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Abstract

A quantum algorithm for the vertex coloring problem by a numbering method
and its example are reported. When n vertexes are connected m edges, and
both vertexes of each edge are different colors, a number of colors that is k is
decided. A computational complexity of a classical computation is k". The
computational complexity becomes about n® by the quantum algorithm that
uses quantum phase inversion gates, quantum inversion about mean gates and
the numbering method. Therefore, a polynomial time process becomes
possible.
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1. Introduction

Haroche and Wineland [1] made the very first steps towards building a quantum
computer. Deutsch - Jozsa's algorithm for the rapid solution [2—4], Shor's algorithm
for the factorization [3—5], Grover's algorithms for the database search [3, 6, 7] and so
on are known. A quantum algorithm for the traveling salesman problem by a
numbering method has recently been reported by Fujimura [8]. Its computational
complexity becomes a polynomial time. The vertex coloring problem [9, 10] is
examined by the numbering method this time. Therefore, its result is reported.
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2. Vertex Coloring Problem
When n vertexes are connected by m edges, and both vertexes of each edge are
different colors, a number of colors that is k is decided.

3. Quantum Algorithm
It is assumed that n vertexes are connected by m edges, and two vertexes have only

one edge, because several edges don't change the essence of this problem. Therefore,
when there is an edge between the i - th vertex and the j - th vertex, xi j [L<i<j<n.i
and j are integers.] is 1, and when there isn't an edge between these vertexes, it is 0.
Now, it is assumed that a number of colors is k, and a; [1< i < n. i is the integer.] is O
or 1 or - or k — 1. When the number of the n times repeated permutation of 0, 1, -,
k—2andk—1isk" ai k" ' +a k" 2+ +a, k=Y -0 (ak" ') =U isthe
numbering datum from 0 to k" — 1 [The 0-th datum is 0, 0, ***, 0 and 0. The (k" — 1)-th
datum is (k — 1), (k — 1), =+, (k = 1) and (k — 1).]. This method is named the
numbering method for this problem. g is the minimum integer that follows k" / k! < 49
= 2% because a number of combinations of an answer is k! at least.

First of all, quantum registers |a; >, |az >, -, |ay >, [b1 >, |b2 >, |c > and |d > are
prepared. When « is the minimum integer that is log, k or more, each of |a; > that f is
an integer from 1 to n is consisted of & quantum bits [= qubits]. States of |a; >, |b; >,
|b2 >, |c >and |d > are a, by, by, ¢ and d, respectively.

Step 1: Each qubit of |a; >, |b; >, |b2 >, [c > and |d > is set |0 >.

Step 2: The Hadamard gate |H| [3, 4] acts on each qubit of |a; >. It changes them for
entangled states. The total states are (2%)".

Step 3: It is assumed that a quantum gate (A) changes |b; > for |1 > in a; < k, or it
changes |b; > for |0 > in the others of a;. As a target state for |b; > is 1, quantum phase
inversion gates (Pl ) and quantum inversion about mean gates (IM ) [3, 6, 7] act on
Ib: >. When 2 is the minimum even integer that is (2*/k)? or more, the total number
that (P1') and (IM ) act on |b; > is 8, because they are a couple. Next, an observation
gate (OB ) observes |b; >. These actions are repeated sequentially from |a; > to |a, >.
Therefore, each state of [as > is 0, 1, -, k — 2 and k — 1, and the total states become k"
[= Wo].

Step 4: It is assumed that a quantum gate (Bi,;) [L <1 <j<n.iand j are integers.]
changes |b; > for |b; + x; j > at & # @;, or it doesn't change |b; > at a; = a;, and it
changes |b, > for |by + (ai k" "' + a;k” !)/(n — 1) > from a; and a;. These actions are
repeated sequentially at i and j. Therefore, |b; > becomes from |0 > to [X; o + X3, 3+
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+Xn 1.0 >, and |b, > becomes [a k" T+ a k" 2+ - + 2, K>

Step 5: It is assumed that a quantum gate (C ) doesn't change |c > at b; = m, or it
changes |c > for |c + 1 + b, > in the others of b;.

Step 6: It is assumed that a quantum gate (D;) changes |d > for |1 > in 0 <c < (k"/4) —
k!, or it changes |d > for |0 > in the others of c. As the target state for [d > is 1, (Pl )
and (IM ) act on |d >. The number of the data that is included in 0 < ¢ < (k"/4) — k! is
W, = k4. When y; is the minimum even integer that is (Wo/W1)¥? = (K"/(K"/4))"? or
more, the total number that (PI ) and (IM ) act on |d > is y1 = 2. Next, (OB ) observes
|d >, and the data of Wy remain.

Similarly, (D;) [2<i<g - 1. is the integer.] changes |[d > for |1 > in 0 <c < (K"/4') —
k!, or it changes |d > for |0 > in the others of c. As the target state for [d > is 1, (PI)
and (IM ) act on |[d >. The number of the data that is included in 0 < c < (k"/4') — k! is
W; =~ k"/4". When y; is the minimum even integer that is (Wi - /W; )2 = (K"/4' ~')/(K"/4' )2
or more, the total number that (P1 ) and (IM ) act on |d > is y; = 2. Next, (OB )
observes |d >, and the data of W; remain.

(Dg ) changes |d > for |1 > at ¢ = 0, or it changes |d > for |0 > in the others of c. As the
target state for |d > is 1, (Pl ) and (IM ) act on |d >. The number of the data that is
included at ¢ = 0 is Wy = k! = k"/4%. When y4 is the minimum even integer that is
(Wq— 1/Wg )2 = (K749~ 1)/(K"/4%)) or more, the total number that (PI ) and (IM ) act
on [d > is yq = 2. Next, (OB ) observes |a; >, |b; >, |b, >, |c > and |d >, and one of the
data Wy remains. Therefore, one example of combinations that are b; = m is obtained.

4. Numerical Computation

It is assumed that there aren =4, X1 2 = X1,3=X1,4 = X2,3=X34=1,X,4=0, m=5,
k=3andg=2[k"k! =3%6 = 13.5<49= 4% = 16].

First of all, |a; >, |az >, |as >, |as >, by >, |b2 >, |c > and |d > are prepared. When « is
the minimum integer that is log, 3= 1.6 <2 = ¢, each of |as > that f is the integer from
1 to 4 is consisted of 2 qubits. States of |a; >, |b; >, |b, >, [c > and |d > are ay, by, by, C
and d, respectively.

Step 1: Each qubit of |a; >, |b; >, |b2 >, [c > and |d > is set |0 >.

Step 2: H| acts on each qubit of |as >. It changes them for entangled states. The total
states are (2°)*.
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Step 3: (A) changes |b; > for |1 > in a; < 3, or it changes |b; > for |0 > in the others of
ar . As the target state for |by > is 1, (Pl ) and (IM ) act on |b; >. When g is the
minimum even integer that is (22/3)%? =~ 1.2 < 2 = B, the total number that (Pl ) and
(IM ) act on |b; > is B = 2. Next, (OB ) observes |b; >. These actions are repeated
sequentially from |a; > to |as >. Therefore, each state of |a; > is 0, 1 and 2, and the
total states become 3* [= Wp].

Step4: (Bij) [L1<i<j<4.iand] are integers.] changes |b; > for |b; + X; ;> at a; # &;,
or it doesn't change |b; > at a; = a;, and it changes |b, > for |b, + (a; 34 a; 313>
from a; and a;. These actions are repeated sequentially at i and j. Therefore, |b; >
becomes from |0 >0 [x1 2 + X1 3 + ** + X3, 4 >, and |b, > becomes |a; 3% + a, 3% + a3 3*
+a43°>,

Step 5: (C ) doesn't change |c > at by = 5, or it changes |c > for |c + 1 + b, > in the
others of b;.

Step 6: (D1) changes |d > for |1 > in 0 < ¢ < (3%/4) — 6, or it changes |d > for |0 > in the
others of c. As the target state for |[d > is 1, (Pl ) and (IM ) act on |d >. The number of
the data that is included in 0 < ¢ < (3%/4) — 6 is Wy = 3*/4. When y; is the minimum
even integer that is (Wo/W:)"? = (3*/(3*/4))? = 2 < 2 = y,, the total number that (P1)
and (IM ) acton |d > is y; = 2. Next, (OB ) observes |d >, and the data of W remain.
(D2) changes |d > for |1 > at ¢ = 0, or it changes |d > for |0 > in the others of c. As the
target state for |d > is 1, (Pl ) and (IM ) act on |d >. The number of the data that is
included at ¢ = 0 is W, =~ 6 =~ 3%/16. Wheny, is the minimum even integer that is
(W1/W,) M2 = ((3*/4)/(3*116))*? = 2 < 2 = y,, the total number that (P1) and (IM ) act on
|d > is y, = 2. Next, (OB ) observes |a; >, |az >, |az >, |as >, |b1 >, |b2 >, |c > and |d >,
and one of the data of W, remains. For example, when a;, ay, as, as, bs, b2, cand d are
0,1,2,1,5,16, 0 and 1, respectively, it is obtained that the Oth vertex is the Oth color,
the 1st and 3rd vertexes are the 1st color, and the 2nd vertex is the 2nd color.
Therefore, 3! = 6 combinations are obtained from this answer at least.

5. Discussion and Summary

The computational complexity of this quantum algorithm [= S ] becomes the
following. In the order of the actions by the gates, the number of them is an at , n at
(A), pfn=2nat (Pl)and (IM),nat (OB ), n(n—1)at (Bij)[lL<i<j<n.iand]jare
integers.], 2at (C),gat (Di) [1<i<g.iisthe integer.], Y i-1.qyi~2gat (Pl ) and
(IM), and g at (OB ). Therefore, S becomes n® + (a + 3)n + 2 + 4g. In the example of
the section 4, S is 46. The computational complexity of the classical computation
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[=Z]

is k" = 3* = 81. After all, S/Z becomes about 1/2. When n is large enough, S

becomes about n”. And then S/Z is about n*/k". For example, as for n = 100 and k = 4,
S/Z is about 100%/4'° ~ 1/10°°,

Therefore, the polynomial time process becomes possible.
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