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Abstract 
 

A quantum algorithm for the vertex coloring problem by a numbering method 
and its example are reported. When n vertexes are connected m edges, and 
both vertexes of each edge are different colors, a number of colors that is k is 
decided. A computational complexity of a classical computation is kn. The 
computational complexity becomes about n2 by the quantum algorithm that 
uses quantum phase inversion gates, quantum inversion about mean gates and 
the numbering method. Therefore, a polynomial time process becomes 
possible. 
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1. Introduction 
Haroche and Wineland [1] made the very first steps towards building a quantum 
computer. Deutsch - Jozsa's algorithm for the rapid solution [2−4], Shor's algorithm 
for the factorization [3−5], Grover's algorithms for the database search [3, 6, 7] and so 
on are known. A quantum algorithm for the traveling salesman problem by a 
numbering method has recently been reported by Fujimura [8]. Its computational 
complexity becomes a polynomial time. The vertex coloring problem [9, 10] is 
examined by the numbering method this time. Therefore, its result is reported.  
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2. Vertex Coloring Problem 
When n vertexes are connected by m edges, and both vertexes of each edge are 
different colors, a number of colors that is k is decided. 
 
 
3. Quantum Algorithm 
It is assumed that n vertexes are connected by m edges, and two vertexes have only 
one edge, because several edges don't change the essence of this problem. Therefore, 
when there is an edge between the i - th vertex and the j - th vertex, xi, j [1 ≤ i < j ≤ n. i 
and j are integers.] is 1, and when there isn't an edge between these vertexes, it is 0. 
Now, it is assumed that a number of colors is k, and ai [1≤ i ≤ n. i is the integer.] is 0 
or 1 or ··· or k − 1. When the number of the n times repeated permutation of 0, 1, ··· , 
k − 2 and k − 1 is kn, a1 kn − 1 + a2 kn − 2 + ··· + an k0 = ∑ i =1→n ( ai kn − i ) = U  is the 
numbering datum from 0 to kn − 1 [The 0-th datum is 0, 0, ···, 0 and 0. The (kn − 1)-th 
datum is (k − 1), (k − 1), ···, (k − 1) and (k − 1).]. This method is named the 
numbering method for this problem. g is the minimum integer that follows kn / k! ≤ 4g 
= 22g, because a number of combinations of an answer is k! at least.  
First of all, quantum registers |a1 >, |a2 >, ···, |an >, |b1 >, |b2 >, |c > and |d > are 
prepared. When α is the minimum integer that is log2 k or more, each of |af > that f is 
an integer from 1 to n is consisted of α quantum bits [= qubits]. States of |af >, |b1 >, 
|b2 >, |c > and |d > are af, b1, b2, c and d, respectively. 
 
Step 1: Each qubit of |af >, |b1 >, |b2 >, |c > and |d > is set |0 >. 
 
Step 2: The Hadamard gate H [3, 4] acts on each qubit of |af >. It changes them for 
entangled states. The total states are (2α)n. 
 
Step 3: It is assumed that a quantum gate (A) changes |b1 > for |1 > in af < k, or it 
changes |b1 > for |0 > in the others of af. As a target state for |b1 > is 1, quantum phase 
inversion gates (PI ) and quantum inversion about mean gates (IM ) [3, 6, 7] act on 
|b1 >. When β is the minimum even integer that is (2α/k)1/2 or more, the total number 
that (PI ) and (IM ) act on |b1 > is β, because they are a couple. Next, an observation 
gate (OB ) observes |b1 >. These actions are repeated sequentially from |a1 > to |an >.  
Therefore, each state of |af > is 0, 1, ···, k − 2 and k − 1, and the total states become kn 
[= W0]. 
 
Step 4: It is assumed that a quantum gate (Bi, j ) [1 ≤ i < j ≤ n. i and j are integers.] 
changes |b1 > for |b1 + xi, j > at ai ≠ aj, or it doesn't change |b1 > at ai = aj, and it 
changes |b2 > for |b2 + (ai kn − i + aj kn − j )/(n − 1) > from ai and aj. These actions are 
repeated sequentially at i and j. Therefore, |b1 > becomes from |0 > to |x1, 2 + x1, 3 + ··· 
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+ xn − 1, n >, and |b2 > becomes |a1 kn − 1 + a2 kn − 2 + ··· + an k0 >. 
 
Step 5: It is assumed that a quantum gate (C ) doesn't change |c > at b1 = m, or it 
changes |c > for |c + 1 + b2 > in the others of b1.  
 
Step 6: It is assumed that a quantum gate (D1) changes |d > for |1 > in 0 ≤ c ≤ (kn/4) − 
k!, or it changes |d > for |0 > in the others of c. As the target state for |d > is 1, (PI ) 
and (IM ) act on |d >. The number of the data that is included in 0 ≤ c ≤ (kn/4) − k! is 
W1 ≈ kn/4. When γ1 is the minimum even integer that is (W0/W1)1/2 ≈ (kn/(kn/4))1/2 or 
more, the total number that (PI ) and (IM ) act on |d > is γ1 ≈ 2. Next, (OB ) observes 
|d >, and the data of W1 remain. 
 
Similarly, (Di ) [2 ≤ i ≤ g − 1. i is the integer.] changes |d > for |1 > in 0 ≤ c ≤ (kn/4i ) − 
k!, or it changes |d > for |0 > in the others of c. As the target state for |d > is 1, (PI ) 
and (IM ) act on |d >. The number of the data that is included in 0 ≤ c ≤ (kn/4i ) − k! is 
Wi ≈ kn/4i. When γi is the minimum even integer that is (Wi − 1/Wi )1/2 ≈ ((kn/4i − 1)/(kn/4i ))1/2 
or more, the total number that (PI ) and (IM ) act on |d > is γi ≈ 2. Next, (OB ) 
observes |d >, and the data of Wi remain. 
 
(Dg ) changes |d > for |1 > at c = 0, or it changes |d > for |0 > in the others of c. As the 
target state for |d > is 1, (PI ) and (IM ) act on |d >. The number of the data that is 
included at c = 0 is Wg ≈ k! ≈ kn/4g. When γg is the minimum even integer that is  
(Wg − 1/Wg )1/2 ≈ ((kn/4g − 1)/(kn/4g ))1/2 or more, the total number that (PI ) and (IM ) act 
on |d > is γg ≈ 2. Next, (OB ) observes |af >, |b1 >, |b2 >, |c > and |d >, and one of the 
data Wg remains. Therefore, one example of combinations that are b1 = m is obtained. 
 
 
4. Numerical Computation 
It is assumed that there are n = 4, x1, 2 = x1, 3 = x1, 4 = x2, 3 = x3, 4 = 1, x2, 4 = 0, m = 5,  
k = 3 and g = 2 [kn/k! = 34/6 = 13.5 ≤ 4g = 42 = 16]. 
First of all, |a1 >, |a2 >, |a3 >, |a4 >, |b1 >, |b2 >, |c > and |d > are prepared. When α is 
the minimum integer that is log2 3 ≈ 1.6 ≤ 2 = α, each of |af > that f is the integer from 
1 to 4 is consisted of 2 qubits. States of |af >, |b1 >, |b2 >, |c > and |d > are af, b1, b2, c 
and d, respectively. 
 
Step 1: Each qubit of |af >, |b1 >, |b2 >, |c > and |d > is set |0 >. 
 
Step 2: H acts on each qubit of |af >. It changes them for entangled states. The total 
states are (22)4. 
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Step 3: (A) changes |b1 > for |1 > in af < 3, or it changes |b1 > for |0 > in the others of 
af . As the target state for |b1 > is 1, (PI ) and (IM ) act on |b1 >. When β is the 
minimum even integer that is (22/3)1/2 ≈ 1.2 ≤ 2 = β, the total number that (PI ) and 
(IM ) act on |b1 > is β ≈ 2. Next, (OB ) observes |b1 >. These actions are repeated 
sequentially from |a1 > to |a4 >. Therefore, each state of |af > is 0, 1 and 2, and the 
total states become 34 [= W0]. 
 
Step 4: (Bi, j ) [1 ≤ i < j ≤ 4. i and j are integers.] changes |b1 > for |b1 + xi, j > at ai ≠ aj, 
or it doesn't change |b1 > at ai = aj, and it changes |b2 > for |b2 + (ai 34 − i + aj 34 − j )/3 > 
from ai and aj. These actions are repeated sequentially at i and j. Therefore, |b1 > 
becomes from |0 > to |x1, 2 + x1, 3 + ··· + x3, 4 >, and |b2 > becomes |a1 33 + a2 32 + a3 31 
+ a4 30 >. 
 
Step 5: (C ) doesn't change |c > at b1 = 5, or it changes |c > for |c + 1 + b2 > in the 
others of b1. 
 
Step 6: (D1) changes |d > for |1 > in 0 ≤ c ≤ (34/4) − 6, or it changes |d > for |0 > in the 
others of c. As the target state for |d > is 1, (PI ) and (IM ) act on |d >. The number of 
the data that is included in 0 ≤ c ≤ (34/4) − 6 is W1 ≈ 34/4. When γ1 is the minimum 
even integer that is (W0/W1)1/2 ≈ (34/(34/4))1/2 ≈ 2 ≤ 2 = γ1, the total number that (PI ) 
and (IM ) act on |d > is γ1 ≈ 2. Next, (OB ) observes |d >, and the data of W1 remain. 
(D2) changes |d > for |1 > at c = 0, or it changes |d > for |0 > in the others of c. As the 
target state for |d > is 1, (PI ) and (IM ) act on |d >. The number of the data that is 
included at c = 0 is W2 ≈ 6 ≈ 34/16. Whenγ2 is the minimum even integer that is 
(W1/W2)1/2 ≈ ((34/4)/(34/16))1/2 ≈ 2 ≤ 2 = γ2, the total number that (PI ) and (IM ) act on 
|d > is γ2 ≈ 2. Next, (OB ) observes |a1 >, |a2 >, |a3 >, |a4 >, |b1 >, |b2 >, |c > and |d >, 
and one of the data of W2 remains. For example, when a1, a2, a3, a4, b1, b2, c and d are 
0, 1, 2, 1, 5, 16, 0 and 1, respectively, it is obtained that the 0th vertex is the 0th color, 
the 1st and 3rd vertexes are the 1st color, and the 2nd vertex is the 2nd color. 
Therefore, 3! = 6 combinations are obtained from this answer at least. 
 
 
5. Discussion and Summary 
The computational complexity of this quantum algorithm [= S ] becomes the 
following. In the order of the actions by the gates, the number of them is αn at H, n at 
(A), βn ≈ 2n at (PI ) and (IM ), n at (OB ), n(n − 1) at (Bi, j ) [1 ≤ i < j ≤ n. i and j are 
integers.], 2 at (C ), g at (Di ) [1 ≤ i ≤ g. i is the integer.], ∑ i = 1→g γi ≈ 2g at (PI ) and 
(IM ), and g at (OB ). Therefore, S becomes n2 + (α + 3)n + 2 + 4g. In the example of 
the section 4, S is 46. The computational complexity of the classical computation  



Quantum Algorithm for Vertex Coloring Problem by Numbering Method 243 
 

 

[= Z ] is kn = 34 = 81. After all, S/Z becomes about 1/2. When n is large enough, S 
becomes about n2. And then S/Z is about n2/kn. For example, as for n = 100 and k = 4, 
S/Z is about 1002/4100 ≈ 1/1056. 

Therefore, the polynomial time process becomes possible. 
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