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Abstract

In this article, we establish oscillation criteria for solutions to the first order
neutral advanced difference equation

Alx(n) — p(n)x(t(n))] — q(M)x(ac(n)) =0, n=n, (*)

where {p(n)}, {q(n)} are sequences of real numbers, {a(n)} is a sequence of
positive integers such that o(n) >n+1 and {r(n)} is a nondecreasing
sequence of nonnegative integers such that 7(n) < n. Sufficient conditions
for existence of a positive solution for (*) when p(n) = 0 is also established.
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Introduction
We consider the first order neutral advanced difference equation of the form

Alx(n) = p(m)x(t()] — q(M)x(a(n)) =0, n=n, (1)

where {p(n)}, {q(n)} are sequences of real numbers, {c(n)} is a sequence of positive
integers such that o(n) > n + 1, {r(n)} is a nondecreasing sequence of nonnegative
integers such that 7(n) < n and A is the forward difference operator defined by the
equation Ax(n) = x(n + 1) — x(n).

We present some sufficient conditions such that every solution of (1) is either
oscillatory or tends to zero asn — oo,

By a solution of equation (1), we mean a real sequence {x(n)},n € N(T(no)) =
{t(ny),t(ny) +1,7(ny) + 2,...} satisfying (1). We consider only such solutions
which are non trivial for all large n. A solution of (1) is said to oscillatory if it is
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neither eventually positive nor eventually negative, otherwise it is called
nonoscillatory.

The qualitative properties of the solution of the advanced difference equation (1)
have been the subject of our investigation. With respect to the oscillation of delay
difference equation with variable coefficients, reader can refer to [3,4,8-11]. For the
several background on difference equation, we can refer to [1,2,5-7].

The following conditions are assumed to be hold throughout the paper.

(€)  {p(M)} {q(n)} are sequences of nonnegative real numbers and {g(n)} is not
identically zero.

(C;) {o(n)} is a nondecreasing sequence of positive integers such that
o(n) >n+1onN(ngy), lim, . o(n) = andlim,_.(c(n) —n) = oo.

(C5 {r(n)} is a nondecreasing sequence of nonnegative integers such that
t(n) < nonN(ny) ={ng,no+1,..} and lim,_, t(n) = .
(C4)  There exist a constant p such that 0 < p(n) <p < 1.

Before giving the main results, we present some lemmas which will be used in the
proofs of Theorems.

Lemma 1.1 Set

z(n) = x(n) — p(n)x(r(n)). 2)
If {x(n)} is an eventually positive solution of equation (1) such that
limsupx(n) > 0, 3)
n—-oo
then z(n) > 0 eventually.
Proof. Let {x(n)} be an eventually positive solution of (1) such that

limsup,,. x(n) > 0. Assume the contrary. That is, z(n) < 0 for large n. If {x(n)}
is unbounded, then there exists a sequence {n,} of integers such that

lim n, = o and lim x(n,) = o, where x(n,) = max x(n).
k—oo k—oo nosnsng

Then from (2), we have
z(ng) = x(ny) — p(y)x(r(ng)) = x(ni)(1 — p)

and hence limy,_, o, z(n,) = .
This is a contradiction.
If {x(n)} is bounded, then there is a sequence {n,} of integers such that
lim n, = o and I!I_)rgo x(ng) = ylll_)rgo x(n)=L>0.

k— oo
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Since lim;_,, x(7(n;)) < L, we have
0= lim z(n,) = L(1—p) >0,

This is also a contradiction and the proof is complete.

Lemma 1.2 The sequence {o(n)} has the properties
a(a(n)) > og(n), n = ny,
and Ii_r)go a(a(n)) = 7Ili_)rgo(a(a(n)) —n) = oo

Proof. By (C,), {o(n)}is nondecreasing, and
o(n) >n forn = n,.

So, we have
a(a(n)) > og(n), for n = n,.

Moreover, by this inequality, we can see easily that
a(a(n)) —n= o(n)—n, n= n,.

Taking limit as n — oo on both sides, we obtain
o = lim(c(n) —n) = lim (a(a(n)) — n)
n—oo n—»oo

By o(n) » o as n — oo, it is obvious that a(a(n)) —o00asn — o,

Lemma 1.3 Assume that
liminf q(n) # 0.
n—-oo

Then we have

a(n)+1 o(o(n))-1
lim Z q(s) = lim Z q(s) = oo.
" s=n+1 " s=n+1

Proof. Since q(n) = 0 for n = n,, by assumption, we have
liminfg(n) > 0.
n—-oo

On the other hand, by discrete mean value theorem, we have
o(n)-1

> a) = () - n - D@,

s=n+1

where 1 €e{n+2n+3,..,0(n)—1} Thus n > woasn— o. Then it is clear
that
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o(n)-1
lim q(s) = oo.
" s=n+1
Since
o(n)-1 g(o(n))-1
Z q(s) < Z q(s).
s=n+1 s=n+1
we have
g(o(n))-1
lim q(s) = oo.
" s=n+1

We are now in a position to state and prove our main results.

Main Results
Theorem 2.1 Assume that

liminfq(n) # 0.
n—-oo

Then every solution of (1) is either oscillatory or tends to zero.

Proof. Without loss of generality, we may assume that {x(n)} is an eventually
positive solution of (1) such that limsup,,_,. x(n) > 0. Then by Lemma 1.1, z(n) >0
eventually, where z(n) is defined by (2). From (1) and (2), we obtain

Az(n) — q(m)z(a(n)) = 0, n>n; > n,. (4)

Since Az(n) = 0,n = n,, we have {z(n)} is nondecreasing on N(n;). From (4),

we can obtain

o(n)-1
z(a(n)) z(a(s))
|nm = =Z+1 (S) m, n=ny. (5)
Set
w(n) = ZZ((:—S-n)l))’ n=n,. (6)

Itis clear that w(n) =1, n = n,.
So by the last inequality, we have
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o(n)-1

Inw(n) = Z q(s)w(s). @)

s=n+1

Let I =Iim, ;e w(n), then1l < < +oo. Now we divide our discussion into
the following two cases i) [ # +oo ii) [ = +oo
| is finite
There exists a sequence {n,} of integers such that
lim n, = +o, and Iinnlioglfw(n) = kurpoow(nk) =0.

k—oo

Thus
a(n)-1 o(n)-1
Lliminf Z q(s) < liminf Z w(s)q(s) < liminflInw(n) =Inl
" s=n+1 " s=n+1 "

On the other hand, since {a(n)} is nondecreasing and {g(n)} is nonnegative, so it
follows

a(n)-1 o(n)-1
liminf Z q(s) = lim Z q(s).
" s=n+1 " s=n+1
Therefore we have
o(n)-1
i < Inl < 1
im — < -,
n—oo q(S) - l T e
s=n+1

By Lemma 1.3, we see that it is a contradiction.

(i) | = +oo,
Thus
z(c(n)) _ o

n—+o z(n + 1) B

(8)

Summing (4) on both sides from a(n) + 1 to o(a(n)) — 1, we have
a(o(n))-1

2o -2+ = ) q)z(o(). nzm

s=o(n)+1

or
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z (a(a(n))) —z(c(n) +1)
a(o(n))-1

> Z(a(a(n))) Z q(s) . 9

s=o(n)+1

Dividing both sides of this inequality by z (a(a(n))), we have

a(o(n))-1
z(a(n) +1)
- m = s=o(n)+1 1) e o
And by (8), we know
ze(m)+1) = z(n+1)

YILI—TO z(a(a(n))) "l z(o(n)) 0

Taking limit on both sides of inequality (10), in view of Lemmas 1.2 and 1.3, we
have a contradiction.
The proof is complete.

Corollary 2.2 Assume that
liminfg(n) # 0.
n—-oo

Then every solution of the difference inequality
Alx(n) — p(n)x(t(n))] — q(n)x(a(n)) =0, (or <0), n=n,, (1))

is either not positive (or negative) or tends to zero.

Corollary 2.3 Assume that

lim q(s) > 1. (12)
Then every solution of (1) is either oscillatory or tends to zero and the every

solution of the difference inequality (11) is either not positive or tends to zero.

Proof. For Corollary 2.3, we can see that in the proof of Theorem 2.1, if {x(n)} is an

eventually positive solution of (1), when | is finite, then we have
o(n)-1

which contradicts (12). When | = +oo, in view of (10), we have
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o(o(n))-1
lim q(s) <1

n—>oo
s=o(n)+1

Since o(n) - +o0 asn - +oo, it follows

g(o(n))-1 o(n)-1
lim Z q(s) = lim Z q(s) < 1,
n—-+oo n—-+oo

s=o(n)+1 s=n+1

which contradicts (12). Thus the result of Corollary 2.3 holds.

Note that the condition (12) is much weaker than the condition in Theorem 2.1.
We can see this from Lemma 1.3.

Consider the following difference equation

Alx(n) —p(m)x(t(n))] - f (n, x(a(n))) =0, n=n, (13)

and the inequality
Alx(n) —p(m)x(t(n))] - f (n, x(a(n))) > 0, (or <0), n=n, (14)

The function f: N x R — R satisfies the following conditions:
a) f(n,v)v>0, forv+0, vER,
b) f(n,0) =0,
¢) If(n,v)| = q(n)|vl, neN, v ER,

where  {p(n)}, {q(n)}, {t(n)}and {c(n)} are sequences appeared in the
equation (1) and satisfies all the conditions mentioned at the beginning of this paper.
It follows a similar way to prove the following results.

Theorem 2.4 Assume that
liminfg(n) # 0.
n—0oo

Then every solution of equation (13) is either oscillatory or tends to zero and
every solution of the inequality (14) is either not positive (or negative) or tends to
zero.

Proof. As a matter of fact, if there exists an eventually positive solution {x(n)} of the
equation (13), then by equation (13) and the conditions on f , we have

Alx(n) — p(n)x(x(n))] — q(n)x(a(o(n))) =0, n >n, >n,.

Then the rest proof can follow the one that we have done in the proof of Theorem
2.1. It has similar steps if we have an eventually negative solution {x(n)} of equation
(13). Indeed, if x(n) <O, for n = n,; = n,y, we have

Alx(n) — p(n)x(z(n))] — q(W)x(c(n)) <0, n=n,.
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Let y(n) = —x(n), then y(n) > 0, n = n,, it follows
Aly(n) — p(m)y(z()] - q)y(c(n)) =0, n=n,.

In the following, we investigate existence of positive solutions of (1) and equation
(13).

Theorem 2.5 Assume that
p(n) =0 on N(ngy)

and

1_[(1 +eq(n)) <e, n=n,

n=ng
Then equation (1) has a positive solution.

Proof. For the convenience, we set

x(n) = 1_[ A(s), n>ny (15)

S=Nnp

where {x(n)} is a solution of equation (1). By this form, from equation (1), we have
the following equation
o(n)-1

A(n) =1+ q(n) 1_[ A(s), n>n,. (16)

If we can prove that equation (16) has a solution {1(n)}, then by the form of x(n)
in (15), we see that equation (1) has a positive solution. Consider a sequence {1;(n)}
as follows
Ao(n) =1+ eq(n),

o(n)-1

L =1+qm) | | 200,

SR
Je) = 1+q0) | | Aer ),
s=n
Using the induction, we can prove that {1,(n)} is a nonincreasing sequence,

namely,
lk_l(n) = Ak(n), k= 1,2,3,
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And so we have
1+eq(n) =2,(n) =0, ne N(ngy) for k=123,..

It follows that there exists a sequence {A(n)} such that 1,(n) - A(n) as n - oo,

and hence
o(n)-1

M) = fim i1+ | | 2

o(n)-1

=1+ q(n) 1_[ A(s).

It concludes that {A(n)} is a solution of equation (16).

Theorem 2.6 Assume that the function f(n, v) is nondecreasing in v and
p(n) =0 on N(ng).

Suppose that

e}

1_[[1+f(n,e)] <e.

n=ny
Then equation (13) has a positive solution.

Proof. We can prove this result by a similar way as we have done in the proof of
Theorem 2.5. Set

x(n) = 1_[ A(s), n>n,

S=Ny

where {x(n)} is a solution of (13). Then by (13) and the form of x(n), we have the
equation
fu TIE50 A(s))

, n > n,. 17
= AG) : )

An) =1+

If equation (17) has a solution {A(n)}, then it follows that equation (13) has a
positive solution. Construct a sequence {1, (n)} as a follows
Lo(n) =1+ f(n,e),
f(n, TI550 " A0(s))
[T%=3, A0 (s)

AL(n) =1+
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Fn, TS i ()

2oy Ake-1(8)

A(n)=1+ for n=123,..

In view of the assumption, we see that A,(n) =0 for k=0123,...
Furthermore by using the induction, we can prove that

1+ f(ne) = A (n) = 1,(n) =0, k=123,..

It follows that there exists a sequence {1, (n)} such that A, (n) - A(n) as k - .
So there exists a solution {A(n)} of equation (17).
The proof is complete.
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