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Abstract

In this paper, we provide sufficient condition for the oscillation of every solution
of the difference equation

A"xy + ppxnik =0, n=0,1,2,...,

where k € N, {p,} is the sequence of real terms, lim p, = p > Oandr > 1is
n—o00

an odd positive integer; and also provide sufficient conditions for the oscillation of
every solution of the difference equation

m
AXy+ Y Pinkayy =0, n=0,1,2,...,
i=1
where k; € {0,1,2,...}, pi =0, lim p;, = p; = 0fori =1,2,... ,mandr > 1
n— oo

is an odd positive integer. Here, A is the forward difference operator defined by
Ax, = Xp+1 — Xn-

AMS subject classification: 39A10.
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1. Introduction

In the recent years the oscillatory behavior of difference equations has been investigated
by some authors (see, for instance, [1-13]). In particular, Erbe and Zhang [6] have
introduced a sufficient condition for the oscillation of all solutions of the following
difference equations:

Xnpl — Xn + puXn—ik =0, n=0,1,2,..., (1.1)

where k € N and {p,} is the sequence of real terms, and

m
xn—i—l _xn"'zpmxn—k, :O’ n :Oa 1729--' B (1'2)
i=1

where k; € Nand p;, > 0fori =1,2,... ,m.

By a solution of equation (1.1) we mean a sequence {x,} which is defined forn > —k
and which satisfies equation (1.1) for n > 0. We recall that a solution {x,} of equation
(1.1) is said to be oscillatory if the terms x,, of the sequence {x,} are neither eventually
positive nor eventually negative. Otherwise, the solution is called nonoscillatory.

The aim of the present paper is to provide sufficient condition for the oscillation of
every solution of difference equation

ANxp+ ppxn—ikr =0, n=0,1,2,..., (1.3)

where k € N, {p,} is the sequence of real terms, lim p, = p > 0 and also we obtain
n—>oo

sufficient conditions for the oscillation of every solution of difference equation

m
Arxn—i-Zp,-nxn_ki =0, n=0,1,2,..., (1.4)
i=1
where k; € N, p;, >0, lim p;, = p; > 0fori =1,2,... ,m and A’ is the " order
n— oo

forward difference operator defined by

.
i r
Arxn=Z(—l)’ l(i )x,H_l-, r>1.
i=0

In [4], Agarwal, Thandapani and Wong, in [5] Agarwal and Grace, in [7] Grzegorczyk
and Werbowski have investigated the oscillatory behavior of the solutions of equation
(1.3). Furthermore, all mentioned papers concern equation (1.3) under the hypothesis

o

3" pu = 0.

n=0
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which has played a significant role in the study of the oscillation of equation (1.3).
Recently, in [13] Zhou given some results for oscillation of equation (1.4). In this paper,
we obtain the oscillatory behavior of the solutions of equations (1.3) and (1.4) in case
of the lim p,, exists.

We shall need the following lemmas which are given in [1].

Lemma 1.1. Let x, be defined for n > ng and x,, > 0 with A”x,, of constant sign for
n > ng and not identically zero. Then, there exists an integer j, 0 < j < r with (r + j)
odd for A"x, < 0and (r + j) even for A"x, > 0 such that

(i) j <r—1implies (— 1)’ A'x, > Oforalln >ng, j<i<r—1
(i) j > 1 implies Aixn > O foralllargen > ng, 1 <i <j—1.
Specially, if A"x,, < 0 for n > ng, and {x,} is bounded, then
(— DIT'A™x, >0, foralllargen > ng, i = 1,...,r — 1,
and

lim Alx, =0, 1<i<r—1.
n—oo

Lemma 1.2. Let x,, be defined for n > ng, and x,, > 0 with A"x,, < 0 for n > ng and
not identically zero. Then, there exists a large integer n; > ng such that
1
(r—1)!

Xp =

(n — nl)r_lAr_lxzrqun , n>n

where j is defined as in Lemma 1.1. Further, if x,, is increasing, then

1 n r—1 —1 —1
Xn Z — \ —— Ar Xn, N Z 2}’ ni.
(r — 1 \2r1

2. Sufficient Condition for the Oscillation of Eq. (1.3)

In this section, we provide a sufficient condition for the oscillation of every solution of
equation (1.3). In 1989, Erbe and Zhang [6] have proved the following result.

Theorem A. Assume that
kk

>W, k € N. (C)

liminfp, = p
n—oo

Then every solution of equation (1.1) oscillates.
We remark that, later condition (C) was improved, by Ladas et al. [9], to

n—1 k k+1
lilrgloréf. E kpl><—k+1> . ()
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It is clear that if lim p, exists, then condition C and C* are equivalent.
n—>oo

We first need the following lemma.
Lemma 2.1. Let k € N and r is an odd positive integer. If
n—1 k k+1 kk
liminf » " ¢ > —— and limp,=p>r'—— (2.5
n—>o00 ! k+1 n—o0" " (k + r)k+’

i=n—k

1 _ k r—1
where ¢, = pj, 1 , then the following holds:
(r—1D!\ 2r-1

(i) the difference inequality
A"xp + puxp—k =0 (2.6)
has no eventually positive solution,
(i1) the difference inequality
A"Xn + puxn—k 2 0 2.7

has no eventually negative solution.

Proof. (i) The proof is by contradiction, assume that inequality (2.2) has an eventually
positive solution. Then, there exists a number ng > 0 such that x,, > 0 for all n > ny.
Also by (2.1) there is a number n; > 0 such that p, > O foralln > n;. Let N =
max{ng + k, n1} and by using (2.1) and (2.2), we have

Arxn < —PnXp—k <0

for all n > N. Then by Lemma 1.1 we have ij,,, j = 0,1,...,r are eventually of
one sign and Ar_lxn > 0. Now, there are two possibilities to consider: (a) Ax, > 0
forn > N, and (b) Ax,, <0forn > N.

Case (a). Suppose Ax,, > 0forn > N. Then, itis clear that {x, } nondecreasing and
applying Lemma 1.2, there exists an integer np > N such that

1 no o\l r—1 r—1
Using (2.4) in (2.2), we have
- 1 n—k r=1 r—1 r—1
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if we choose A’_lxn = z,, then we have the following

A L (n=kN™ e 2.9
Zn+pn(r_1)! > -k =0, n = ny. (2.9)

Thus, in view of (2.1) and condition (C*), (2.5) has no eventually positive solution,
which is a contradiction.
Case (b). Suppose Ax, < 0 forn > N. This implies that {x,} is nonincreasing for
n > N. Now dividing inequality (2.2) by x,, we have
A" x,, Xn—k

+ Pn <0
Xn Xn

for all n > N. This yields, forn > N, that

Xty Xntr—1 +.”+rxn+1 1 +Pn{ Xn—k Xn—k+1 ...x"_l} <0 (2.10)

Xn Xn Xn Xn—k+1 Xn—k+2 Xn
X
Letz, = ——. Thenz, > 1 forn > N. By (2.6) we get
Xn+1
1 1 1
—r fob e 1S —palak ) Q1D
in+r—1-"""2n in+r—2"""2n <n

Since lim x, exists, either limz, = g € [1,00) or lim z;, = oco. We claim that
n—oo n—oo n—oo

lim z, = g € [1,00), otherwise taking limit as n — 0o on both sides of (2.7) we have
n—oo
. 1 .
lim [— 4+t r— = 1i| < lim [—pu{zn—k - zZn—1}] > —00
n—=>00 | Znqr—1-++2n Zn —> 00

contradiction. Therefore we have lim z, = ¢ > 1. So, taking limit as n — oo on both
n—>oo

sides of (2.7) we get
(¢ — 1) = pg*t"
So, we conclude that

p<(qg—1)qg %, (2.12)

: : _ r o —(k+r) (ktrY _
Consider the function f definedby f(q) = (¢g—1)"gq . Then observe that f k =
k+r

) < 0. Therefore, by (2.8) we obtain

p§f<k+r>: . kk

0and f” (

kK )T G
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which contradicts (2.1).
(ii) It is easily shown that, under condition (2.1), inequality (2.3) has no eventually
negative solution by using a method similar to that of (7). |

By using Lemma 2.1 one can deduce the following main result immediately.

Theorem 2.2. (Main Theorem) Let k € N and r is an odd positive integer. If condition
(2.1) holds, then every solution of the difference equation (1.3) oscillates.

Proof. Combining (i) and (ii) in Lemma 2.1 we conclude that under condition (2.1)
every solution of (1.3) oscillates. [

Corollary 2.3. Let k € N and r is an odd positive integer. If

kk
. _ r
nh_igop” =p=r (k+r)k+r’
then every bounded solution of the difference equation (1.3) oscillates.

Proof. Let {x,} be abounded eventually positive solution of (1.3). Then, by Lemma 1.1,
we have Ax, < 0. Therefore the rest of the proof is similar to that of Theorem 2.2. W

Remark 2.4. When p, = p € Rforn =0,1,2,... and k > 0 or kK < —r in equation
(1.3), then every solution of equation (1.3) oscillates if and only if the following condition
hold;

kk

-
p=r W,

which is given in [11].

3. Sufficient Conditions for the Oscillation of Eq. (1.4)

In this section we extend the results in Section 2 to equation (1.4). We remark that
throughout this paper we will use the convention that 0% = 1. Erbe and Zhang [6] have
proved the following result.

Theorem B. Let k; € N, p;,, > 0 and liminf p;,, = p; fori = 1,2,... ,m. Assume that
n—oo

(ki + DA
St
i=1 ki

Then every solution of equation (1.4) oscillates.
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Lemma 3.1. Let k; € N, r is an odd positive integer and lim ¢;,, = ¢;, lim p;, = p;
n—>oo n— oo
fori =1,2,... ,m.If ¢jp, pin > 0 and

1 1 r—1 k; DHki+1 1T I k; ki+r
( D! (2 1) hmlnfz( + ) Z ¢y > 1 and Z ( + ) >r',
r — 1) r— n—00

s=n—k;
(3.13)
where ¢;, = pin(n — k,-)r_1 fori = 1,2,...,m, then the following holds:
(i) the difference inequality
m
i=1
has no eventually positive solution,
(i1) the difference inequality
m
A"xy+ ) Pinni; = 0 (3.15)

i=1

has no eventually negative solution.

Proof. (i) Assume that {x,} is an eventually positive solution of (3.2). So, there is a
number N; > 0 such that x,, > O for all » > Nj. As in the proof of Lemma 2.1, we have
(a) Ax, > Oforn > Ny, (b) Ax, < 0forn > N;.If Ax, > 0, the proof is similar to the

proof of Lemma 2.1. If Ax, < 0forn > Ny, then {x,} is nonincreasing. Let z, = n ,

Xn+1
then z;, > 1 forn > Ny and lim z, = g € [1,00). Now, dividing the inequality (3.2)
n—oo

by x, we have

1 1
— . +r——1<—2pmznk - (3.16)
in+r—1-"""2n <in i1

foralln > N, where N = max{Ny, N; + ki,..., Ny + k;;}. Taking limit as n — oo on
both sides of (3.4) we can write

m
> pigdit < (g -1y,
i=1

which implies that g # 1 and that

zm: qki-i-r
Pi <1 (3.17)
= @@=
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ki+r
Now consider the function f definedby f(q) = ( 1 D
q — r

0and f” <

k.
.Then, observe that f’ ( l: r) —
i

ki-l-l”

i

) > 0. It follows that

m 1(k+)k,—|—r m ki +
St = L ()

i=1

k+r

Zp’ q_l)r'

i=1

IA

Hence by (3.5)

<1, (3.18)

i 1 (k; +r)k+r

which contradicts (3.1). |

(ii) By using a method similar to that of (i) the fact that (3.3) has no eventually
negative solution under condition (3.1) is clear.

Theorem 3.2. Let k; € N, r is an odd positive integer and lim c¢;, = ¢;, hm N pin = Pi
n—>oo

fori =1,2,... ,m.If ¢cin, pin = 0. If condition (3.1) holds, then every solutlon of the
difference equation (1.4) oscillates.

Proof. Combining (i) and (ii) in Lemma 3.1 we conclude that under condition (3.1)
every solution of (1.4) oscillates. |

If {x,} is bounded, then in view of Lemma 3.1, we have the following corollary.

Corollary 3.3. Let k; € N, r is an odd positive integer and lim p;, = p; fori =
n—oo
1,2,... ,m.If pj, >0and

r,

m (k + r)kl +r p
Z >

then every bounded solution of the difference equation (1.4) oscillates.
Remark 3.4. If r = 1 inequation (1.4) and p;, = p; € R, k; € Zfor (i = 1,2,... ,m).
If

m (k + 1)k i+1
Z > 1,
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then every solution of equation (1.4) oscillates, which is obtained by Ladas in [10].

Theorem 3.5. Let k; € N, r is an odd positive integer and lim p;, = p; fori =
n—oo
1,2,... ,m.If p;j; >0and

m 1/m kk
m (H pi> > rrm, (3.19)
i=1

1 m
where k = — Z ki, then every bounded solution of (1.4) oscillates.
m
i=1

Proof. Assume that {x,} is an eventually positive solution of equation (1.4). It is clear
that, by (3.7) and Lemma 3.1, we have Ax, < 0. Therefore, by using (3.5) and (3.6),
and also applying the arithmetic-geometric mean inequality, we conclude that

n ki+r

IZZPiq

= (@-1

(i)
= "1y (ﬂ%)
mrlr (k + r)k+r (1—[ Pz) ’

i=1

v

v

which contradicts (3.7). By a similar way, one can obtain that equation (1.4) has no
eventually negative solution. |

Remark 3.6. If r = 1 inequation (1.4) and liminf p;,, = p;, k; € Nfori = 1,2,... ,m,
n— oo

pin > 0, and
m 1/m ik
m (E Pi) = (k + D+
m
where k = — Z k;, then every solution of equation (1.4) oscillates, which are obtained

i=1
by Erbe and Zhang in [6]. Also p;, = p;i € Rfor( = 1,2,... ,m),n =0,1,2,...,

k € 7Z and
m 1/m (k+1)k+1
m 1_[|Pi| k|~ L,
i=1
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m
where k = — Z ki, then every solution of equation (1.4) oscillates, which is obtained
m
i=1
by Ladas in [10].
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