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Abstract

We present in this paper a fourth order discontinuous Galerkin method for the
elastodynamic equations in the time domain. Our approach combines a fourth
order spatial interpolation, centered fluxes and a fourth order leapfrog scheme
for the time integration. Numerical results for the propagation of a 2D
eigenmode are presented for second and fourth-order leapfrog schemes. We
also propose a numerical study of the stability and the convergence of the
method proving the accuracy of the scheme for both regular and irregular
meshes.
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1 Introduction

Computational seismology has become a very important discipline for the study of
seismic wave propagation, as analytical solutions only exist in few simple cases like
homogeneous do- mains or simple geometries. Various numerical methods have been
developped to solve such problems. Among them, we can mention the finite
difference method [14][10], the classical finite element method [9][11], the spectral
and pseudospectral methods [8], and the finite vol- ume method [3]. We choose to use
a high-order Discontinuous Galerkin (DG) method applied to triangular meshes. The
DG method has been initially introduced by Reed and Hill for the solution of the
neutron transport equation. Neglected during many years, it is now very popu- lar to
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solve hyperbolic problems. In spite of its success in many domains of applications,
this method has been rarely applied to seismic wave propagation problems [12].
Kaser et al. ([7] and many references therein) proposed a DG finite element scheme
based on upwind fluxes and the ADER approach in order to solve the elastodynamic
system with the same high accuracy in space and time. Antonietti et al [2] compared
the Mortar spectral element method and the DG spectral element method, both on non
conforming rectangular meshes, with a second or- der leapfrog scheme for the time
integration. They found that those two methods have a good accuracy while used for
the simulation of the elastodynamic equations. Agut et al [1] devel- opped a new high
order method based on the "Modified Equation” technique in time, coupled with a DG
method in space for the discretisation of the additional biharmonic operator, for the
solution of the acoustic wave equation. Their results show that the computational cost
of their scheme is the same as the one of the leapfrog scheme.

In this paper, we study the P-SV wave propagation in an isotropic, linear elastic
medium by solving the velocity-stress formulation of the elastodynamic equations.
Our method is based on centered fluxes and a leapfrog time-discretization which leads
to a non dissipative scheme [4]. These are the differences between our approach and
the one developped by Ka'ser et al. [7]. According to the first results of the method
presented in [4], the time accuracy of the scheme is crucial when global high-accuracy
is required. Then, we propose an extension of the leapfrog scheme to a higher order of
accuracy, following a method proposed for the Maxwell equations by Young [15] or
Spachmann et al. [13] and applied to DG methods by Fahs [5]. This method allows us
to achieve temporal accuracy to any even order desired by introducing an iterative
procedure. We restrict here ourselves to the fourth-order leap-frog scheme since we
consider a spatial interpolation based on fourth-degree polynomial functions at most.
The method is applied to the propagation of an eigenmode in the unit square cavity.
The numerical study of the stability and the convergence of the method is also studied
for both regular and irregular meshes.

2 Equations and spatial discretization

In a linear, isotropic and infinite medium, the P-SV wave propagation is modelled by

the elas- todynamic equation which can be written in velocity-stress formulation [14]
po v = V-a 1
oo = AV +u(vs+(V9)) @

where ~v is the velocity vector, ¢ the stress tensor, p the density of the medium, 1 is
the identity matrix and A and p the Lame” coefficients describing the rheology of the

medium, related to the P- and S-wave velocities by VP =,/(1+ 2u)/p and VS
=/u/p . System (1) is closed by adding physical boundary conditions at the free

surface of the medium : o- 7 = O, where 7 is the vector normal to the free surface.
External forces are neglected.

Since the stress tensor is symmetrical, the unknown vector W may be written
W~=(vx,vy,oxX,cyy,coXy)t and (1) expresses in matrix form as
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atw - Zae{x,y} A (p, Aaﬂ)aaV—V) =0 (2)

For the spatial discretization of this system, we approximate the physical domain
by a polygon Q, discretized in NT triangles Ti forming a partition of the domain. Each
equation of (2) is multiplied by a scalar test function ¢Ti and integrated on each
element Ti. The characteristics of the medium (p, A, 1) are assumed to be constant

over each element Ti ; to simplify the notation, we denote by AZ} in what follows, the
restriction of the matrix A, (p, 4, 1) to T;. Applying Green’s identity, we obtain

Jr, 0:W e, dxdy + Tactzpp Ad Jr, Woapy'dxdy — 4, [, W 'ds =0 (3)

Where 17 is the outward unit normal vector to T; and Afj = Yacixy Nala(p, A 10).

As test function, we choose the standard-tagrange nodat-interpolants ¢Ti €
Pm(Ti), set of polynomials of degree m locally defined on the element Ti. Each

component W of the vector Wis approximated on Ti by
Wir,(x,y.2) = 30 W () (x, ¥),

where Nm is the number of basis functions and also the number of degrees of freedom
on Ti. Including this approximation in (3), the first term writes

vk=1,- N, f AW, dxdy = Z] 1_k] dtW. andM 5= <p] i, idxdy

where MTi is the mass matrix in the element Ti. Following the same method for the
second integral of (3), we obtain

Vk=1,- j Waaqok‘dxdy— Z Z_ak]V_l/]').Ti

ae{x y} ae{x,y} j=

where G —j (pjTiOa(pkidxdy
T;

—akj

For the last term of (3), the integral on 0Ti, we split the boundary in internal and
boundary faces. We define N (i) the set of the indices of the neighboring elements of
Ti and Fil denotes each internal face common to the elements Ti and TI (i.e. Fil = Ti
N TI). Finally, B (i) is the set of the indices | of the faces which are common to Ti
and the boundary of the domain 6Q. Such faces are denoted by F Bi = Ti N 0Q for | €
B(i) ; The splitting of the boundary leads to

A faT W(pk 'ds = ZlEN(l) f W(pk s+ ZlEB(l)A fFBLW(pkldS (4)

For an interior face, the associated boundary integral term is computed via the
average value on this face Wi, = (Wi + WTt)/2. For a face F;"* on the boundary of
the domain, the free surface condition o -7 = 0 is introduced weakly in the second
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term of (4). Finally, we define the vectors V,"* (@ = x,y) and S,%, (a, # = x,y) which

contain respectively the Ny, values of the velocity components vo and the three stress
components caf} in the element Ti. Thus, the spatial discretisation is summarized by

iyl = FIi(S) a=xy

—dta

T (5)
M l—saﬁ =Gy (V) a.p=

where Fa and Go are discrete operators collecting the integrals on Ti and OTi.

3 Time discretization
For the time discretization, we apply an explicit leapfrog scheme which results, when
combined with the flux, in a non-dissipative scheme [4]
Ity
M AL « Y )
1
(§§;;)"+%—(§§;;)"+5

. Ti /77 _
MTl v = Ga[? (Vn+1) 0(,,3 =x,y

where At is the time step of the scheme. Note that the initialisation of the scheme
needs the velocities at t = t0 and the stresses;at t = t0 + At . As this time discretization
scheme is only second order accurate, the global accuracy of the scheme can be
penalized when higher-degree polynomials (m > 2) are used for spatial approximation
[4]. Then, we propose a higher-order leapfrog scheme following the method, proposed
for the Maxwell’s equations, by Young [15] or Spachmann et al. [13] and applied to a
DG method by Fahs [5].

For a detailed description of the method, we introduce a simplified two equation
problem whose unknowns are v(Xx, t) and o(X, t)

otv = f(c) and oto = g(v) @)

From Taylor developments, we can derive a leapfrog scheme based on velocities
at even time steps and stresses at odd time steps. We rather choose to divide the time
step by two and we obtain, for the S|mpI|f|ed system (7)

1
v = yn + At 2 +—6mv + 0(At) @

3
0'n+5 — OJ’H‘% + At6t0'n+1 + Z atttO'n+1 + O(Ats)

Firstly, the terms 6t v""™/2 and ot 6™ are evaluated using (7) at times (n+1/2) for V
and (n + 1)At for o. Considering only these derivatives in (8) and neglecting the
hlgher order terms Ieads to the classical second-order leapfrog scheme v"**1 = p™ +

Atv 2 and o" 24 Atoml with v"TY2 = f(em*1/2) and ot =

g(@™*t1). When applled to the discrete system (5), it is equivalent to the standard
leap-frog scheme (6).
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The construction of a higher order leapfrog scheme needs values for ottt vn+1/2
and ottt on+l, obtained, as previously, by successive derivatives of (7). We then
obtain a fourth-order leapfrog scheme

1
n+> A3 n+s 3 1 At3
vl =yt +Aty, 2+ —v, 2and o™z = o™ 2 + At o7 +— onit! 9)
* 24 * 24
n+= n+=
2 — 2 1 —
: = g, ?) vt = f(al)
With ) andy o 1
n+s n+> ol = gw*h)
U,x - f(0-° )

This method is applied to (2) using the spatial discretization (5) and a fourth-order
leapfrog scheme writes

1 P
)™ = @) s G a=xy
N 1 o\ a3 [ ar, \TFT (10)
(Se) * = Ty *aAe (Se),  +37(Sa).  ap=xy
With
( = _ o1
(I/aTl):H- — (MTi) 1FaTl <S7'l+z) ,

Sr.o\ 1 A1 i (T
() = () 6
1%”)”“ = (Mm) RS
L™ = () 6Ty 7

In practice, for a given approximation in space, the fourth-order leapfrog scheme
needs three times the number of arithmetic operations (to calculate the fluxes F and
G) than the classical leapfrog scheme and twice as much memory storage since

—T. 1 Sr.o\ 1
additional arrays have to be defined for (7/7)" 2 and (SL‘;) .

4 Numerical results

We realize some numerical studies of the properties of the method. A mathematical
analysis of the stability and convergence of this new scheme is underway and will be
the subject of a further publication. The method has been first applied to the
propagation of an eigenmode. The computational domain D is the unit square and free
surface boundary conditions are applied on all boundaries. We consider the (1,1)
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mode whose exact solution is [6]

Vx=a cosnx sinmy cosat  oxx= —b sin nx sinwy sinat

vwy=-a sinmx cosmy cosat  oyy=bsinmx sinmy sinat

oxy =0

where a = 2rV, and b = 2m. (11)

The medium properties are p =1, A = 0.5 and p = 0.25, leading to Vp =1 and VS
=0.5.

The initialisation of the leapfrog scheme is done from the exact solution (11) at t =
0 for v and t = At/2 for o, At being the time step of the scheme. The notation Pk-LFi
(k=1,..., 4 and i=2 or 4) refers to a spatial discretization based on a polynomial basis
of degree k and a classical second-order leapfrog time scheme (LF2) or its extension
(LF4).

First, in order to check numerically the stability of the different methods, we solve
this problem for different values of the time step. This time step depends on
geometrical prop- erties of the mesh and is proportional to a CFL value which is a
data of the simulation by At = MinTi h[C F L x hi/(Vp)i]i, a formula deduced from the
optimal stability condition for finite volumes applied to the reference triangle (as in
[4]) and where the mesh spacing hi is the smallest edge of the triangle Ti. We have
performed such studies for all Pk-LFi combinations and the maximum values of the
CFL numbers ensuring stability are given in the table 1. The value of the CFL number
depends on both time and space schemes : its value decreases when the spatial
discretization order increases and time steps of the LF4 schemes are greater than those
of the LF2 schemes. For any space scheme, we have C F LLF4=2.5 x C F LLF2,

Table 1. Maximum CFL number for different methods

Time/space discretization P2 | P3 | P4
LF2 0.23220.14980.0939
LF4 0.59280.38210.2644

For the convergence study of these schemes, we solve the problem using a series
of meshes of different mesh spacing h. Uniform meshes are obtained by splitting
quadrangular cells into two triangles and unstructured meshes are constructed via a
mesher from an uniform distribution of the nodes on the boundaries of the domain.
The mesh spacing h is the smallest edge in the mesh. All results correspond to
solutions at time t = 5.0 s. We display, in figure 1, the L2- error between computed
and exact solutions as a function of h for different schemes applied to regular (left
figure) and irregular meshes (right figure) and using the classical leapfrog scheme
(LF2, first line of figures). The convergence is second order for both types of meshes,
even if the error level is lower for the highest order schemes. The use of higher degree
basis function do not improve the convergence of the scheme. The results for
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unstructured meshes are slightly better than those for uniform meshes. This is
probably due to the choice of Delaunay meshes which have well known properties
[4].

We present, in Figure 1, the same results for the fourth-order leapfrog extension
(LF4, second line of figures), for uniform (left figure) and unstructured meshes (right
figure). Con- vergence is clearly improved when high-order time schemes are used,
for both types of meshes. In particular, for P3-LF4 and P4-LF4 methods, a fourth-
order convergence is obtained. This proves that the use of fourth-degree basis
functions (P4) is optimal when combined to a fourth- order time scheme (LF4). In
summary, the values of the convergence orders of the different methods, are collected
in Table 2 and confirm the results of the figures.

Table 2. Values of convergence orders of different methods

Mesh|LF2|LF4| |Mesh|LF2LF4 |MeshLF2|LF4
P2/ Unif. 2.443.04P3 Unif. 2.073.50P4 Unif.|2.004.47
Unstr.2.572.92 |Unstr.2.423.03 |Unst.2.014.01

Finally, we examine the efficiency of the different methods by plotting, in Figure
2, for uni- form meshes, the evolution of the L2-error at time t = 5.0 s as a function of
the CPU time of the simulation. For a given level of accuracy, the two most accurate
methods (P3-LF4 and P4-LF4) are also the most efficient since the given error level is
obtained for lower CPU times. The ratio between the minimum and the maximum
CPU times to reach the given level of accuracy, corresponding respectively to the P4-
LF4 and P2-LF2 schemes is about 100. The LF4 scheme needs more operations but
higher-order schemes are more efficient as coarser meshes can be used to reach a
desired accuracy level. The use of greater times steps in the LF4 scheme case
compensates for the extra cost due to the multi-step procedure.
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Figure 1: Convergence study. L2-error as a function of the mesh spacing h for Pk-
LF2 schemes (k=2,3,4) (first line) and Pk-LF4 schemes (second line) using uniform

(left) and unstructured meshes (right).
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Figure 2: Efficiency of the methods. L2-error at time t = 5.0 s as a function of CPU
time for Pk-LFi schemes (k=2,3,4, i=2 or 4) (uniform meshes).

5 Conclusion

We proposed a fourth-order leapfrog time scheme combined with a high-order
discontinuous Galerkin method for the solution of the elastodynamic equations.
Following the previous results obtained in [4], when global high-order accuracy is
sought, it is worth to use higher- order space interpolation while keeping the classical
leapfrog time scheme since accuracy is not improved while CPU costs are increased.
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This extension of the leapfrog scheme to fourth-order modifies the classical leapfrog
scheme in a multi-step procedure but where the additional cost is compensated by the
use of greater time steps. This method has been applied to the propagation of an
eigenmode which permits numerical studies of stability, convergence, accuracy and
efficiency of the scheme. Note that fourth-order convergence is attained with the P4-
LF4 version, when it is limited to second order when the classical leapfrog scheme is

used.
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