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Abstract 
 

We present in this paper a fourth order discontinuous Galerkin method for the 
elastodynamic equations in the time domain. Our approach combines a fourth 
order spatial interpolation, centered fluxes and a fourth order leapfrog scheme 
for the time integration. Numerical results for the propagation of a 2D 
eigenmode are presented for second and fourth-order leapfrog schemes. We 
also propose a numerical study of the stability and the convergence of the 
method proving the accuracy of the scheme for both regular and irregular 
meshes. 
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1 Introduction 
Computational seismology has become a very important discipline for the study of 
seismic wave propagation, as analytical solutions only exist in few simple cases like 
homogeneous do- mains or simple geometries. Various numerical methods have been 
developped to solve such problems. Among them, we can mention the finite 
difference method [14][10], the classical finite element method [9][11], the spectral 
and pseudospectral methods [8], and the finite vol- ume method [3]. We choose to use 
a high-order Discontinuous Galerkin (DG) method applied to triangular meshes. The 
DG method has been initially introduced by Reed and Hill for the solution of the 
neutron transport equation. Neglected during many years, it is now very popu- lar to 
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solve hyperbolic problems. In spite of its success in many domains of applications, 
this method has been rarely applied to seismic wave propagation problems [12]. 
Ka¨ser et al. ([7] and many references therein) proposed a DG finite element scheme 
based on upwind fluxes and the ADER approach in order to solve the elastodynamic 
system with the same high accuracy in space and time. Antonietti et al [2] compared 
the Mortar spectral element method and the DG spectral element method, both on non 
conforming rectangular meshes, with a second or- der leapfrog scheme for the time 
integration. They found that those two methods have a good accuracy while used for 
the simulation of the elastodynamic equations. Agut et al [1] devel- opped a new high 
order method based on the ”Modified Equation” technique in time, coupled with a DG 
method in space for the discretisation of the additional biharmonic operator, for the 
solution of the acoustic wave equation. Their results show that the computational cost 
of their scheme is the same as the one of the leapfrog scheme. 
 In this paper, we study the P-SV wave propagation in an isotropic, linear elastic 
medium by solving the velocity-stress formulation of the elastodynamic equations. 
Our method is based on centered fluxes and a leapfrog time-discretization which leads 
to a non dissipative scheme [4]. These are the differences between our approach and 
the one developped by Ka¨ser et al. [7]. According to the first results of the method 
presented in [4], the time accuracy of the scheme is crucial when global high-accuracy 
is required. Then, we propose an extension of the leapfrog scheme to a higher order of 
accuracy, following a method proposed for the Maxwell equations by Young [15] or 
Spachmann et al. [13] and applied to DG methods by Fahs [5]. This method allows us 
to achieve temporal accuracy to any even order desired by introducing an iterative 
procedure. We restrict here ourselves to the fourth-order leap-frog scheme since we 
consider a spatial interpolation based on fourth-degree polynomial functions at most. 
The method is applied to the propagation of an eigenmode in the unit square cavity. 
The numerical study of the stability and the convergence of the method is also studied 
for both regular and irregular meshes. 
 
 
2 Equations and spatial discretization 
In a linear, isotropic and infinite medium, the P-SV wave propagation is modelled by 
the elas- todynamic equation which can be written in velocity-stress formulation [14] 

 ቊ
ݒ௧߲⃗ߩ = ∇ ∙ ߪ
߲௧ߪ = ∇)ߣ ∙ ܫ(ݒ⃗ + ݒ⃗∇)ߤ +  ௧)  (1)(ݒ⃗∇)

 
where ~v is the velocity vector, σ the stress tensor, ρ the density of the medium, I is 
the identity matrix and λ and µ the Lame´ coefficients describing the rheology of the 
medium, related to the P- and S-wave velocities by VP =ඥ(ߣ +  and VS ߩ/(ߤ2
=ඥߩ/ߤ . System (1) is closed by adding physical boundary conditions at the free 
surface of the medium : σ∙ ሬ݊⃗ = 0ሬ⃗ , where ሬ݊⃗  is the vector normal to the free surface. 
External forces are neglected. 
 Since the stress tensor is symmetrical, the unknown vector W may be written 
W~=(vx,vy,σxx,σyy,σxy)t and (1) expresses in matrix form as 
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 ߲௧ ሬܹሬሬ⃗ − ∑ ఈఈ∈{௫,௬}ܣ ,ߩ) ఈ߲(ߤ,ߣ ሬܹሬሬ⃗ = 0  (2)  
 

For the spatial discretization of this system, we approximate the physical domain 
by a polygon Ω, discretized in NT triangles Ti forming a partition of the domain. Each 
equation of (2) is multiplied by a scalar test function φTi and integrated on each 
element Ti. The characteristics of the medium (ρ, λ, µ) are assumed to be constant 
over each element Ti ; to simplify the notation, we denote by ܣఈ

்೔ in what follows, the 
restriction of the matrix ܣఈ(ߩ, ,ߣ   ௜ܶ. Applying Green’s identity, we obtain ݋ݐ (ߤ
 ∫ ߲௧ ሬܹሬሬ⃗ ߮௞

்೔
்೔

ݕ݀ݔ݀ + ∑ ఈܣ
்೔ ∫ ሬܹሬሬ⃗ ߲ఈ߮௞

்೔݀ݕ݀ݔ − ௡ܣ
்೔ ∫ ሬܹሬሬ⃗ ߮௞

்೔݀ݏడ்೔
= 0்೔೔

ఈ∈{௫,௬}   (3)  
 
 Where ሬ݊⃗  is the outward unit normal vector to Ti and ܣ௡

்೔ = ∑ ݊ఈܣఈ(ߩ, ఈ∈{௫,௬}(ߤ,ߣ . 
 As test function, we choose the standard Lagrange nodal interpolants φTi ∈ 
Pm(Ti), set of polynomials of degree m locally defined on the element Ti. Each 
component W of the vector ሬܹሬሬ⃗ is approximated on Ti by  
 |்ܹ೔(ݔ, ,ݕ (ݖ = ∑ ௝ܹ

்೔(ݐ)߮௝
்೔(ݕ,ݔ)ே೘

௝ୀଵ , 
 
where Nm is the number of basis functions and also the number of degrees of freedom 
on Ti. Including this approximation in (3), the first term writes 
 ∀݇ = 1,⋯ ,ܰ௠  ∫ ߲௧ ሬܹሬሬ⃗ ߮௞

்೔݀ݕ݀ݔ = ∑ ௞௝ܯ
்೔ ௗ

ௗ௧
ሬܹሬሬ⃗
௝
்೔ ௞௝ܯ ݀݊ܽ 

்೔ = ∫ ߮௝
்೔߮௞

்೔்݀ݕ݀ݔ೔
ே೘
௝ୀଵ்೔

 , 
 
where MTi is the mass matrix in the element Ti. Following the same method for the 
second integral of (3), we obtain 

∀݇ = 1,⋯ ,ܰ௠  ෍ ఈܣ
்೔

ఈ∈{௫,௬}

 න ሬܹሬሬ⃗ ߲ఈ߮௞
்೔݀ݕ݀ݔ = ෍ ఈܣ

்೔෍ܩఈ,௞௝
்೔

ே೘

௝ୀଵ

ሬܹሬሬ⃗
௝
்೔ 

ே೘

ఈ∈{௫,௬}்೔
 

ఈ,௞௝ܩ ݁ݎℎ݁ݓ
்೔ = න ߮௝

்೔߲ఈ߮௞
்೔݀ݕ݀ݔ

்೔
 

 
 For the last term of (3), the integral on ∂Ti, we split the boundary in internal and 
boundary faces. We define N (i) the set of the indices of the neighboring elements of 
Ti and Fil denotes each internal face common to the elements Ti and Tl (i.e. Fil = Ti 
∩ Tl ). Finally, B (i) is the set of the indices l of the faces which are common to Ti 
and the boundary of the domain ∂Ω. Such faces are denoted by F Bi = Ti ∩ ∂Ω for l ∈ 
B(i) ; The splitting of the boundary leads to 
௡ܣ 

்೔ ∫ ሬܹሬሬ⃗ ߮௞
்೔݀ݏ = ∑ ௡ܣ

்೔ ∫ ሬܹሬሬ⃗
ி೔೗௟∈ே(௜) ߮௞

்೔݀ݏ + ∑ ௡ܣ
்೔ ∫ ሬܹሬሬ⃗

ி೗
ಳ೔௟∈஻(௜) ߮௞

்೔݀ݏడ்೔
  (4) 

 
 
 For an interior face, the associated boundary integral term is computed via the 
average value on this face ሬܹሬሬ⃗ |ி೔೗ = ( ሬܹሬሬ⃗ ்೔ + ሬܹሬሬ⃗ ்೗)/2. For a face ܨ௟

஻೔ on the boundary of 
the domain, the free surface condition ߪ ∙ ሬ݊⃗ = 0ሬ⃗  is introduced weakly in the second 
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2

term of (4). Finally, we define the vectors ሬܸ⃗ఈ
்೔ (ߙ = ,ݔ and ܵ⃗ఈఉ (ݕ

்೔ ߚ,ߙ)  = ,ݔ  which (ݕ
contain respectively the Nm values of the velocity components vα and the three stress 
components σαβ in the element Ti. Thus, the spatial discretisation is summarized by 

 ቐ
೔்ܯ ௗ

ௗ௧
ሬܸ⃗ఈ
்೔ = ఈܨ

்೔(ܵ⃗) ߙ = ,ݔ ݕ

೔்ܯ ௗ
ௗ௧
ܵ⃗ఈఉ
்೔ = ఈఉܩ

்೔ ( ሬܸ⃗ ) ߚ,ߙ = ,ݔ ݕ
 (5) 

 
where Fα and Gαβ are discrete operators collecting the integrals on Ti and ∂Ti. 
 
 
3 Time discretization 
For the time discretization, we apply an explicit leapfrog scheme which results, when 
combined with the flux, in a non-dissipative scheme [4] 

 ൞
೔்ܯ (௏ሬሬ⃗ഀ

೅೔)೙శభି(௏ሬሬ⃗ഀ
೅೔)೙

∆௧
= ఈܨ

்೔(ܵ⃗௡ା
భ
మ) ߙ = ,ݔ ݕ

೔்ܯ
(ௌ⃗ഀഁ
೅೔ )೙శ

య
మି(ௌ⃗ഀഁ

೅೔ )೙శ
భ
మ

∆௧
= ఈఉܩ

்೔ ( ሬܸ⃗ ௡ାଵ) ߚ,ߙ = ,ݔ ݕ
 (6) 

 
where ∆t is the time step of the scheme. Note that the initialisation of the scheme 
needs the velocities at t = t0 and the stresses at t = t0 + ∆t . As this time discretization 
scheme is only second order accurate, the global accuracy of the scheme can be 
penalized when higher-degree polynomials (m > 2) are used for spatial approximation 
[4]. Then, we propose a higher-order leapfrog scheme following the method, proposed 
for the Maxwell’s equations, by Young [15] or Spachmann et al. [13] and applied to a 
DG method by Fahs [5].  
 For a detailed description of the method, we introduce a simplified two equation 
problem whose unknowns are v(x, t) and σ(x, t)  
 ∂tv = f(σ) and ∂tσ = g(v) (7) 
 
 From Taylor developments, we can derive a leapfrog scheme based on velocities 
at even time steps and stresses at odd time steps. We rather choose to divide the time 
step by two and we obtain, for the simplified system (7) 

 ቐ
௡ାଵݒ = ௡ݒ ݒ௧߲ݐ∆ +

௡ାభమ + ∆௧
య

ଶସ
߲௧௧௧ݒ

௡ାభమ (ହݐ∆)ܱ +

௡ାߪ
య
మ = ௡ାߪ

భ
మ ௡ାଵߪ௧߲ݐ∆ + + ∆௧

య

ଶସ
߲௧௧௧ߪ௡ାଵ (ହݐ∆)ܱ +

 (8) 

 
 Firstly, the terms ∂t vn+1/2 and ∂t σn+1 are evaluated using (7) at times (n+1/2) for V 
and (n + 1)∆t for σ. Considering only these derivatives in (8) and neglecting the 
higher-order terms leads to the classical second-order leapfrog scheme ݒ௡ାଵ = ௡ݒ +

∗ݒ ݐ∆
௡ାభమ and ߪ௡ା

య
మ = ௡ାߪ

భ
మ + ∗ݒ ௡ାଵ with∗ߪ ݐ∆ 

௡ାଵ ଶ⁄ = ௡ାଵߪ)݂ ଶ⁄ ) and ߪ∗௡ାଵ =
 When applied to the discrete system (5), it is equivalent to the standard .(௡ାଵݒ)݃
leap-frog scheme (6). 
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  The construction of a higher order leapfrog scheme needs values for ∂ttt vn+1/2 
and ∂ttt σn+1, obtained, as previously, by successive derivatives of (7). We then 
obtain a fourth-order leapfrog scheme 

௡ାଵݒ  = ௡ݒ + ∗ݒ ݐ∆
௡ାభమ +  ∆௧

య

ଶସ
∗∗ݒ
௡ାభమ and ߪ௡ା

య
మ = ௡ାߪ

భ
మ + ௡ାଵ∗ߪ ݐ∆  + ∆௧య

ଶସ
 ௡ାଵ (9)∗∗ߪ 

 

 With ቐ
°ߪ
௡ାభమ = ∗ݒ)݃

௡ାభమ)

∗∗ݒ
௡ାభమ = °ߪ)݂

௡ାభమ)
  and ቊ

°ݒ
௡ାଵ = (௡ାଵ∗ߪ)݂
௡ାଵ∗∗ߪ = °ݒ)݃

௡ାଵ)
  

 
 This method is applied to (2) using the spatial discretization (5) and a fourth-order 
leapfrog scheme writes 

 ൞
൫ሬܸ⃗ఈ

்೔൯
௡ାଵ

= ൫ ሬܸ⃗ఈ
்೔൯

௡
൫ ݐ∆ + ሬܸ⃗ఈ

்೔൯∗
௡ାభమ + ∆௧

య

ଶସ
൫ ሬܸ⃗ఈ

்೔൯∗∗
௡ାభమ ߙ = ݕ,ݔ

ቀܵ⃗ఈఉ
்೔ ቁ

௡ାయమ
= ൫ܵ⃗ఈ

்೔൯
௡ାభమ ቀܵ⃗ఈఉ ݐ∆ +

்೔ ቁ
∗

௡ାଵ
+ ∆௧

య

ଶସ
ቀܵ⃗ఈఉ

்೔ ቁ
∗∗

௡ାଵ
ߚ,ߙ  = ݕ,ݔ

 (10) 

 
 With 

⎩
⎪⎪
⎨

⎪⎪
⎧  ൫ ሬܸ⃗ఈ

்೔൯
∗

௡ାଵଶ = ൫்ܯ೔൯ିଵܨఈ
்೔ ൬ܵ⃗௡ା

ଵ
ଶ൰ ,

 ቀܵ⃗ఈఉ
்೔ ቁ

°

௡ାଵଶ = ൫்ܯ೔൯ିଵܩఈఉ
்೔ ቆሬܸ⃗∗

௡ାଵଶቇ

 ൫ ሬܸ⃗ఈ
்೔൯

∗∗

௡ାଵଶ = ൫்ܯ೔൯ିଵܨఈ
்೔ ቆܵ⃗°

௡ାଵଶቇ ,

, 

⎩
⎪
⎨

⎪
⎧ ቀܵ⃗ఈఉ

்೔ ቁ
∗

௡ାଵ
= ൫்ܯ೔൯ିଵܩఈఉ

்೔ ൫ ሬܸ⃗ ௡ାଵ൯

 ൫ ሬܸ⃗ఈ
்೔൯

°

௡ାଵ
= ൫்ܯ೔൯ିଵܨఈ

்೔൫ܵ⃗∗௡ାଵ൯

 ቀܵ⃗ఈఉ
்೔ ቁ

∗∗

௡ାଵ
= ൫்ܯ೔൯ିଵܩఈఉ

்೔ ൫ ሬܸ⃗ °
௡ାଵ൯

 

 
 In practice, for a given approximation in space, the fourth-order leapfrog scheme 
needs three times the number of arithmetic operations (to calculate the fluxes F and 
G) than the classical leapfrog scheme and twice as much memory storage since 

additional arrays have to be defined for ൫ ሬܸ⃗ఈ
்೔൯

∗∗

௡ାభమ and ቀܵ⃗ఈఉ
்೔ ቁ

∗∗

௡ାଵ
. 

 
 
4 Numerical results 
We realize some numerical studies of the properties of the method. A mathematical 
analysis of the stability and convergence of this new scheme is underway and will be 
the subject of a further publication. The method has been first applied to the 
propagation of an eigenmode. The computational domain D is the unit square and free 
surface boundary conditions are applied on all boundaries. We consider the (1,1) 
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mode whose exact solution is [6] 
vx = a cos πx sin πy cos at σxx = −b sin πx sin πy sin at 
vy = −a sin πx cos πy cos at σyy = b sin πx sin πy sin at 
σxy = 0 
 
where ܽ = ߨ2√ ௦ܸ  ܽ݊݀ ܾ =  (11) .ߨ2
 
 The medium properties are ρ = 1, λ = 0.5 and µ = 0.25, leading to Vp = 1 and VS 
= 0.5. 
 The initialisation of the leapfrog scheme is done from the exact solution (11) at t = 
0 for v and t = ∆ݐ 2⁄  for σ, ∆t being the time step of the scheme. The notation Pk-LFi 
(k=1,..., 4 and i=2 or 4) refers to a spatial discretization based on a polynomial basis 
of degree k and a classical second-order leapfrog time scheme (LF2) or its extension 
(LF4). 
 First, in order to check numerically the stability of the different methods, we solve 
this problem for different values of the time step. This time step depends on 
geometrical prop- erties of the mesh and is proportional to a CFL value which is a 
data of the simulation by ∆t = MinTi h[C F L × hi/(Vp)i]i, a formula deduced from the 
optimal stability condition for finite volumes applied to the reference triangle (as in 
[4]) and where the mesh spacing hi is the smallest edge of the triangle Ti. We have 
performed such studies for all Pk-LFi combinations and the maximum values of the 
CFL numbers ensuring stability are given in the table 1. The value of the CFL number 
depends on both time and space schemes : its value decreases when the spatial 
discretization order increases and time steps of the LF4 schemes are greater than those 
of the LF2 schemes. For any space scheme, we have C F LLF4=2.5 × C F LLF2. 

 
Table 1. Maximum CFL number for different methods 

 
Time/space discretization P2 P3 P4 

LF2 0.23220.14980.0939 
LF4 0.59280.38210.2644 

 
 
 For the convergence study of these schemes, we solve the problem using a series 
of meshes of different mesh spacing h. Uniform meshes are obtained by splitting 
quadrangular cells into two triangles and unstructured meshes are constructed via a 
mesher from an uniform distribution of the nodes on the boundaries of the domain. 
The mesh spacing h is the smallest edge in the mesh. All results correspond to 
solutions at time t = 5.0 s. We display, in figure 1, the L2- error between computed 
and exact solutions as a function of h for different schemes applied to regular (left 
figure) and irregular meshes (right figure) and using the classical leapfrog scheme 
(LF2, first line of figures). The convergence is second order for both types of meshes, 
even if the error level is lower for the highest order schemes. The use of higher degree 
basis function do not improve the convergence of the scheme. The results for 
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unstructured meshes are slightly better than those for uniform meshes. This is 
probably due to the choice of Delaunay meshes which have well known properties 
[4]. 
 We present, in Figure 1, the same results for the fourth-order leapfrog extension 
(LF4, second line of figures), for uniform (left figure) and unstructured meshes (right 
figure). Con- vergence is clearly improved when high-order time schemes are used, 
for both types of meshes. In particular, for P3-LF4 and P4-LF4 methods, a fourth-
order convergence is obtained. This proves that the use of fourth-degree basis 
functions (P4) is optimal when combined to a fourth- order time scheme (LF4). In 
summary, the values of the convergence orders of the different methods, are collected 
in Table 2 and confirm the results of the figures. 

 
Table 2. Values of convergence orders of different methods 

 
 Mesh LF2 LF4  Mesh LF2 LF4  MeshLF2 LF4 

P2 Unif. 2.44 3.04 P3 Unif. 2.073.50P4Unif. 2.004.47
Unstr.2.57 2.92 Unstr.2.423.03 Unst. 2.014.01

 
 

 Finally, we examine the efficiency of the different methods by plotting, in Figure 
2, for uni- form meshes, the evolution of the L2-error at time t = 5.0 s as a function of 
the CPU time of the simulation. For a given level of accuracy, the two most accurate 
methods (P3-LF4 and P4-LF4) are also the most efficient since the given error level is 
obtained for lower CPU times. The ratio between the minimum and the maximum 
CPU times to reach the given level of accuracy, corresponding respectively to the P4-
LF4 and P2-LF2 schemes is about 100. The LF4 scheme needs more operations but 
higher-order schemes are more efficient as coarser meshes can be used to reach a 
desired accuracy level. The use of greater times steps in the LF4 scheme case 
compensates for the extra cost due to the multi-step procedure. 
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Figure 1: Convergence study. L2-error as a function of the mesh spacing h for Pk-
LF2 schemes (k=2,3,4) (first line) and Pk-LF4 schemes (second line) using uniform 
(left) and unstructured meshes (right). 
 

 
 

Figure 2: Efficiency of the methods. L2-error at time t = 5.0 s as a function of CPU 
time for Pk-LFi schemes (k=2,3,4, i=2 or 4) (uniform meshes). 
 
 
5 Conclusion 
We proposed a fourth-order leapfrog time scheme combined with a high-order 
discontinuous Galerkin method for the solution of the elastodynamic equations. 
Following the previous results obtained in [4], when global high-order accuracy is 
sought, it is worth to use higher- order space interpolation while keeping the classical 
leapfrog time scheme since accuracy is not improved while CPU costs are increased. 
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This extension of the leapfrog scheme to fourth-order modifies the classical leapfrog 
scheme in a multi-step procedure but where the additional cost is compensated by the 
use of greater time steps. This method has been applied to the propagation of an 
eigenmode which permits numerical studies of stability, convergence, accuracy and 
efficiency of the scheme. Note that fourth-order convergence is attained with the P4-
LF4 version, when it is limited to second order when the classical leapfrog scheme is 
used. 
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