ecE,,.

Proof. (i) Let reK, and xeM,. By using Lemma 2.1 and PMP4, we have
e, =¢ee =ee=ue=u(o(e)e)=(uo(e))e=(Uu+o(e))e=c(e)e==¢ Thus
KM, cM,, (ii) For arbitrary ue E, and ecE,, we have by using PMP5,
o(ue)=uc(e) =u+o(e). Thus ue=oc*(U+o(e)) =o' (u)+e.

A strong Semilattice of left K, -modules is a disjoint union of abelian groups
M=U{M, ueE,}

such that
SSM1 M, isaleft K, -module for every ueE,.

u

It follows immediately that for every ve E,, M, isalso a K, -module for every

ueE,, with u>v, with action of K, on M, given naturally by (cf. Lemma 2.3
below)

rx=(y,, X
forall re K, and xe M,.

SSM2 For any u,ve E,, with u>v, thereisa K, -module homomorphism
¢, M, > M,
such that

(i) ¢,, is 1MU ‘M, —>M,,a—a

(ii) ¢, ,° 4, =¢,,, whenever u=v=w in E,.

Let M be defined as above. As in the case of strong semilattices of groups, there
IS a commutative associative operation (also called addition) on M defined by the
rule :

For a,beM, say acM, and be M,, for some u,ve E,,
a+b=¢,,a+g¢,,b.

There is an action of K on M extending that of K, on M, (u € E, ) defined by
the rule:
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Forany reK, aeM,sayr €K, and aeM,, for some u,ve E,,

ra=y,,, r.¢vvuv a.

Lemma 2.3 Let
M=U{M, ueE,}

be a disjoint union of left K, -modules. Then
(i) Forany ve E, M, is a left K, -module for every ue E, with u>v. The action
of K, on M, is given in terms of the action of K, on M, as follows:

Forany reK,,aeM,

ra= (y/uvv r)-a

(i) If M s also a strong semilattice of left K, -modules, i.e. M satisfies also the

axiom SSM2, then the action defined as in (i) coincides with the action defined by the
structure maps. Moreover, for any u,v,w,0€ E,, with u>v>w and o>v, we have

forany re K, and aeM,,
¢v,w (Wu,v r '¢0,v a) = Wu,w r '¢0,W a,

and hence,( by using (i))
¢v,w (r '¢0,v a) =r-a

Proof. (i) Let s,reK, and a,beM,. Then
(s+ra = y,, (s+r)-a=(y,, S+y,, r)a
= y,,S-aty, r-a=sa+ra
r@+b) = (y,, N@+b)=y, r-a+y,, r-b
= ra+rh.
(sr)-a = (v, (s)-a=(y,, )y, ) a
= W, S)w,, r-a)=s(ra).

(i) Let reK,,aeM,, where u>Vv in E,. Then
l//IJ,IJV r'¢V,UV a = l//IJ,V r'¢V,V a = l//IJ,V r'a

This proves the first statement of (ii). For the second statement, we have:
dou(r-d,,a) = ¢,,(v,, ¢, a)

= (w1044, )

= Wt dewa= v, W, 1) by (dey @)

= l)Vu,wr'¢owa':r'¢o,w a.
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Theorem 2.1 Let M = p[E,;M,, ¢, ] be an abelian partial group with an operation
KxM — M, (r,a)m ra.

The following two statements are equivalent.
(A) M isa left K- partial module.

(B) M s astrong semilattice p[E,;M ¢, ] of left K, — modules.

Proof. (A) implies (B). By assumption, M is a strong semilattice of abelian groups
plE, M., ¢, ] together with an isomorphism of semilattices o : E,, — E,, and the

axioms PMP1-PMP5 are satisfied. By Lemma 2.2, M, is a left K, — module for all
ue E, and ee E,, with u>o(e). ldentifying every e e E,, with its unique image
o(e) =ueE,, then M may be viewed as a strong semilattice p[E, ;M ¢, ] of left
K, — modules, with M, is a left K, — module for every u,ve E, such that u>v.
For these u,v € E,, the homomorphism of abelian groups ¢, , is actually given by

Py = ¢a—1(u),0—1(v) =¢.r ‘M, >M;,a—a+f,

where e=c*(u) and f = o (v).4,, is also a K, — module homomorphism, for if
rekK, and ae M, then
¢, (ra) = ra+o(V)=ra+oc ‘(U+Vv)

= ra+o'(w)=ra+oc'(e -v)

= ra+o'(eo(f))=ra+o'(c(e -f)) (PMP5)

= ra+e, -f

= ra+rf (Lemma2.1)

= r(a+f)=rg,, (a).

Thus M satisfies SSM1 and SSM2. It remains to show that the operation
KxM — M, (r,a) ra coincides with the action given by the structure maps. Let

u,ve E, be arbitrary and let e, f be the unique elements in E,, such that e = *(u)
and f =c7'(v). Forany reK, and aeM, (where M, =M, ), we have

Vowdwa = (r+uv)(a+o(uv))
= ra+ro " (uv)+(uv)a+ (uv)o (uv)
= ra+r(e+ f)+u(va)+u(v(e+ f))
= ra+re+rf +uf +u(ve+ f))
= ra+e+uf +uf +u(ve+ f)) (Lemma2.1)
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= ra+e+o (U)+f+u(c(v)+e+f) (Lemma2.2(ii))
= ra+e+e+f+u(f+e+f)
= ra+e+f+u(e+f)

= ra+e+f+e+uf (Lemma2.2(ii))
= ra+e+f+e+f

= ra+e+f

= ra (Lemma2.1landLemma2.2(ii))

(B) implies (A). We have a strong semilattice of left K, modules
M = p[E; My, 0, ]

By hypothesis, M is also a strong semilattice of abelian groups
M = p[E, M., 0]

It follows that the correspondence
o:.E, = E,

given by o(e) =u ifand only if M, =M, is an isomorphism of semilattices, that M,
is aleft K ., — module for all e E,, and that ¢, ; = ¢,, if and only if o(e) =u and

o(f)=v. Let reK,,aeM, and beM,, for some ueE, and e, f €E,. Then

X+yeM,=M_.,; andso

e+f

FX+Y) = Vipsoeen) T '¢(e+f)ﬂ_1(u)+(e+ f) (x+y)

= Yiuoest) § -

e

oot (U) (e F) Peecr @41 b)

Viusotert) r'(¢e,a—1(u)+e+f a+¢f,a-1(u)+e+f b)

Vuuso(erf) r'¢w-1(u)+e+f A+Yuio(ert) r'¢fva_1(u)+e+f b

(since M isa K —module). On the other hand,

g‘l(U)+e+ f u+o(e+f)
XY= Yasow 9, aquyre 3 Vowon T8, oyt P

= ¢U_1(u)+e,g_1(u)+e L f (e g '¢w_1(u) te a)

sy f oiuyrer f Voo T8 sy f

= Viuso(ert) r.¢e,0'_1(U)+e+f AWy uiotert) r'¢f'0_1(u)+e+f b (Lemma2.3)).

b)

Thus r(x+y)=rx+ry which gives PMPL. Let reK,,seK, and aeM_, for



Generalized Modules over Semilattices of Rings 415

some u,ve E, and ec E,, . Then
(I’S)a = (Wu,u+v r 'Wv,u+v S)a

(Wu+v,u+v+o(e) (Wu,u+v r- l//v,u+v S))¢e,a_l(U+V)+e a

(Wu,u+v+o(e) r 'Wv,u+v+o(e) S)¢e,a_l(U+V)+e a

l//u,u+v+o(e) r- (Wv,u+v+a(e) S- ¢e,o_l(U+V)+e a)'

On the other hand,
r(Sa) = r-(l//v,v+o(e) S '¢e'6—1(\/)+e a)

Visrioo T8 1v)re,ot(urv)re Vvvow S°9, a)e @)
= l//u,u+v+o(e) r-(l//v,u+v+o(e) S .¢e,o_1(U+V)+e a) ' (Lemmaz‘?’("))

Therefore, (rs)a =r(sa) and PMP2 follows. If K has a unit 1 then, for all ue E,
, K, has a unit 1+u (cf. Sec.1), and for any r e K, 1r =r which gives ee, =e,
(Proposition 1.1 (ii)), or equivalently e +e, =e,. It follows that e >e, for every
re K. Thus e, is an upper bound for E,. Hence o '(g,) is an upper bound for E,,.
Now forany ae M, say ae M, for some ec E,,, we have

V/el,e1+o(e) 1=1+e +0(e)=1+0o(e),
which is the unit of the ring K_ ... Thus,

la Ve e+o(e) 1""’e,g—l(e)+e a

= 1 a
Ve o)™ Pee

(1+o(e)a=a.
(Since M, isa K_, - module)

o(e)

This proves PMP3. Axiom PMP4 follows immediately, from the fact that M, is a

left K, ., — module for every ecE,,. Let ue E, and ee E,,. We have
U = Voo WP, ) 4e ©
= (U+o(e) (o7 (u)+e)
= ol(u)+e
(Since Mg—l(u)+e isa K,,, - module)

Therefore,
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o(ue)=oc(c*(u)+e)=u+o(e) =uc(e).
Thus PMP5 follows and the proof is complete.
3.Categorical products of partial modules
Let M, and M, be two left K— partial modules. There exist two isomorphisms of
semilattices:
o, By —>E¢ and 0,1 E, —E,
which satisfy the axioms PMP4 and PMP5 (Sec.2). Thus there is an isomorphism of

semilattices
0, 00, E'V'1 - EN|2 :

which we denote by o,,, making the following diagram

commutative. To each ee EMl’ there corresponds a unique element in E . which
2

we denote by €, such that o,(e) = o,(e’) namely,
e =0,(e) = 0,0, (e).
Whence, by Lemma 2.1, for every ue E, and e e EMl’ we have (M,), isa K, —

module if and only if (M,). isa K, — module. In particular, (M,). isa K ©
e e o1

module for every e e EMl'

We call a function
oM, > M,
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a (left) K — partial module homomorphism, if the following three axioms hold,
PMH1 a(a+b) =a(a)+a(b), for all a,be M,.

PMH2 «a(ra) =ra(a), forall reK and aeM,.

PMH3  o,(e)<o,(a(e)),forall ee EMl'

Since « is neccessarily a partial group homomorphism, (PMH1) we have for any
aeM,, ale,)=e,, and a(-a)=-a(a), (cf. Secl). The first of these two properties

indicates that « maps EMl into EMz'

The homomorphism ¢« is called, a monomorphism if « is one-to- one, an
epimorphism if Ima ={a(a):ae M}= N, and an isomorphism, in which case M
and N are called isomorphic, if « is both a monomorphism and epimorphism. In the
following two lemmas, M, and M, denote arbitrary left K— partial modules and

a:M; —> M, isa K- partial module homomorphism.

Lemma 3.1 (i) For every e € EMl’ o,(e) =o,(a(e)), thatis

a(e) = 0;'0,(6) = o, (6) = €.

(i) The restriction

a ‘E, — E
Em, "~ M1 M,

is an isomorphism of semilattices that sends each e € E,, to e =0o,,(e).

Proof. Since both o, and o, are isomorphisms (ii) follows from (i). To prove (i), let
ee EMl' Then
o,(a(e) = o,(a(o,(e)-e)) (PMP4)
o,(01(e)-a(e))
c,(e)-0,(a(e)) (PMP5)

o1(6) + 0, (a(e)).
Thus o,(a(e)) <o,(e), and (i) follows by using PMH3.

Lemma 3.2 (i) « is uniquely determined by a (pairwise disjoint) family (e,) of

eeEM
K, — left module homomorphisms «, :(M,), — (Mz)e., (ee EMl) in the sense that,
forany ae M, a(a) =«,(a), where e is the unique element in EMl such that e =e,.
In other words, a(a) = o, (a), forevery aeM,.

(i) Forany e, f € E,, and ae(M,).,
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¢

e.e+f

(@) =a, @, a)

In particular, if e> f, then

¢e,'f, a, =a; g, -

(i) Forany e, f e E,, and a€(M,), and b e (M,);
a(@+b)=a, ;(a+b)=a,(a)+a, (b).

Proof. (i) For every ee EMl’ let «, be the restriction of o onthe left K_ ., —module
(M,).. The result follows by using Lemma 3.1.
(ii) 0. (@@ = a,()+e +f =a(@)+a(e+f)

€y

= a(a+e+f)=a,, (a+e+1)
ae+f (q)e'e+f (a))

(iii) Follows by using (i) above and PMHL1.

Lemma 3.3 There is a category, denoted by PMod- K, whose objects are all left K —

partial modules and whose morphisms are all left K- partial module
homomorphisms.

5
Proof. If L>M i) N is a pair of left K— partial module homomorphisms, then for
every e e E,_ we have

on(mé(e) = oy (5(e))
= oy(n (UI\_/IlaL (e))

oy (oy oy (oy o,(e)))

o (e).

Whence n 6 is a left K- partial module homomorphism, and the result follows
immediately.

Theorem 3.1 The category PMod- K has
(i) all products,
(ii) all coproducts.

Proof. Let {M,}_, be a family of left K — partial modules indexed by a nonempty
set |. For each iel, there is an isomorphism of semilatticeso;, :EMi — E, that
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satisfies PMP4 and PMP5. As usual, we denote, for every i, jel, the composite
isomorphism cyj_lo'i:EMi —>EMj, by o;. For every ueE, and every iel, the
element o, *(u) in EMi is denoted by u;,, whence M, is a strong semilattice of left

K, — modules,
M; = plEy i (M), 4, ]

where (Mi)u' is the left K, — module with identity u, and for every i, jel, we
clearly have o;(u;)=u;. For every ueE,, let M . denote the cartesian product

[I(M,) . of the left K,— modules (M,).,iel. A typical element in M. is a
iel Ui u; u

iel ?

(au; Jier + (bu; )it = (Cu' Jict»

collection (a )., with a. E(Mi)u‘ for all i 1. We have two operations on Mu. :
Ui Ui i

where c.=a. +bu1 (iel) and

r(auj )it = (rauj Jict

iel *

for any reK,. These tun M . into a left K, — module with identity u=(u)

Actually, Mu. is the categorical product of the family {(Mi)u:,i € I} in the category

K,—Mod of left K,— modules. We have a collection of left K,— module
homomorphisms (the universal canonical projections)

ﬂu._:Mu.—)(Mj)u‘_ ,(a;)iEIHau._ (jel).

J i J

Let
M= U M.,

UEEK u
and let E, ={u:ueE,}. Then E, is a semilattice isomorphic to E, by letting
u>v if and only if u>v in E,. In other words, we have an isomorphism of
semilattices
oy -E, = Eg U U
Clearly, u>v in E, ifand only if u >v'in E, ifand only if u;>v; in E, for

every i e l. Now for u >v'in E,,, define a map
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by
¢u',v’ (au; )ia = (¢u;,vi' au;)iel'

It is easy to see that ¢. is a left K,— module homomorphism and that
M = p[E,,;(M .,¢. ] is astrong semilattice of left K, — modules, or equivalently, a

left K — partial module with the isomorphism o,, defined above. For each jel, we
define, the canonical projection,
;M —>M,

as follows: For any element a in M = Y Mu., say a=(a.),, M. =[I(M,). (for
ueky Ui u iel Ui

some u € E,, ), let
m;(a) = T (auj )it = a. € (Mj)u"'
J ! J J

Thus, (nj)u, =7 (foe every u e Ey ). We can easily see that r; satisfies PMH1
j
and PMH2. Also, PMH3 is satisfied, since
oyU)=u= Oj (uj) =0j (ﬂ'j((ui)ia) =0T (u)

for all u eE,. Now let N be a left K- partial module with isomorphism,
oy :Ey = E of semilattices and let (¢;),., be a collection of left K— partial

module homomorphisms
o, N > M,.

icl

Define
oa:N—->M

as follows: For any be N, say be N for some ueE,, let a(b)=(«;(b))

G—l(u)’ iel*
N
This definition implies clearly that o satisfies PMH1 and PMH2. Let e E and let

u be the unique element in E, such that e = o (*(u). We have
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ae) = alogHw)= (ot

(o o (o)., (by Lemma3.1)

icl

EH). | =) =

ai/ll(u) = Gl\_/llaN (aﬁl(u)) = GI\_AlcrN ©).

Hence o (e) = o,,(a(e)) and PMH3 holds. It follows that o is a left K — partial
module homomorphism and that

(Of)aﬁl(u) = (o )Gﬁl(u) )ict-

Let jel,aeN and let u be the unique element in E, such that o (e,) =u.
Then
(r;a)(a) = 7;((; () ) = ¢ (2)

and hence 7;a = «;, (forevery jel), that is the diagram

> M
N a

commutes for all j e 1. Equivalently (by Lemma 3.2), we have

(ﬂja)O'N]-(u) = (aj)aﬂl(u) (foreveryue EK)

that is
0, 2%y = @Dy

ie.

T (foreveryueE

“Ij oaaﬁl(u) =(@j )Gﬁl(u) K):
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That is the diagram

<

commutes for every ue E, and jel. Suppose that S:N — M is also a left K—
partial module homomorphism such that
miof=a;forall jel

Again by Lemma 3.2, we must have
(ﬂj °fp) =(05j)

(foreveryueE
oY)

GNl(u) K) '

ie.
(ﬂu,j Oﬂ)aﬂl(u) = (aj)aﬂl(u) (foreveryue EK).

That is the diagram

<
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commutes for every ue E,, and every jel. It follows by the universal property of
the product M . =[](M,) ., that
u iel Ui

B__
N

1) = aaﬁl(u)' (foreveryue EK ).

Whence, by Lemma 3.2, we must have S =«. Thus M = U MU. , which may be

UeEK

written, M =[] M, , is a product in PMod-K, and (i) is proved. For each u e E,, let

iel

Su' = Z(Mi)

U"
iel !

be the (usual) direct sum of the family of left K, — modules {(Mi)u: e I}. Observe
that u, = o, *(u)is the zero of the left K, — module (M;),- S, is naturally a left

K, — module that satisfies the usual universal property. Let E, = E,, = {u":u<E,|
and let o : Eg — E, Dbe the isomorphism defined by o5 =o,,. Thus, u>v in E, if
and only if u' >v'in Eg if and only if u; >v,in E,, forevery icl. Clearly S. isa
K, — submodule of Mu.. For every ueE, and if u >V in E; we have a K, -
module homomorphism

¢,V, : Mu, - MV,.

u,

Now S. =M ., and (by the definition of ¢. . ) we clearly have

9, (S,)cS,.

Thus the restriction of ¢, on S, is a left K,— module homomorphism
Su. - SV. which we also denote it ( when no confusion exists) by ¢ . .. Setting
S= u S

"y
! u
uEES

we clearly have a strong semilattice of left K, — modules
S =plEs:S, .4, 1

For each u e E,, we have a left K, — module homomorphism
t.:(M;). -8,
uj uj u
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for every jel, that satisfies the universal property of the direct sum S .. For each

u

j € 1, we define the canonical injection
;;:M; —>3S

as follows: Given ae M.

;» there is a unique ueE, such that ae(Mj)u,j, let

t;(a)=1.(a). Itis easy to see that ¢, satisfies PMH1 and PMH2. For PMH3, observe
Ui

that zj(u;):z . (u;):u', for every ue E,, and so
U
— -1

[j=05 00

Thus for every jel,z; is a left K- partial module homomorphism. Finally, let

B be any left K — partial module and let
B, M, —>B

be a left K — partial module homomorphism, for every i e |. Define
p:S —> B,

as follows: Given acS, say a=(a.), €S :Z(Mi)ui, for some u = (u;) € Eq, let

p@=3 (), ()

iel

It is easy to see that g is a well-defined left K — partial module homomorphism,
that Soi, =B, forall iel and that B is unique with respect to this property. Thus

§= \ S, isacoproduct of the family {M; }._, in PMod-K and (ii) follows.
uek, U

We will use, the more traditional, " direct sums™ for " coproducts” in PMod- K
and also write Z M. to denote (the) direct sum of objects M;,i<l, in PMod- K.
iel
In case | is a finite set with n elements, say | ={1,2,...,n}, the product and the
direct sum of M, M,,...,M_ coincide, and denoted by

M,®M,D..&M..

Examples of partial rings (cf. [2]) and partial modules may be constructed by
using the corresponding structure theorems. But here we extend some special and
simple cases. Observe first that if K is a partial ring, then K, viewing as an abelian
partial group is a left K — partial module with scalar multiplication the product in K.
The following example extends the fact that every abelian group is a module over the
ring of integers [J.
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Example 3.1 Let A be an abelian partial group, or equivalently, a strong semilattice
of abelian groups

A=plESA ¢ (]

For each e in the semilattice E, let [ ; be a copy of the ring [ of integers with
zero e and let ie. :De. — [ be the natural isomorphism. There is a semilattice
E'={e:ecE}, withe>f"in E ifandonlyif e>f in E, and

c:E—SE, e—e

is a semilattice isomorphism. For each e > f in E, let
y/,f,:De, —>U o

e,

be defined by

v, =i tei..

f e

Foreach ecE, A isnaturallya , (=0 e.) — module and
q)e,f :Ae - Af

is obviously a [ e module homomorphism. Let [l o be the (disjoint) union

.= v .
: ecE ¢

We can easily observe that [ o is a strong semilattice of rings

0 =plE0 v, ]

and that
A=plE A4, (]

is a (left) [J o partial module.

4.Exact sequences
Let M be a left K- partial module. A subset B of M s called a left K — subpatrtial
module of M if with the induced operations from M, B isa left K — partial module.

In which case, B is a strong semilattice of left K_, — modules
B = p[EM ’ Be’¢e,f]’

o(e)
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and B, is a left K_ — submodule of M, for every ecE,. Let M and N be left

K — partial modules, and let
a:M —>N

be a left K — partial module homomorphism. We define the kernel of o to be the set
kera = {ae M :a(a) e E, },

and the image of « is denoted Ime , as usual, that is
Ima = {a(a):ae M }

Since

a(@d = a, (@) e NUKllUM ©)

= N ,
ON°M (ea)

it follows that, aekera if and only if a(a)=oy,(e,) if and only if aekeraea.

Also, for any ce N, celma if and only if celma

onon (&)

We have proved the
following lemma.

Lemma 4.1 Let M and N be left K- partial modules, and let «:M — N be a left
K — partial module homomorphism. Then
(i) kera is aleft K— subpartial module of M and

kera = U kera.,= U kera
eeEM € UEEK o_R/I:L(u)

(i) Ima is aleft K — subpartial module of N and
Ime= v Ima, = U Ima

ecEy ueEy o_R/ll(u)
(ilf) « is a monomorphism if and only if kera =E,,, if and only if ¢, is a
monomorphism for every e € E,,
(iv) o« is an epimorphism (resp. isomorphism) if «, is an epimorphism (resp.
isomorphism) for every ec E,,.

As defined in module theory, we call a pair of left K- partial module
homomorphisms

a B
A—>B—->C

exact at B if Ima=kerps. A finite sequence of K- partial modules
homomorphisms

Q a %3 %1 n
AA->A-.. A SA
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is exact if Imea; =kerg;

., for i=12,..,n-1. An infinite sequence of K — partial
module homomorphisms

% %t %42

...—_>1A_1—>Ai > A, - ..

is exact if Ime;, =kere, , forall iell.

i+1

We observe that, if
% %1 %2

oA A,

is any sequence of left K— partial modules, then for each ueE,, there exists a
sequence of left K, — modules

(ai+1) O'i_l (U)

(A )Ui—l(u) - (Ai+1)6i—+11(u) e

Lemma 4.2 A finite, or infinite, sequence
% %41 %i42

oA A,

of left K— partial module homomorphisms is exact if and only if, the induced
sequence of left K, — module homomorphisms

(”‘i)

Ui__ll(U) (ai+1)ai_1(U) (ai+2)ai_+11(U)

- (A )Ui—l(u) - (A+1)Ui_4-11(u) -

is exact for every u e E, .

Proof. Follows immediately, by applying Lemma 4.1.
Let E be any semilattice isomorphic to E,. Then, clearly, E is a left K- partial

module. For each e E, E, is the zero left K_, — module {e}. It follows that there

exists (up to an isomorphism) a unique left K — partial module isomorphic to E, . We

call this K — partial module the zero (left) K — partial module and denote it (as usual)
by 0. For any left K- partial module A, we then have unique left K— partial

module homomorphisms
0—>Aand A—0.

It follows that a sequence of left K — partial module homomorphisms

a B
0>A->B—>C—>0
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is exact if and only if « is a monomorphism, £ is an epimorphism, and
Ima = ker 8. Many of the results concerning exact sequences of modules over rings

may be extended to partial modules. In the rest of this paper we give extensions of
some results concerning exact sequences of module homomorphisms.

Example 4.1 Let A and B be any pair of left K— partial modules. The direct sum
sequences

05A>A®BB -0

and
05Bo>A®B>A—0

are (short) exact, where the " i* and =°" are the canonical injections and projections
respectively.

Example 4.2 Quotients partial groups in terms of normal subpartial groups, or
equivalently idempotent separating congruences have been studied in [3]. If A is a
partial group and N a normal subpartial group of A, there is a quotient partial

group A/ N which is a strong semilattice of quotient groups
A/ N = p[EA/N; Ae / Ne’¢e,f]

where ¢, ; is defined in terms of the structure maps of A, namely,
¢ AN, —> A IN.,aN, — (af )N,

forall ac A andall e, f € E, such that e> f. There exists a canonical epimorphism
p:A—)A/N,aHaNea.

If A isaleft K- partial module and C isa K — subpartial module of A, then C
is a normal subpartial group of the additive partial group A and there is an additive
quotient partial group A/C. Let re K, and ac A, say reK, and ae A, for some
ue E, and ee E,. We define the action of r on the element a+C, of A/C as
follows:

r@+C,)=ra+C, +o, (u).

This turns A/C into a left K- partial module with isomorphism o, of
semilattices
e Eac = Bk,

given by
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Oue (C) =0, (6+C,)=0,(e), forevery ecE,,

or equivalently for every C, € E, .. The canonical epimorphism
p:A—> A/C,aHa+Cea

can be easily shown to be a left K — partial module homomorphism.
We conclude that the sequence

i p
0-C—>A—>A/C->0
is exact, where i is the inclusion map.

Lemma 4.3 ( The short Five Lemma for partial modules). Let

C
\y
o —

be a commutative diagram of left K— partial modules and K — partial module
homomorphisms such that each row is a short exact sequence. Then
(i) o, y monomorphisms = S is a monomorphism;

(i) o, y epimorphisms = £ is an epimorphism;
(i) a,y isomorphisms = S is an isomorphism.

0—>Ai>

B _h
(04 IIB
R g, h
A

»
>

>0

0 > B 0

Proof. We have shown in Lemma 3.3 that if
5
LS>M N

is a pair of left K- partial module homomorphisms, then the composition
no:L— N isalso a left K- partial module homomorphism. Thus, by Lemma 3.2,

we have for such a pair
n6(€)=n(6(€)) =n(5.(€) = (n, (g) .)(€)

for each e € E, . Therefore,
(no)= 775e () S, = 77%-/'16L (e)5e
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for every ee E,. Applying this result for the given diagram, we obtain for each
ee E,, a commutative diagram

n. )
cople
0 » A  , B, : »C. »0
g’O'A(e) %’O'A(e)
ae
B 1
M oonle) ., o aule)
g 50, B h Goue) c
0 > > - e — 0
Agae) B go,() oAl

of left K, — module and K, — module homomorphisms, where u = o ,(e). The result

now follows by applying Lemma 4.2, Lemma 4.1 and the short five Lemma for
modules and module homomorphisms ([8], IV, Lemma 1.17).

By the technique used in the proof of the above lemma, and the five Lemma for
modules we obtain the following Lemma.

Lemma 4.4 ( The Five Lemma for partial modules). Let

Al—» A2—> > A4 > AS
% % A \Oﬁ Ja's
> B4 _— BS

be a commutative diagram of left K— partial modules and K — partial module
homomorphisms, with exact rows.Then

(@) o, anepimorphism and «,,a, monomorphisms = «, is a monomorphism;

(b) s a monomorphism and «,,«, epimorphisms = «, is an epimorphism.

The short Five Lemma for module theory is an important tool in algebra and
algebraic topology. Here we use the partial module analogue, Lemma 4.3, to extend a
known result in module theory concerning split exact sequences ([8],1V Theorem
1.18). We begin by extending some definitions.

Two short exact sequences of left K— partial modules and K — partial module
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homomorphisms are called isomorphic if there is a commutative diagram of K —
partial module homomorphisms

o— A— 5 B » C
f g Jh
> , > C

such that f,g, and h are isomorphisms.

A short exact sequence of left K— partial modules and K — partial module
homomorphisms is split or a split exact sequence if it satisfies the equivalent
conditions of the following theorem

—’0

_>0

Theorem 4.1 Let

f g
0>A—->B—>A -0

be a short exact sequence of left K— partial module homomorphisms. Then the
following conditions are equivalent

(i) There is a K — partial module homomorphism h: A, — B, with gh :1A2,

(ii) There is a K — partial module homomorphism k:B — A with kf :1A1’
(ii1) The given sequence is isomorphic (with identity maps on A and A,) to the direct
sum short exact sequence

0—»/\:;/\C)A2ji/¥-—>0

Proof. (i) implies (iii). There is a left K- partial module homomorphism
¢: A ®A — B that satisfies the universal property of the direct sum (Theorem 3.1
(i)). Actually, ¢ is defined explicitely in terms of f and h as follows: For any

acA®A, say a=(a,3)e(A®A) 1y =(A)Iu)x(A) 1) for some

ueE,, where o:E — E, s the isomorphism
(Aon)
CAONEACHEAT

let

P@=p(ua) =1 _y(@)eh_ @)eB |,
O'Al O'A2 O'B
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@ is clearly well-defined, satisfies PMH1-PMH3, and ¢i, = f. By exactness of
the given sequence, we must have gf = EAz'
Thus for any (a,8,)c AD@A,, say a €(A) ,a,€(A) , for some
- 1(u) ()
A Ay
uekE,, we have

(99)(a.a,) = o(f (@)+h _, (&)

Ugll(u) ()

f)(a,)+gh ,
(@@ oy (@)

ot u)+iy (a) =2, = (1, 7,)((@,3,)).

Therefore, the following diagram is commutative.

T,

0— AL A®A, 2

1 ¢ 1

v

N
v
o

N

Al B

By the short Five Lemma for K- partial modules (Lemma 4.3), ¢ is an
isomorphism. (ii) implies (iii). By Theorem 3.1 (i), there exists a left K— partial
module homomorphism v :B—> A @A, given by b (k(b),g(b)), with 7w =g
and forany ae A

wf)a = w(f(a)=(kf(a),gf(a)
= (1A1(a),a;21cfAl(ea)) (by exactness)

= (a0, 0, (€)= (i1,)(@).

Therefore, the diagram
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0 > Al » B ’AQ »0
1 W 1
Ai i 7[2 A2
0 > L » >V, ———> 0
A A®A, %

is commutative and (iii) follows by the short Five Lemma (4.3).(iii) implies (i) and
(if). By hypothesis, there exists an isomorphism y:B— A @ A, that makes the
following diagram commutative

0 > Al f » B : »Az >0
1 y 1
Afl. [ 7T2 A2
0 > 1, pYV, ——— 0
A A®A, %

Define h:A, > B and k:B— A by
h:)/’li2

and
k=my.

By Lemma 3.3, h and k are left K- partial module homomorphisms. By the
definitions of the projections and injections maps and commutativity of the right
square, we obtain

oh = g9y, = (W mr)r i,

1, mi, =1, 1, =1,.

Similarly, kf = 1A1'
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