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Abstract 
 

A partial module M  over a partial ring K  (strong semilattice of rings) is 
defined so as to obtain a structure theorem of strong sort. Formally, M is 
proved to be precisely a strong semilattice of modules over .K  It is proved 
that in the category of partial modules over K , all products and coproducts 
exist. Some generalizations concerning exact sequences including a five 
Lemma, for partial modules are obtained.  
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1.Introduction and preliminaries 
In [2] a partial ring is defined and characterized as a strong semilattice of rings, 
embeddable in a partial ring of partial mappings. Analogous structure theorems and 
representations by partial mappings have been established, for partial groups in [1] 
and for partial monoids in [4]. Certain types of partial groups in which the structure 
maps are epimorphisms have been studied in [5] and [6], and referred to as q  partial 
groups. In the present work, we proceed in the same direction and introduce the 
notion of a partial module over a partial ring, proving that a partial module M  over a 
partial ring K  (i.e. a strong semilattice of rings) is precisely a "strong semilattice of 
modules" over the maximal subrings of .K  We then introduce the notion of a K  
partial module homomorphism between K  partial modules, for a fixed partial ring 

,K  proving that the category PMod- ,K  whose objects are all left K  partial 
modules and whose morphisms are the K  partial module homomorphisms has all 
products and coproducts (direct sums). We claim that many of the standard notions 
and constructions in Ring - Module theory can be introduced for partial rings and 
partial modules. In the present work, we are mainly concerned with the structure 
theorem of partial modules over a given partial ring, their categorical products, and 
exact sequences. In a subsequent paper we introduce and study other basic categorical 
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properties of partial modules. In order for this paper to be self contained, we introduce 
from [1] and [2] the required definitions and results concerning partial groups and 
partial rings respectively. A partial group is a multiplicative semigroup S  subject to 
the axioms: 

1. for every ,Sx  there is a necessarily unique, element denoted xe  and called 
the partial identity of x  such that, (i) ,== xxexe xx  and (ii) if ,== xxyyx  
for some ,Sy  then .== xxx eyeye  

2. for every ,Sx  there is a necessarily unique, element denoted 1x  (or x  if 
S  is commutative) and called the partial inverse of x  such that, (i) 

,== 11
xexxxx   and (ii) .== 111  xexxe xx  

3. The partial identity map, xex  is a homomorphism, that is yxxy eee = , for all 
., Syx   The partial inverse map, 1xx   is an anti homomorphism, that is 

,=)( 111  xyxy  for all ., Syx   
 
 If S  is a partial group, the set  Sxex :  of all partial identities in S  is denoted 
by SE , it is precisely the set of all idempotents in .S  Every idempotent in S  is its 
own partial identity, whence xxe ee =  for all ,Sx  also xx

ee =)1(   for all .Sx  SE  is 

central in ,S  and is a semilattice with  fe  if and only if fef =  (for all SEfe , ). 
 
Theorem 1.1 For a semigroup ,S  the following statements are equivalent  
 (a) S  is a partial group 
 (b) S  is a Clifford semigroup, i.e. S  is regular with central idempotents 
 (c) S  is a semilattice of groups 
 (d) S  is a strong semilattice of groups. 
 
 It follows that a partial group S  is precisely the strong semilattice of groups 

,= [ ; , ]S e e fS E S   where eS  is the maximal subgroup of S  with identity ,e  and for 
fe   in fefeS SSE : , ,  is the homomorphism of groups given by ,xfx   for all 

.eSx  
 Notions such as a subpartial group, homomorphism (monomorphism, 
epimorphism, etc.) of partial groups are defined as usual. In particular. A subpartial 
group B  of a partial group S  is called wide (or full) if .BES   If TSf :  is a 
homomorphism of partial groups, then )(=)( xfx eef  and ,))((=)( 11  xfxf  for all 

.Sx  
 A generalized ring is a set K  with two binary operation, addition"+" and 
multilication "." subject to the axioms: 

i.  ,K  is an abelian partial group, (ii)  ,.K  is a semigroup, and (iii) left 
and right distributive laws hold. 



Generalized Modules over Semilattices of Rings 409 

 

ii. A generalized ring K  is commutative if  ,.K  is so, and said to have a 
necessarily unique unit, if  ,.K  has a one, which is then the unit of .K  A 

mapping 
'

KK : , between partial rings, is a homomorphism if for all 
,, Ksr   (i) ),()(=)( srsr    (ii) )()(=)( srrs   and 

iii. ,1=(1)
'

  whenever K  and 
'

K  have units 1 and 
'

1 respectively. 
Monomorphisms, epimorphisms and isomorphisms of generalized rings 
are defined as usual. 

  
Proposition 1.1 Let K  be a generalized ring. For all ,, Ksr   we have :  
 (i)  ,== srsr reese (ii) =rse  ,sree  and (iii) ).(=)(=)( srrssr   
 
 In a generalized ring K , the set of all additive idempotents, i.e. the idempotents in 

,,K  is denoted by ,
KE  whearse 

KE  denotes the set of all idempotents in .,.K  It 
follows that 

KE  is precisely the set of all partial identities in the commutative partial 
group  ,K , when no confusion exists, 

KE  will be denoted simply by KE  . It can be 
shown that an additive idempotent in K  need not be a multiplicative idempotent, and 
hence that a generalized ring K  need not be, even, a union of rings. 
  A partial ring is a generalized ring K  in which  KK EE .(i.e. every idempotent 
in  ,K  is an idempotent in  ,.K ). 
 The notion of a strong semilattice of algebras of a certain type has been introduced 
in literature and referred to as a plonka sum. As we are concerned with generalized 
rings, we formally define a strong semilattice of rings ,= [ ; , ]u u vK Y K   to be a 
disjoint union of rings  YuKK u  :=  indexed by a semilattice Y  such that, for 
every Yvu ,  with ,vu   there exists a ring homomorphism vuvu KK  :,  such that 
(i) uu ,  is the identical automorphism of ,uK  for every Yu  
(ii) ,= ,,, wuvuwv   for all Ywvu ,,  with .wvu   
 
 There are two associative binary operations, addition and multiplication on K  
(extending the operations of each uK ) defined as follows: 
 For any ,, Ksr   say uKr  and ,vKs  ),()(= ,, srsr uvvuvu   

).()(= ,, srrs uvvuvu   
  
Theorem 1.2 Let  ,.,K=K  be a set with two binary operations, such that  ,K  is 
a semigroup and  ,.K  is a monoid. The following two statements are equivalent:  
(A) K  is a partial ring 
(B) K  is a strong semilattice of rings. 
 In the proof (A) implies (B) of the above theorem (cf.[2]), it is proved that 

,= vuuv   for all ,, KEvu  . That is addition and multiplication in KE  coincide. The 
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above theorem implies also that a partial ring K  is precisely the strong semilattice of 
rings ,= [ ; , ]K u u vK E K  , where uK  is the maximal subring of K  with additive 
identity u  (for every KEu ), and for vu   in ,KE  vuvu KK  :,  is ring 
homomorphism given by vrr   for every .uKr  
 If a partial ring K  has a multiplicative unit 1, then for every ,KEu  uK  has a 
(multiplicative) unit ,1 u  and these units are preserved by the structure maps .,vu  
These properties of a partial ring will be used freely, when needed, without further 
references. 
 
 
2.Partial modules over partial rings 
Let ,= [ ; , ]K u u vK E K   be a partial ring. An abelian partial group

,= [ ; , ]M e e fM E M   is called a left K generalized module if there is a function 
 rxxrMMK ),( ,  
 
called scalar multiplication, such that the following axioms hold 
PMP1 sxrxxsrryrxyxr  =)( ,=)(  for all Ksr ,  and Myx ,  
PMP2   ),(=)( sxrxrs for all Ksr ,  and Mx  
PMP3  ,=1 xx  for all Mx  whenever K  has a unit 1. 
 
 Right K generalized modules may be defined analogously. 
 Throughout this section, unless sated otherwise, K  denotes an arbitrary, but fixed, 
partial ring ,= [ ; , ]K u u vK E K  . 
 
Lemma 2.1 Let M  be a left K generalized module. For all Kr  and ,Mx  we 
have  
(i) ,=== xrxrrx eerexee  
(ii) ).(=)(=)( xrrxxr   
 
Proof. (i) ,=)(= rxxerxerx rr   and if ,= rxrxy   for some ,My  then 

.=)(=)(=)()(=)()(=)(= xexrrrxxrrxyxryrxxryxrryxe rr 
 Thus .= xee rrx  Similarly, we can show that .= xrx ree  It follows immediately that 

,Mr Exe   and hence that .=)=
( xr

rer eexexe  (ii) Follows from (i).  

 A left K partial module M  is a left K generalized module that satisfies the 
following two additional axioms 
PMP4 There is an isomorphism of semilattices KM EE :  such that 

,=)( eee  for all .MEe  
PMP5 ),(=)( euue   for all KEu  and .MEe  
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Lemma 2.2 Let M  be a left K partial module. Then  
(i) eM  is a left uK  -module for all KEu  and MEe  with ).(eu   In particular, 

eM  is a left )(eK  module, for every .MEe  

(ii) ,)(= 1 euue   (in particular uee  ), for all KEu  and .MEe  
 
Proof. (i) Let uKr  and .eMx  By using Lemma 2.1 and PMP4, we have 

.=)(=))((=))((=))((==== eeeeeueeueeuueeeeee rxrrx    Thus 
,eeu MMK   (ii) For arbitrary KEu  and ,MEe  we have by using PMP5, 

).(=)(=)( eueuue    Thus .)(=))((= 11 eueuue      
 
A strong Semilattice of left uK  -modules is a disjoint union of abelian groups  
  Ku EuMM  :=  
 
such that 
SSM1 uM  is a left uK  -module for every .KEu  
 
 It follows immediately that for every ,KEv  vM  is also a uK  -module for every 

,KEu  with ,vu   with action of uK  on vM  given naturally by (cf. Lemma 2.3 
below) 
 xrrx vu )(= ,  
for all uKr  and .vMx  
 
SSM2 For any ,, KEvu   with ,vu   there is a uK  -module homomorphism 
 vuvu MM :,  
 
such that 
(i) uu ,  is aaMM uuuM  ,:1   

(ii) wv ,  wuvu ,, =  , whenever wvu   in .KE  
 
 Let M  be defined as above. As in the case of strong semilattices of groups, there 
is a commutative associative operation (also called addition) on M  defined by the 
rule : 
 For ,, Mba   say uMa  and ,vMb  for some ,, KEvu   
 .  = ,, baba uvvuvu    
 
 There is an action of K  on M  extending that of uK  on uM  ( KEu ) defined by 
the rule: 
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 For any ,Kr  Ma , say r   uK and ,vMa  for some ,, KEvu   
 . . =. ,, arar uvvuvu   
 
Lemma 2.3 Let  
  Ku EuMM  :=  
 
be a disjoint union of left uK  -modules. Then  
(i) For any vK MEv  ,  is a left uK  -module for every KEu  with .vu   The action 
of uK  on vM  is given in terms of the action of vK  on vM  as follows: 
 For any vu MaKr   ,  
 arra vu ) (= ,  
 
(ii) If M  is also a strong semilattice of left uK  -modules, i.e. M  satisfies also the 
axiom SSM2, then the action defined as in (i) coincides with the action defined by the 
structure maps. Moreover, for any ,,,, KEowvu   with wvu   and ,vo   we have 
for any uKr  and ,oMa  
 ,  =)  ( ,,,,, arar wowuvovuwv    
 
and hence,( by using (i)) 
 . =) ( ,, arar vowv   
 
Proof. (i) Let uKrs ,  and ., vMba   Then 

 
.=  =

)  (=)( =)(

,,

,,,

rasaaras
arsarsars

vuvu

vuvuvu








 

 
.=

  =))( (=)( ,,,

rbra
brarbarbar vuvuvu



 
 

 
).(=) )( (=

)) )( ((=))( (=)(

,,

,,,

rasars
arsasrasr

vuvu

vuvuvu








 

 
(ii) Let ,  , vu MaKr   where vu   in .KE  Then  
 . =  =  ,,,,, ararar vuvvvuuvvuvu    
 
 This proves the first statement of (ii). For the second statement, we have: 

 

. =  =
) () (=  =

)) (() (=
)  (=) (

,,,

,,,,,,

,,,

,,,,,

arar
arar

ar
arar

wowowu

wovwwvuvwvwovu

vowvvu

vovuwvvowv
















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Theorem 2.1 Let ,= [ ; , ]M e e fM E M   be an abelian partial group with an operation  
 .),( , raarMMK   
 
The following two statements are equivalent.  
 (A) M  is a left K  partial module. 
 (B) M  is a strong semilattice ,[ ; , ]K u u vE M   of left uK  modules. 
 
Proof. (A) implies (B). By assumption, M  is a strong semilattice of abelian groups 

,[ ; , ]M e e fE M   together with an isomorphism of semilattices ,: KM EE   and the 
axioms PMP1-PMP5 are satisfied. By Lemma 2.2, eM  is a left uK  module for all 

KEu  and MEe  with ).(eu   Identifying every MEe  with its unique image 
,=)( KEue   then M  may be viewed as a strong semilattice ,[ ; , ]K u u vE M   of left 

uK  modules, with vM  is a left uK  module for every KEvu ,  such that .vu   
For these ,, KEvu   the homomorphism of abelian groups vu ,  is actually given by  
 , ,:=)(),(= ,11, faaMMvu fefevu  


 

 
where )(= 1 ue   and vuvf ,

1  ).(=    is also a uK  module homomorphism, for if 

uKr  and ,uMa  then 

 

).( =)(=
Lemma2.1)(=

=
PMP5)())((=))((=

 )(=)(=

)(=)(=)( 

,

11

11

11
,

arfar
rfra

fera
ferafera

verauvra

vuravrara

vu

r

rr

r

vu

























 

 
 Thus M  satisfies SSM1 and SSM2. It remains to show that the operation 

raarMMK ),( ,  coincides with the action given by the structure maps. Let 

KEvu ,  be arbitrary and let fe,  be the unique elements in ME  such that )(= 1 ue   
and )(= 1 vf  . For any uKr  and vMa  (where vM  fM= ), we have   

Lemma2.1)())(=
))(=

))(()()(=
)()()()(=

))()((=  
11

1
,,

fveuufufera
fveuufrfrera

fevuvauferra
uvuvauvuvrra

uvauvrar uvuuvu















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ii))dLemma2.2(Lemma2.1an(=
=
=

i))Lemma2.2(i(=
)(=

)(=
i))Lemma2.2(i())(()(= 11

ra
fera

fefera
ufefera

feufera
fefufeera

fevufuera







    

 
(B) implies (A). We have a strong semilattice of left uK  modules  

 ,= [ ; , ].K u u vM E M   
 
 By hypothesis, M  is also a strong semilattice of abelian groups 

 ,= [ ; , ].M e e fM E M   
 
 It follows that the correspondence 
 KM EE :  
 
given by ue =)(  if and only if ue MM =  is an isomorphism of semilattices, that eM  
is a left )(eK  module for all MEe  and that vufe ,, =   if and only if ue =)(  and 

.=)( vf  Let eu MaKr  ,  and ,fMb  for some KEu  and ., MEfe   Then 

)(= fefe MMyx    and so  

 

bfeurafeur

bfeuafeur

bafeur

yxfeuryxr

ffeuuefeuu

fefeuu

feffeefefeuu

fefeuu

 )(  )( =

) )( )(( =

)  ( )()( =

)( )()( =)(

1,)(,1,)(,

1,1,)(,

,,1 ,)(,

1),()(,
































 

 

 ( since feuM  )(1
 is a  )( feuK  module ).  On the other hand, 

 
ii)).(Lemma2.3( )(  )( =

) )( ( )(,)(

) )( ( )(,)(=

 )(  )( =

1,))(,1,))(,

1,)(,11

1,)(,11

1,)(,1,)(,

bfeurafeur

bfurfeufu

aeurfeueu

bfuraeurryrx

ffeuuefeuu

ffuu

eeuu

ffuueeuu
































 

 
 Thus ryrxyxr  =)(  which gives PMP1. Let vu KsKr  ,  and ,eMa  for 
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some KEvu ,  and MEe . Then 

 

). )( ( =

 )()  (=

 )())  ((=
)  (=)(

1,)(,)(,

1,)(,)(,

1,,,)(,

,,

aevusr

aevusr

aevusr
asrars

eevuvevuu

eevuvevuu

evuvvuuevuvu

vuvvuu






























 

 
 On the other hand, 

 

ii))(Lemma2.3(.) )( ( =

 ) )( ()(,)( =

) )( (=)(

1,)(,)(,

1,)(,11)(,

1,)(,

aevusr

aevsevuevr

aevsrsar

eevuvevuu

eevvevuu

eevv
























 

 
 Therefore, )(=)( sarars  and PMP2 follows. If K  has a unit 1 then, for all KEu
, uK  has a unit u1  (cf. Sec.1), and for any ,Kr  rr =1  which gives  =1 rr eee  
(Proposition 1.1 (ii)), or equivalently .=1 rr eee   It follows that ree 1  for every 

.Kr  Thus 1e  is an upper bound for .KE  Hence )( 1
1 e  is an upper bound for .ME  

Now for any ,Ma  say ,eMa  for some ,MEe  we have  
 ),(1=)(1=1 )(, 1

11
eeeeee

   

 
which is the unit of the ring .)(eK  Thus,  

 

1,1 1

,
1

1 =  1  , ( ) ( )
=  1  , ( )
= (1 ( )) = .

e e

e ee

a ae e e e
ae

e a a


 

 


 





  

 (Since eM  is a ( )eK - module) 

 
 
 This proves PMP3. Axiom PMP4 follows immediately, from the fact that eM  is a 
left )(eK  module for every .MEe  Let KEu  and .MEe  We have 

 

, ( ) 1,

1

1

=   ( )
= ( ( )) ( ( ) )
= ( )

u u e e
ue u eu e

u e u e
u e

 
 

 



 





 

  


   (Since 1( )M u e    is a ( )u eK  - module) 

 
 
 Therefore,  
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 ).(=)(=))((=)( 1 eueueuue    
 
 Thus PMP5 follows and the proof is complete.  
 
 
3.Categorical products of partial modules 
Let 1M  and 2M  be two left K  partial modules. There exist two isomorphisms of 
semilattices: 
  1 1

: M KE E   and 2 2
: ,M KE E   

 
which satisfy the axioms PMP4 and PMP5 (Sec.2). Thus there is an isomorphism of 
semilattices 
 ,:

211
1

2 MM EE     

 
which we denote by ,21  making the following diagram 

 

 
 
 
commutative. To each ,

1MEe  there corresponds a unique element in ,
2M

E  which 

we denote by ' ,e  such that '
1 2( ) = ( )e e   namely, 

 ' 1
21 2 1= ( ) = ( ).e e e    

 Whence, by Lemma 2.1, for every KEu  and ,
1MEe  we have eM )( 1  is a uK  

module if and only if 2 '( )
e

M  is a uK  module. In particular, 2 '( )
e

M  is a )(1 eK


 

module for every .
1MEe  

 We call a function  
 21: MM   

 Ek  

1
EM  

1  

21  2
EM  

2  
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a (left) K  partial module homomorphism, if the following three axioms hold, 
PMH1 ),()(=)( baba    for all ., 1Mba   
PMH2 ),(=)( arra   for all Kr  and .1Ma  
PMH3 1 2( ) ( ( ))e e   , for all .

1MEe  

 
 Since   is neccessarily a partial group homomorphism, (PMH1) we have for any 

   aa eeMa  = ,1  and    ,= aa    (cf. Sec1). The first of these two properties 
indicates that   maps 

1ME  into .
2ME  

 The homomorphism   is called, a monomorphism if   is one-to- one, an 
epimorphism if   ,=:)(= NMaaIm   and an isomorphism, in which case M  
and N  are called isomorphic, if   is both a monomorphism and epimorphism. In the 
following two lemmas, 1M  and 2M  denote arbitrary left K  partial modules and 

21: MM   is a K  partial module homomorphism. 
 
Lemma 3.1 (i) For every ,

1MEe  )),((=)( 21 ee   that is  

 1 '
2 1 21( ) = ( ) = ( ) = .e e e e     

 
(ii) The restriction  

 
211

:
MMME EE   

 
is an isomorphism of semilattices that sends each 

1MEe  to '
21= ( ).e e   

 
Proof. Since both 1  and 2  are isomorphisms (ii) follows from (i). To prove (i), let 

.
1MEe  Then 

 

)).(()(=
(PMP5)))(()(=

))()((=
(PMP4))))(((=)((

21

21

12

122

ee
ee
ee

eee













 

 Thus ),())(( 12 ee    and (i) follows by using PMH3.  
 
Lemma 3.2 (i)   is uniquely determined by a (pairwise disjoint) family 

MEee )(  of 

)(eK left module homomorphisms 1 2 ' 1
: ( ) ( ) , ( )e e Me

M M e E    in the sense that, 

for any ),(=)( , aaMa e  where e  is the unique element in 
1ME  such that .= aee  

In other words, ),(=)( aa
ae  for every .1Ma   

(ii) For any MEfe ,  and ,)( 1 eMa  
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' '' ,,

 ( ( )) =  (  ).e e f ee e f e f
a a    

 

 
 In particular, if ,fe   then  
 ' ' ,,

 =  .e f ee f f
     

 
(iii) For any MEfe ,  and eMa )( 1  and fMb )( 1  
 ).()(=)(=)( bababa fefe     
 
Proof. (i) For every ,

1MEe  let e  be the restriction of   on the left )(eK module 

.)( 1 eM  The result follows by using Lemma 3.1.  

 
)).( ( =

)( =)(=

)()(=)(=))(( 
,

(ii)

, a
feafea

feafeaa
fe

feefe

fe

''
ee'''

e



 










 

 
(iii) Follows by using (i) above and PMH1.  
 
Lemma 3.3 There is a category, denoted by PMod- ,K  whose objects are all left K  
partial modules and whose morphisms are all left K  partial module 
homomorphisms.  
 

Proof. If NML

  is a pair of left K  partial module homomorphisms, then for 

every LEe  we have  

 

).(=
)))( ( (=

))(( (=

))(( (=))( (

11

1

e
e

e
ee

L

LMMNN

LMN

NN












 

 
 Whence   is a left K  partial module homomorphism, and the result follows 
immediately.  
 
Theorem 3.1 The category PMod- K  has  
(i) all products, 
(ii) all coproducts.  
 
Proof. Let    IiiM   be a family of left K  partial modules indexed by a nonempty 
set .I  For each ,Ii  there is an isomorphism of semilattices KiMi EE :  that 



Generalized Modules over Semilattices of Rings 419 

 

satisfies PMP4 and PMP5. As usual, we denote, for every ,, Iji   the composite 
isomorphism ,:1

jMiMij EE    by .ji  For every KEu  and every ,Ii  the 

element )(1 ui
  in 

iME  is denoted by ' ,iu  whence iM  is a strong semilattice of left 

uK  modules, 
 '' ' ,

= [ ;( ) , ]
i

i M i u u vi i i
M E M   

 
where '( )i ui

M  is the left uK  module with identity ' ,iu  and for every ,, Iji   we 

clearly have ' '( ) = .ji i ju u  For every ,KEu  let 'u
M  denote the cartesian product 

'( )i ui I i
M


  of the left uK  modules '( ) , .i ui

M i I  A typical element in 'u
M  is a 

collection '( )i Iui
a  , with ' '( )iu ui i

a M  for all .Ii  We have two operations on ' :
u

M   

 ' ' '( ) ( ) = ( ) ,i I i I i Iu u ui i i
a b c    

 
where ' ' '=  ( )

u u ui i i
c a b i I   and  

 ' '( ) = ( ) ,i I i Iu ui i
r a ra   

 
for any  .uKr These turn 'u

M  into a left uK  module with identity ' '= ( )i i Iu u  . 

Actually, 'u
M  is the categorical product of the family  '( ) ,i ui

M i I  in the category 

uK Mod of left uK  modules. We have a collection of left uK  module 
homomorphisms (the universal canonical projections)  

 ' ' ' ''
: ( ) , ( ).ju u u uj u i ji Ij

M M a a j I


   
 

  

 
 Let  
 '=  ,

uu EK
M M


  

and let  '= : .M KE u u E  Then ME  is a semilattice isomorphic to KE  by letting 
' 'u v  if and only if vu   in .KE  In other words, we have an isomorphism of 

semilattices 
 ': , .M M KE E u u    
 
 Clearly, vu   in KE  if and only if ' 'u v in ME  if and only if ' '

i iu v  in 
iME  for 

every .Ii  Now for ' 'u v in ME , define a map 
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'' ' ',
 :

u v u v
M M   

 
by  
 ' '' ' ' ', ,

( ) = (  ) .
i

i I i Iu v u u v ui i i
a a    

 
 It is easy to see that 

'' ,u v
  is a left uK  module homomorphism and that

'' ' ,
= [ ; ( , ]M u u v

M E M   is a strong semilattice of left uK  modules, or equivalently, a 

left K  partial module with the isomorphism M  defined above. For each ,Ij  we 
define, the canonical projection,  
 jj MM :  
 
as follows: For any element a  in '=  ,

uu EK
M M


  say ' ' '= ( ) ( )i I iu u ui Ii i

a a M M


   (for 

some '
Mu E ), let  

 ' ' ' '( ) = ( ) = ( ) .j i I ju u u uj i j j
a a a M     

 
 Thus, ' '( ) =j u u j

   (foe every M
'

Eu  ). We can easily see that j  satisfies PMH1 

and PMH2. Also, PMH3 is satisfied, since  
 ' ' ' '( ) = = ( ) = ( (( ) ) = ( )M j j j j i i I j ju u u u u       
 
for all .M

'
Eu   Now let N  be a left K  partial module with isomorphism, 

KNN EE :  of semilattices and let Iii )(  be a collection of left K  partial 
module homomorphisms  
 .: ii MN   
 
 Define 
 MN :  
 
as follows: For any ,Nb  say ,)(1 uNb

N



 for some ,KEu  let .))((=)( Iii bb   

This definition implies clearly that   satisfies PMH1 and PMH2. Let NEe  and let 
u  be the unique element in KE  such that 1= ( ).Ne u   We have 
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1 1( ) = ( ( )) = ( ( ( )))

1 1= ( ( ( ))) (by Lemma3.1)

1= ( ( )) = ( ) =

1 1 1 1= ( ) = ( ( )) = ( ).

e u uiN N i I
ui N N i I

' 'u u ui i i Ii I
u u eM M N N M N

    

  



     

 


 





   

 

 
 Hence ))((=)( ee MN   and PMH3 holds. It follows that   is a left K  partial 
module homomorphism and that  
 .))()((=)()( 11 Ii

N
i

N uu  
  

 
 Let NaIj   ,  and let u  be the unique element in KE  such that .=)( ueaN  
Then  
 )(=)))(((=))(( aaa jIiijj    
 
and hence ,= jj   (for every Ij ), that is the diagram 

 

 
 
commutes for all .Ij  Equivalently (by Lemma 3.2), we have  

 
( ) = ( ) (for every )1 1( ) ( )

u Ej j Ku uN N
  

 
   

 
that is  
 )()(=)()( 11 uu N

j
N

'
u

j  
   

 
i.e.  
 = ( ) (for every ).1 1( ) ( )

u Ej K' u uu N Nj
  

 
   

 
jM  

N  

j  

  
M  

j  
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 That is the diagram 
 

 
 
commutes for every KEu  and .Ij  Suppose that MN :  is also a left K  
partial module homomorphism such that  

 j j   for all j I  
 
 Again by Lemma 3.2, we must have 

 
( ) = ( ) (for every ) .1( )1( )

u Ej j Kuu NN
  




  

 
i.e.  
 '( ) = ( ) (for every ).1 1( ) ( )j

u Ej Ku u uN N
  

 
   

 
 That is the diagram  

 

 

  
jujM '  

 u
N

N 1


 

 
 u

j
N

1


  

 u
N

1


  
'u

M  

ju '  

  
jujM '  

 u
N

N 1


 

 
 u

j
N

1


  

 u
N

1


  
'uM  

ju '  
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commutes for every ,KEu  and every .Ij  It follows by the universal property of 
the product ' '( ) ,iu ui I i

M M


   that  

 = , (for every ).1 1( ) ( )
u EKu uN N

 
 

   

 
 Whence, by Lemma 3.2, we must have .=  Thus '=  

uu EK
M M


 , which may be 

written, =  i
i I

M M

  ,  is a product in PMod- ,K  and (i) is proved. For each ,KEu  let  

 ' '= ( )  ,iu uii I
S M


  

 

be the (usual) direct sum of the family of left uK  modules  '( ) : .i ui
M i I  Observe 

that ' 1= ( )i iu u  is the zero of the left uK  module '( )i ui
M . 'u

S  is naturally a left 

uK  module that satisfies the usual universal property. Let  '= = :S M KE E u u E  

and let KSS EE :  be the isomorphism defined by .= MS   Thus, vu   in KE  if 
and only if ' 'u v in SE  if and only if ' '

i iu v in 
iME  for every .Ii  Clearly 'u

S  is a 

uK  submodule of ' .u
M  For every KEu  and if 

''
vu  in SE  we have a uK  

module homomorphism  
 

'' ' ',
 : .

u v u v
M M   

 
 Now ' ' ,u u

S M  and (by the definition of '' ,
 

u v
 ) we clearly have  

 ' ' ' ',
 ( ) .u v u vS S   

 
 Thus the restriction of ' ',u v  on 'u

S  is a left uK  module homomorphism 

' ' 
u v

S S  which we also denote it ( when no confusion exists) by ' ',u v . Setting  

 ''
=  ,

uu S

S S
E



 

 
we clearly have a strong semilattice of left uK  modules  
 ' ' ',

= [ ; , ].S u u vS E S   
 
 For each ,KEu  we have a left uK  module homomorphism 
 ' ' ': ( ) ,ju u uj j

M S   
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for every ,Ij  that satisfies the universal property of the direct sum .'
u

S  For each 

Ij , we define the canonical injection  
 SM jj :  
 
as follows: Given jMa , there is a unique KEu  such that '( )j u j

a M , let 

'( ) = ( ).j u j
a a   It is easy to see that j  satisfies PMH1 and PMH2. For PMH3, observe 

that ,=)(=)(
''

j'
ju

'
jj uuu   for every ,KEu  and so  

 .= 1
jSj    

 
 Thus for every jIj  ,  is a left K  partial module homomorphism. Finally, let 
B  be any left K  partial module and let  
 BM ii :  
 
be a left K  partial module homomorphism, for every .Ii  Define  
 ,: BS   
 
as follows: Given ,Sa  say ' ' '= ( )  ( ) ,i I iu u ui i

a a S M    for some ' '= ( ) ,i Su u E  let 

 ' '( ) = ( ) ( ).i u ui ii I
a a 


  

 
 It is easy to see that   is a well-defined left K  partial module homomorphism, 
that ii  =  for all Ii  and that   is unique with respect to this property. Thus 

''
=  

uu S

S S
E



 is a coproduct of the family   IiiM   in PMod- K  and (ii) follows.  

 We will use, the more traditional, " direct sums" for " coproducts" in PMod- K  
and also write i

i I
M


  to denote (the) direct sum of objects , , IiM i   in PMod- .K  

 In case I  is a finite set with n  elements, say  ,1,2,...,= nI  the product and the 
direct sum of nMMM ,...,, 21  coincide, and denoted by 
 1 2 ... .nM M M    
 
 Examples of partial rings (cf. [2]) and partial modules may be constructed by 
using the corresponding structure theorems. But here we extend some special and 
simple cases. Observe first that if K  is a partial ring, then K , viewing as an abelian 
partial group is a left K  partial module with scalar multiplication the product in .K  
The following example extends the fact that every abelian group is a module over the 
ring of integers .�  
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Example 3.1 Let A  be an abelian partial group, or equivalently, a strong semilattice 
of abelian groups  
 ,= [ ; , ].e e fA E A   
 
 For each e  in the semilattice ,E  let 'e

�  be a copy of the ring �  of integers with 

zero 'e  and let ' ':
e e
i � �  be the natural isomorphism. There is a semilattice 

 ' '= : ,E e e E  with ' 'e f  in 'E  if and only if fe   in ,E  and  

 ' ': ,E E e e    
 
is a semilattice isomorphism. For each ' 'e f  in ' ,E  let 
 

'' ' ',
:

e f e f
 � �  

 
be defined by  

 ' ' ' ',
1= .

e f f e
i i    

 
 For each ,Ee  eA  is naturally a ( )e�  '(= )

e
�  module and  

 fefe AA  :,  
 
is obviously a 'e

�  module homomorphism. Let 'E
�  be the (disjoint) union  

 ' '
'

=  .
'E e

e E



� �  

 We can easily observe that 'E
�  is a strong semilattice of rings  

 ' ' '
'

' ,
= [ ; , ]e e fE

E � �  

 
and that  
 ,= [ ; , ]e e fA E A   
 
is a (left) 'E

�  partial module. 

 
 
4.Exact sequences 
Let M  be a left K  partial module. A subset B  of M  is called a left K  subpartial 
module of M  if with the induced operations from ,M  B  is a left K  partial module. 
In which case, B  is a strong semilattice of left )(eK  modules 
 ,= [ ; , ],M e e fB E B   
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and eB  is a left )(eK  submodule of eM  for every .MEe  Let M  and N  be left 
K  partial modules, and let  

 NM :  
 
be a left K  partial module homomorphism. We define the kernel of   to be the set  
  ,)( :=ker NEaMa    
 
and the image of   is denoted Im , as usual, that is 
   . := MaaIm   
 
 Since  

 
1( ) = ( ) ( )

= ,( )

ea N M a

N M a

a a N e
N e

 

 

  
 

 
it follows that, kera  if and only if )(=)( aNM ea   if and only if .ker

aea   

Also, for any ,Nc  Imc  if and only if 1 ( )
.

M N ce
c Im

 
   We have proved the 

following lemma. 
  
Lemma 4.1 Let M and N  be left K  partial modules, and let NM :  be a left 
K  partial module homomorphism. Then 

(i) ker  is a left K  subpartial module of M  and  
  )(ker=ker =ker 1 uMKEue

MEe 



  

(ii) Im  is a left K  subpartial module of N  and 
 )(= = 1 uImImIm

MKEue
MEe 




  

 
(iii)   is a monomorphism if and only if ,=ker ME  if and only if e  is a 
monomorphism for every MEe  
(iv)   is an epimorphism (resp. isomorphism) if e  is an epimorphism (resp. 
isomorphism) for every .MEe  
 As defined in module theory, we call a pair of left K  partial module 
homomorphisms 

 CBA

  

 
exact at B  if .ker= Im  A finite sequence of K  partial modules 
homomorphisms 

 n

n

n

n
AAAAA



 



1

13

2

2

1

1

0 ...  
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is exact if 1ker= iiIm   for 1.1,2,...,= ni  An infinite sequence of K  partial 
module homomorphisms 

 ......
2

1

1

1

1 









i

i

i

i

i

i

i
AAA



 
 
is exact if 1ker= iiIm   for all .i�  
 
 We observe that, if  

 ......
2

1

1 





i

i

i

i

i
AA



 
 
is any sequence of left K  partial modules, then for each ,KEu  there exists a 
sequence of left uK  modules 

 ...)()( 
)(

)

)()(... 1
1

1

11(

1  






 uA
u

uA
i

i

i
i

i
i 





 

 
Lemma 4.2 A finite, or infinite, sequence 

 ......
2

1

1 





i

i

i

i

i
AA



 
 
of left K  partial module homomorphisms is exact if and only if, the induced 
sequence of left uK  module homomorphisms 

 ...
)(

)

)()( 
)(

)

)()(
)(

)

... 
1
1

2(

1
1

1

11(

1

1
1

(
u

uA
u

uA
u i

i

i
i

i
i

i
i

i
i 































 

 
is exact for every .KEu   
 
Proof. Follows immediately, by applying Lemma 4.1.  
 Let E  be any semilattice isomorphic to .KE  Then, clearly, E  is a left K  partial 
module. For each Ee , eE  is the zero left )(eK  module  .e  It follows that there 
exists (up to an isomorphism) a unique left K  partial module isomorphic to KE . We 
call this K  partial module the zero (left) K  partial module and denote it (as usual) 
by 0.  For any left K  partial module ,A  we then have unique left K  partial 
module homomorphisms 
  0 A  and 0.A  
 
 It follows that a sequence of left K  partial module homomorphisms 

 00  CBA


 



428  M. El-Ghali M. Abdallah 

 

is exact if and only if   is a monomorphism,   is an epimorphism, and 
.ker= Im  Many of the results concerning exact sequences of modules over rings 

may be extended to partial modules. In the rest of this paper we give extensions of 
some results concerning exact sequences of module homomorphisms. 
 
Example 4.1 Let A  and B  be any pair of left K  partial modules. The direct sum 
sequences 

 0 0
i

A A B B


      
 
and  

 0 0
i

B A B A


      
 
are (short) exact, where the " si ,  and s, " are the canonical injections and projections 
respectively.  
 
Example 4.2 Quotients partial groups in terms of normal subpartial groups, or 
equivalently idempotent separating congruences have been studied in [3]. If A  is a 
partial group and N  a normal subpartial group of ,A  there is a quotient partial 
group /A N  which is a strong semilattice of quotient groups  
 / ,/ = [ ; / , ]A N e e e fA N E A N   
 
where fe,  is defined in terms of the structure maps of ,A  namely, 
 , : / / , ( ) ,e f e e f f e eA N A N aN af N    
 
for all eAa  and all AEfe ,  such that .fe   There exists a canonical epimorphism 
 : / , .ea

p A A N a aN   

 
 If A  is a left K  partial module and C  is a K  subpartial module of ,A  then C  
is a normal subpartial group of the additive partial group A  and there is an additive 
quotient partial group / .A C  Let ,Kr  and ,Aa  say uKr  and ,eAa  for some 

KEu  and .AEe  We define the action of r  on the element eCa  of /A C  as 
follows:  
 ).(=)( 1 uCraCar Aee

   
 
 This turns /A C  into a left K  partial module with isomorphism /A C  of 
semilattices 
 / /: ,A C A C KE E   
 
given by  
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 / / ( ) =  ( ) = ( )A C e A C e AC e C e   , forevery ,Ae E  
 
or equivalently for every / .e A CC E  The canonical epimorphism  
 : / , ea

p A A C a a C   

 
can be easily shown to be a left K  partial module homomorphism.  
 We conclude that the sequence 

 0 / 0
pi

C A A C     
 
is exact, where i  is the inclusion map.  
 
Lemma 4.3 ( The short Five Lemma for partial modules). Let  

 

 
 

 
be a commutative diagram of left K  partial modules and K  partial module 
homomorphisms such that each row is a short exact sequence. Then 
(i)   ,  monomorphisms   is a monomorphism; 
(ii)   ,  epimorphisms   is an epimorphism; 
(iii)   ,  isomorphisms   is an isomorphism.  
 
Proof. We have shown in Lemma 3.3 that if  

 NML

  

 
is a pair of left K  partial module homomorphisms, then the composition

NL :   is also a left K  partial module homomorphism. Thus, by Lemma 3.2, 
we have for such a pair 
 ))( )((=))((=))((=)( eeeee e

e
e 


 

 
for each LEe . Therefore, 
 e

LM
e

e ee 
 )(= )(=) ( 1  

 

 
A 

 

B  C  0  0  

  

'A  
0  'B  

  

'C  

  

0  

g  h  

'g  'h  
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for every .LEe  Applying this result for the given diagram, we obtain for each 
,AEe  a commutative diagram 

 

 
 
 
of left uK  module and uK  module homomorphisms, where  ).(= eu A The result 
now follows by applying Lemma 4.2, Lemma 4.1 and the short five Lemma for 
modules and module homomorphisms ([8], IV, Lemma 1.17).  
 By the technique used in the proof of the above lemma, and the five Lemma for 
modules we obtain the following Lemma.  
 
Lemma 4.4 ( The Five Lemma for partial modules). Let  

 

 
 
 
be a commutative diagram of left K  partial modules and K  partial module 
homomorphisms, with exact rows.Then 
(a) 1  an epimorphism and  , 42   monomorphisms 3  is a monomorphism; 
(b) 5  a monomorphism and 42 ,  epimorphisms   3  is an epimorphism. 
 
 The short Five Lemma for module theory is an important tool in algebra and 
algebraic topology. Here we use the partial module analogue, Lemma 4.3, to extend a 
known result in module theory concerning split exact sequences ([8],IV Theorem 
1.18). We begin by extending some definitions. 
 Two short exact sequences of left K  partial modules and K  partial module 

 

eA 

 

eg  

 eA
B

B


1  
 eA

B

h


1  

 eA
C

C


1  0  0  

e  

 eA
A

A 
1

'

'   
0  

 eA
A

g


1

'

'
  

 eA
B

B 
1

'

'   

 eA
B


 1  

 eA
B

h 
1

'

'  

 eA
C

C


1

'

'
  

 eA
C


 1  

0  

 
2A

 

 

3A  
4A  

5A  1A  

2  

2B  1B  
3B  

3  

4B  

4  

5B  

1  5  
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homomorphisms are called isomorphic if there is a commutative diagram of K  
partial module homomorphisms 

 

 
 
 
such that ,, gf  and h  are isomorphisms. 
 A short exact sequence of left K  partial modules and K  partial module 
homomorphisms is split or a split exact sequence if it satisfies the equivalent 
conditions of the following theorem  
 
Theorem 4.1 Let  

 00 21  ABA
gf

 
 
be a short exact sequence of left K  partial module homomorphisms. Then the 
following conditions are equivalent 
(i) There is a K  partial module homomorphism ,: 2 BAh   with ,1=

2Agh  

(ii) There is a K  partial module homomorphism 1: ABk   with ,1=
1Akf  

(iii) The given sequence is isomorphic (with identity maps on 1A  and 2A ) to the direct 
sum short exact sequence 

 
1 2

1 1 2 20 0
i

A A A A


      
 
Proof. (i) implies (iii). There is a left K  partial module homomorphism 

1 2: A A B    that satisfies the universal property of the direct sum (Theorem 3.1 
(ii)). Actually,   is defined explicitely in terms of f  and h  as follows: For any 

1 2 ,a A A   say 1 2 1 2 1= ( , ) ( ) ( )a a a A A u 
            ,11=

2
2

1
1 uAuA

AA
  for some 

,KEu  where 
2( 1

: ) KA A
E E


  is the isomorphism  

 1 1
1 2( ( ), ( )) ,u u u     

 
let  
 .

)(
)( 1)( 1=),(=)(

12

2

1

1

21 u
Bahafaaa

BAA


 
  

 A 

 

B  C  0  0  

f  

'A  
0  'B  

g  

'C  

h  

0  
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   is clearly well-defined, satisfies PMH1-PMH3, and .=1 fi  By exactness of 
the given sequence, we must have .=

2AEgf  

 Thus for any 1 2 1 2( , )a a A A  , say 
)(1

)( ,
)(1

)(

2

22

1

11
u

Aa
u

Aa
AA








, for some 

,KEu  we have  

 

)).,)(((1==)()(1=

)(
)(1))((=

))( 
)(1)( 

)(1(=),)((

21222222

2

2

1

2

2

1

1

21

aaaaiu

a
u

ghagf

a
u

ha
u

fgaag

AAA

A

AA















 

 
 Therefore, the following diagram is commutative. 

 

 
 
 
 By the short Five Lemma for K  partial modules (Lemma 4.3),   is an 
isomorphism. (ii) implies (iii). By Theorem 3.1 (i), there exists a left K  partial 
module homomorphism 1 2: B A A    given by )),(),(( bgbkb   with g=2  
and for any 1Aa  

 
1 2 1

12 1 1

( )( ) = ( ( )) = (  ( ),  ( ))
1= (1 ( ), ( )) (by exactness)

1= ( , ( )) = ( 1 )( ).

A A A a

A A a A

f a f a k f a g f a

a e

a e i a

 

 

 





 

 
 Therefore, the diagram 

 

 

1A 

 

1i  
1 2A A  2  

2A  0  0  

1
1A

 

1A  
0  

f  

B  

  
g  

2A  

1
2A  

0  
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is commutative and (iii) follows by the short Five Lemma (4.3).(iii) implies (i) and 
(ii). By hypothesis, there exists an isomorphism 1 2: B A A    that makes the 
following diagram commutative 

 

 
 
 
 Define BAh 2:  and 1: ABk   by  
 2

1= ih   
 
and  
 .= 1k  
 
 By Lemma 3.3, h  and k  are left K  partial module homomorphisms. By the 
definitions of the projections and injections maps and commutativity of the right 
square, we obtain 

 
.1=1 1=1=

)1(1= =

222222

2
1

222
1

AAAA

A

i

iiggh



  
 

 
 Similarly, .1=

1Akf   

 
 

 

1A 

 f  
B  

g  

2A  0  0  

1
1A

 

1A  
0  1i  

1 2A A  

  

2  

2A  

1
2A  

0  

 

1A 

 f  
B  

g  

2A  0  0  

1
1A

 

1A  
0  1i  

1 2A A  

  

2  

2A  

1
2A  

0  
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