Integral solutions of the quadratic with four unknowns $(x+y)(z+w)=x y+4 z w$

M. A. Gopalan and B. Sivakami
Department of Mathematics , Srimathi Indira Gandhi College, Tiruchirapalli-620002
E. mail : mayilgopalan@gmail.com
Department of Mathematics, Chettinad College of Engineering and Technology, Karur-639114
E. mail : srisivasakthi08@yahoo.com

Abstract

The quadratic equation with four unknowns $(x+y)(z+w)=x y+4 z w$ is analysed for non trivial integral solutions. A few interesting relations between the solutions and the special numbers are presented.

Keywords Integral solutions, Quadratic with four unknowns.
MSC 2000 Subject Classification number : 11D09

Introduction

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, homogeneous or non-homogeneous quadratic Diophantine equations with two or more variables have been an interest to mathematicians since antiquity [1-8]. In this context, one may refer [9-17] for different choices of quadratic diophantine equations with four unknowns. This communication concerns with yet another interesting parametric integral solutions of the quadratic equation with four unknowns
 integer solutions. Given a solution, a general formula for generating a sequence of integer solutions is also exhibited.

Polygonal Numbers	Notations for rank ' n '	Definitions
Triangular number of rank n	T_{n}	$\frac{1}{2} \mathrm{n}(\mathrm{n}+1)$
Pentagonal number of rank n	$\operatorname{Pen}_{\mathrm{n}}$	$\frac{1}{2}\left(3 \mathrm{n}^{2}-\mathrm{n}\right)$
Hexagonal number of rank n	$\mathrm{Hex}_{\mathrm{n}}$	$2 \mathrm{n}^{2}-\mathrm{n}$
Heptagonal number	$\mathrm{Hep}_{\mathrm{n}}$	$\frac{1}{2}\left(5 \mathrm{n}^{2}-3 \mathrm{n}\right)$
Octagonal number of rank n	$\mathrm{Oct}_{\mathrm{n}}$	$3 \mathrm{n}^{2}-2 \mathrm{n}$
Decagonal number of rank n	$\mathrm{Dec}_{\mathrm{n}}$	$4 \mathrm{n}^{2}-3 \mathrm{n}$
Hendecagonal number	HD_{n}	$\frac{1}{2}\left(9 \mathrm{n}^{2}-7 \mathrm{n}\right)$
Dodecagonal number	DD_{n}	$\frac{1}{2}\left(10 \mathrm{n}^{2}-8 \mathrm{n}\right)$
Octadecagonal number	OD_{n}	$\frac{1}{2}\left(16 \mathrm{n}^{2}-14 \mathrm{n}\right)$
Icosagonal number	IC_{n}	$\frac{1}{2}\left(18 \mathrm{n}^{2}-16 \mathrm{n}\right)$
Gnomonic number of rank n	$\mathrm{Gno}_{\mathrm{n}}$	$2 \mathrm{n}-1$
Pronic number of rank n	$\operatorname{Pro}_{\mathrm{n}}$	$\mathrm{n}(\mathrm{n}+1)$
Stella Octangula number of rank n	SO_{n}	$\mathrm{n}\left(2 \mathrm{n}^{2}-1\right)$
Star number of rank n	$\mathrm{Star}_{\mathrm{n}}$	$6 \mathrm{n}(\mathrm{n}-1)+1$

Method of Analysis

The equation under consideration is

$$
\begin{equation*}
(x+y)(z+w)=x y+4 z w \tag{1}
\end{equation*}
$$

To start with, it is noted that (1) is satisfied by the following quadraples: ($3,2,1,1$), ($2 \mathrm{t}, \mathrm{t}, \mathrm{t}, \mathrm{t}$), ($2 \mathrm{t}, \mathrm{s}, \mathrm{t}, \mathrm{t})$, ($\mathrm{s}, 2 \mathrm{t}, \mathrm{t}, \mathrm{t})$.

In addition to the above solutions, two more patterns of solutions are illustrated below:

Applying the transformations $\mathrm{x}=\mathrm{u}+\mathrm{p}, \mathrm{y}=\mathrm{u}-\mathrm{p}, \mathrm{z}=\mathrm{p}+\mathrm{q}$ and $\mathrm{w}=\mathrm{p}-\mathrm{q}$, equation (1) is reduced to
$(u-2 p)^{2}=p^{2}+(2 q)^{2}$

Pattern 1

Case 1: Let $2 q=2 \alpha \beta, p=\alpha^{2}-\beta^{2}$ and $u-2 p=\alpha^{2}+\beta^{2}$

Then the solutions of (1) are given by,

$$
\begin{align*}
& x(\alpha, \beta)=4 \alpha^{2}-2 \beta^{2} \\
& y(\alpha, \beta)=2 \alpha^{2} \tag{3}\\
& z(\alpha, \beta)=\alpha^{2}-\beta^{2}+\alpha \beta \\
& w(\alpha, \beta)=\alpha^{2}-\beta^{2}-\alpha \beta
\end{align*}
$$

Observations

1. $3 y$ is a Nasty number.
2. $2(\mathrm{x}-\mathrm{y})$ and $2(\mathrm{z}+\mathrm{w})$ can be written as the difference of two perfect squares.
3. $x(\alpha, 1)+2$ is a perfect square.
4. $\mathrm{x}-\mathrm{y}=\mathrm{z}+\mathrm{w}$
5. $z(\alpha, 1)-w(\alpha, 1)=$ Gno $_{\alpha}+1$
6. $x(1, \beta)+z(1, \beta)+2$ Pen $_{\beta} \equiv 0(\bmod 5)$
7. $x(\alpha, 1)-z(\alpha, 1)+2 w(\alpha, 1)=2$ Hep $_{\alpha}-3$
8. $z(\alpha, 1)-\operatorname{Pro}_{\alpha}+1=0$
9. $x(\alpha, 1) y(\alpha, 1)=4$ Hex $_{\alpha}{ }_{\alpha}$
10. $10 z(\alpha, 1) y(\alpha, 1)+20 w(\alpha, 1)-10 S O_{\alpha}-4 O c t_{\alpha^{2}}-16 T_{\alpha^{2}}+5 G n o_{\alpha}+25=0$
11. $x(1, \beta)-w(1, \beta)+$ Oct $_{\beta}-\operatorname{Hex}_{\beta} \equiv 0(\bmod 3)$
12. $x(1, \beta) w(1, \beta)+\operatorname{Star}_{\beta}-$ SO $_{\beta}-$ Gno $_{\beta^{4}}-27$ Dec $_{\beta}+36$ Oct $_{\beta}-6=0$

Case 2: Let $2 q=\alpha^{2}-\beta^{2}, p=2 \alpha \beta, u-2 p=\alpha^{2}+\beta^{2}$
Assume $\alpha=2 A, \beta=2 B$
Then $q=2 A^{2}-2 B^{2}, p=8 A B$ and $u=4 A^{2}+4 B^{2}+16 A B$
The solutions of (1) are given by,

$$
\begin{align*}
& x(A, B)=4 A^{2}+4 B^{2}+24 A B \\
& y(A, B)=4 A^{2}+4 B^{2}+8 A B \tag{4}\\
& z(A, B)=2 A^{2}-2 B^{2}+8 A B \\
& w(A, B)=2 B^{2}-2 A^{2}+8 A B
\end{align*}
$$

Observations

1. Each of the following is a Nasty number:
(i)6y is a Nasty number.
(ii) $6(\mathrm{x}-\mathrm{y})(\mathrm{z}+\mathrm{w})$
2. Each of the following represents a perfect square:
(i) $2[\mathrm{x}+\mathrm{y}-\mathrm{z}-\mathrm{w})]$ is a perfect square.
(ii) $2 \mathrm{y}(1, \mathrm{~B})-2 \mathrm{w}(1, \mathrm{~B})-12$
3. $x(A, 1)-8 T_{A}-10$ Gno $_{A}-14=0$
4. z - w can be written as the differnce of two perfect squares.
5. $y(A, 1)-D e c_{A}-4 \equiv 0(\bmod 11)$
6. $z(A, 1)-4$ Gno $_{A}-4$ Hex $_{A}+2\left(O c t_{A}\right)-2=0$
7. $x(1, B)-w(1, B)-2 \operatorname{Pr} o_{B}-7 G n o_{B} \equiv 0(\bmod 13)$

Pattern 2

Let $u-2 p=a^{2}+b^{2}$
Then, (2) gives $\left(a^{2}+b^{2}\right)^{2}=p^{2}+(2 q)^{2}$
which is written as

$$
\begin{equation*}
\left(a^{2}+b^{2}\right)^{2} * 1=p^{2}+(2 q)^{2} \tag{5}
\end{equation*}
$$

Now writel as $1=\frac{\left(m^{2}-n^{2}+2 m n i\right)\left(m^{2}-n^{2}-2 m n i\right)}{\left(m^{2}+n^{2}\right)^{2}}$
Then (5) implies
$\left(a^{2}+b^{2}\right)^{2} \frac{\left(m^{2}-n^{2}+2 m n i\right)\left(m^{2}-n^{2}-2 m n i\right)}{\left(m^{2}+n^{2}\right)^{2}}=p^{2}+(2 q)^{2}$
Define $(a+i b)^{2} \frac{\left(m^{2}-n^{2}+2 m n i\right)}{\left(m^{2}+n^{2}\right)}=p+i(2 q)$
By equating the real and imaginary parts on both sides we get,

$$
p\left(m^{2}+n^{2}\right)=\left(m^{2}-n^{2}\right)\left(a^{2}-b^{2}\right)-4 m n a b
$$

$$
q\left(m^{2}+n^{2}\right)=\left(m^{2}-n^{2}\right) a b+m n\left(a^{2}-b^{2}\right)
$$

For clear understanding, consider $m=2, n=1$
Then the values of p and q are

$$
\begin{aligned}
& p=\frac{1}{5}\left[3\left(a^{2}-b^{2}\right)-8 a b\right] \\
& q=\frac{1}{5}\left[3 a b+2\left(a^{2}-b^{2}\right)\right]
\end{aligned}
$$

Since our aim is to find integral solutions, let us choose $a=5 A$ and $b=5 B$ Then

Integral solutions of the quadratic with four unknowns $(x+y)(z+w)=x y+4 z w 577$

$$
\begin{align*}
& p=15 A^{2}-15 B^{2}-40 A B \\
& q=10 A^{2}-10 B^{2}+15 A B \\
& u=55 A^{2}-5 B^{2}-80 A B \tag{7}
\end{align*}
$$

Therefore, the solutions $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and w of (1) are given by

$$
\begin{align*}
& x(A, B)=70 A^{2}-20 B^{2}-120 A B \\
& y(A, B)=40 A^{2}+10 B^{2}-40 A B \\
& z(A, B)=25 A^{2}-25 B^{2}-25 A B \\
& w(A, B)=5 A^{2}-5 B^{2}-55 A B \tag{8}
\end{align*}
$$

Observations

1. Each one of the following is a Nasty number:
(i) $15 y(A, 1)+300$ Gno $_{A}+150$
(ii) $5[z(A, A)-w(A, A)]$
2. Each of the following is a perfect square:
(i) $25 D e c_{A}-25 O c t_{A}-z(A, 1)$
(ii) $z(1, B)+50 T_{B}$
3. $x(A, 1)-20 \mathrm{Nan}_{A}-70$ Dec $_{A}+140$ Hex $_{A}+20=0$
4. $w(A, 1)-D D_{A}+5 \equiv 0(\bmod 51)$
5. $x(1, B)+60$ Gno $_{B}+40 H D_{B}-20\left(O D_{B}\right)-10=0$
6. $y(1, B)-20 D D_{B}+10 I C_{B} \equiv 0(\bmod 40)$
7. $w(1, B)+5 \operatorname{Pr} o_{B}+25$ Gno $_{B}+20=0$

Conclusion

One may search for other patterns of solutions and the corresponding observations.

References

[1] L.E. Dickson, History of Theory of Numbers, Vol. II, Chelsea Publishing Company , New York, 1971.
[2] Andre Weil, Number Theory: An approach through history; Rom Hammurapi to Legendre, Birkhauser, Boston, 1984.
[3] Bibhotibhusan Batta and Avadhesh Narayan Singh, History of Hindu Mathematics, Asia Publishing House, Bombay, 1938
[4] L.J. Mordell, Diophantine Equations, Academic Press, New York, 1969.
[5] M.A.Gopalan and S. Vidhyalakshmi, Parametric Solutions of $x+y=u+v$ and $x^{2}+x y+y^{2}=u^{2}-u v+v^{2}$, Acta Ciencia Indica, XXXIIM(3)(2006), 1207-1208.
[6] M.A.Gopalan and S. Vidhyalakshmi, Integral Solutions of $k x y-w(x+y)=z^{2}$ Advances in Theoretical and Applied Mathematics, I(2), (2006), 167-172.
[7] M.A.Gopalan, Manju Somanath and N. Vanitha, On a Quadratic Diophantine Equation with four Variables, Antarctica J. Math., 4(1)(2007), 41-45.
[8] M.A.Gopalan, Manju Somanath and N. Vanitha, On Space Pythogorean Equation $x^{2}+y^{2}+z^{2}=w^{2}$, International Journal of Mathematics, Computer Science and Information Technology, I(1)(2008), 129 - 133.
[9] M.A.Gopalan and A.Vijayasankar, An observation on Integral Solutions of $2 m n+2 m^{2}=u v$, Impact J. Sci. Tech.,. 3(3)(2009), 1-9.
[10] M.A.Gopalan, S. Vidhyalakshmi and S. Devibala, Integral Solutions of Homogeneous Quadratic with four Unknowns $Z(X+Y)=W^{2}$, Impact J. Sci. Tech., 2(1)(2008), 31-35.
[11] M.A.Gopalan and J. Kaligarani, Integral Solutions of $x^{2}-y^{2}=z w$, Impact J. Sci. Tech., $\quad 3(3)(2009), 61-70$.
[12] M.A.Gopalan and S. Vidhyalakshmi, Quadratic Diophantine Equation with four variables $x^{2}+y^{2}+x y+x-y=u^{2}+v^{2}+u v+u-v$, Impact J. Sci. Tech., 2(3)(2008), 125-127.
[13] M.A.Gopalan and S. Vidhyalakshmi, On the Diophantine equation $k x y+y z+z x=w^{2}$, Pure and Applied Mathematica Sciences, LXVIII(1-2) (2008), 33-39.
[14] M.A.Gopalan and S. Vidhyalakshmi, Integral Solutions of $x^{2}+y^{2}=w^{2}+D z^{2}$, Advances in Theoretical and Applied Mathematics, I(2)(2006), 115-118.
[15] B.L.Bhatia and Supriya Mohanty, Nasty Numbers and their characterizations, Mathematical Education, July - Sept. 1985, 34-37.
[16] G. Janaki and S.V idhyalakshmi, Integral solutions of $x y+x+y+1=z^{2}-w^{2}$ Antarctica Journal of Mathematics, 7(1)(2010), 31-37.
[17] M.A. Gopalan , S. Vidhyalakshmi and S. Devibala, Observations on the quadratic equation with four unknowns $x y=2(z+w)$, International Journal of thematical Sciences, 9(1-2)(2010), 159-164.

