Integral solutions of the quadratic with four unknowns (x + y)(z + w) = xy + 4zw

M. A. Gopalan and B. Sivakami

Department of Mathematics,
Srimathi Indira Gandhi College, Tiruchirapalli-620002
E. mail: mayilgopalan@gmail.com
Department of Mathematics,
Chettinad College of Engineering and Technology, Karur-639114
E. mail: srisivasakthi08@yahoo.com

Abstract

The quadratic equation with four unknowns (x + y)(z + w) = xy + 4zw is analysed for non trivial integral solutions. A few interesting relations between the solutions and the special numbers are presented.

Keywords Integral solutions, Quadratic with four unknowns.

MSC 2000 Subject Classification number: 11D09

Introduction

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, homogeneous or non-homogeneous quadratic Diophantine equations with two or more variables have been an interest to mathematicians since antiquity [1-8]. In this context, one may refer [9-17] for different choices of quadratic diophantine equations with four unknowns. This communication concerns with yet another interesting parametric integral solutions of the quadratic equation with four unknowns (x + y)(z + w) = xy + 4zw is analyzed for different patterns of non-zero distinct integer solutions. Given a solution, a general formula for generating a sequence of integer solutions is also exhibited.

Polygonal Numbers	Notations for rank 'n'	Definitions
Triangular number of rank n	T_n	$\frac{1}{2}n(n+1)$
Pentagonal number of rank n	Pen _n	$\frac{1}{2} (3n^2 - n)$
Hexagonal number of rank n	Hex _n	2n ² - n
Heptagonal number	Hep _n	$\frac{1}{2}$ (5n ² - 3n)
Octagonal number of rank n	Oct _n	3n ² - 2n
Decagonal number of rank n	Dec _n	$4n^2 - 3n$
Hendecagonal number	HD_n	$\frac{1}{2} (9n^2 - 7n)$
Dodecagonal number	DD _n	$\frac{1}{2} (10n^2 - 8n)$
Octadecagonal number	OD_{n}	$\frac{1}{2} (16n^2 - 14n)$
Icosagonal number	IC _n	$\frac{1}{2}$ (18n ² - 16n)
Gnomonic number of rank n	Gno _n	2n - 1
Pronic number of rank n	Pro _n	n (n + 1)
Stella Octangula number of rank n	SO _n	n (2n ² - 1)
Star number of rank n	Star _n	6 n (n - 1) + 1

Method of Analysis

The equation under consideration is

$$(x+y)(z+w) = xy + 4zw \tag{1}$$

To start with, it is noted that (1) is satisfied by the following quadraples: (3,2,1,1), (2t,t,t,t), (2t,s,t,t), (s,2t,t,t).

In addition to the above solutions, two more patterns of solutions are illustrated below:

Applying the transformations x = u + p, y = u - p, z = p + q and w = p - q, equation (1) is reduced to

$$(u-2p)^2 = p^2 + (2q)^2 \qquad \dots$$
 (2)

Integral solutions of the quadratic with four unknowns (x + y)(z + w) = xy + 4zw 575

Pattern 1

Case 1: Let
$$2q = 2\alpha\beta$$
, $p = \alpha^2 - \beta^2$ and $u - 2p = \alpha^2 + \beta^2$

Then the solutions of (1) are given by,

$$x(\alpha, \beta) = 4\alpha^{2} - 2\beta^{2}$$

$$y(\alpha, \beta) = 2\alpha^{2}$$

$$z(\alpha, \beta) = \alpha^{2} - \beta^{2} + \alpha\beta$$

$$w(\alpha, \beta) = \alpha^{2} - \beta^{2} - \alpha\beta$$

$$(3)$$

Observations

- 1. 3y is a Nasty number.
- 2. 2(x y) and 2(z + w) can be written as the difference of two perfect squares.
- $3. x(\alpha, 1) + 2$ is a perfect square.

4.
$$x - y = z + w$$

$$5. z(\alpha, 1) - w(\alpha, 1) = Gno_{\alpha} + 1$$

6.
$$x(1, \beta) + z(1, \beta) + 2Pen_{\beta} \equiv 0 \pmod{5}$$

7.
$$x(\alpha, 1) - z(\alpha, 1) + 2w(\alpha, 1) = 2Hep_{\alpha} - 3$$

8.
$$z(\alpha,1) - Pro_{\alpha} + 1 = 0$$

9.
$$x(\alpha, 1)y(\alpha, 1) = 4Hex_{\alpha^2}$$

10.
$$10z(\alpha,1)y(\alpha,1) + 20w(\alpha,1) - 10SO_{\alpha} - 4Oct_{\alpha^2} - 16T_{\alpha^2} + 5Gno_{\alpha} + 25 = 0$$

11.
$$x(1,\beta) - w(1,\beta) + Oct_{\beta} - Hex_{\beta} \equiv 0 \pmod{3}$$

12.
$$x(1,\beta)w(1,\beta) + Star_{\beta} - SO_{\beta} - Gno_{\beta^4} - 27Dec_{\beta} + 36Oct_{\beta} - 6 = 0$$

Case 2: Let
$$2q = \alpha^2 - \beta^2$$
, $p = 2\alpha\beta$, $u - 2p = \alpha^2 + \beta^2$
Assume $\alpha = 2A$, $\beta = 2B$

Then
$$q = 2A^2 - 2B^2$$
, $p = 8AB$ and $u = 4A^2 + 4B^2 + 16AB$

The solutions of (1) are given by,

$$x(A,B) = 4A^{2} + 4B^{2} + 24AB$$

$$y(A,B) = 4A^{2} + 4B^{2} + 8AB$$

$$z(A,B) = 2A^{2} - 2B^{2} + 8AB$$

$$w(A,B) = 2B^{2} - 2A^{2} + 8AB$$
(4)

Observations

1. Each of the following is a Nasty number:

(i) 6y is a Nasty number.

$$(ii)6(x - y)(z + w)$$

2. Each of the following represents a perfect square:

$$(i)2[x + y - z - w)]$$
 is a perfect square.

(ii)
$$2y(1,B) - 2w(1,B) - 12$$

3.
$$x(A,1)-8T_A-10Gno_A-14=0$$

4. z - w can be written as the differnce of two perfect squares.

5.
$$y(A,1) - Dec_A - 4 \equiv 0 \pmod{11}$$

6.
$$z(A,1)-4Gno_A-4Hex_A+2(Oct_A)-2=0$$

7.
$$x(1,B) - w(1,B) - 2 \Pr o_B - 7Gno_B \equiv 0 \pmod{13}$$

Pattern 2

Let
$$u - 2p = a^2 + b^2$$

Then, (2) gives $(a^2 + b^2)^2 = p^2 + (2q)^2$

which is written as

$$(a^2 + b^2)^2 *1 = p^2 + (2q)^2$$
(5)

Now write 1 as
$$1 = \frac{(m^2 - n^2 + 2mni)(m^2 - n^2 - 2mni)}{(m^2 + n^2)^2}$$

Then (5) implies

$$(a^{2} + b^{2})^{2} \frac{(m^{2} - n^{2} + 2mni)(m^{2} - n^{2} - 2mni)}{(m^{2} + n^{2})^{2}} = p^{2} + (2q)^{2}$$
(6)

Define
$$(a+ib)^2 \frac{(m^2 - n^2 + 2mni)}{(m^2 + n^2)} = p + i(2q)$$

By equating the real and imaginary parts on both sides we get,

$$p(m^{2} + n^{2}) = (m^{2} - n^{2})(a^{2} - b^{2}) - 4mnab$$
$$a(m^{2} + n^{2}) = (m^{2} - n^{2})ab + mn(a^{2} - b^{2})$$

For clear understanding, consider m = 2, n = 1

Then the values of p and q are

$$p = \frac{1}{5}[3(a^2 - b^2) - 8ab]$$
$$q = \frac{1}{5}[3ab + 2(a^2 - b^2)]$$

Since our aim is to find integral solutions, let us choose a = 5A and b = 5BThen Integral solutions of the quadratic with four unknowns (x + y)(z + w) = xy + 4zw 577

$$p = 15A^{2} - 15B^{2} - 40AB$$

$$q = 10A^{2} - 10B^{2} + 15AB$$

$$u = 55A^{2} - 5B^{2} - 80AB$$
(7)

Therefore, the solutions x, y, z and w of (1) are given by

$$x(A,B) = 70A^{2} - 20B^{2} - 120AB$$

$$y(A,B) = 40A^{2} + 10B^{2} - 40AB$$

$$z(A,B) = 25A^{2} - 25B^{2} - 25AB$$

$$w(A,B) = 5A^{2} - 5B^{2} - 55AB$$
(8)

Observations

- 1. Each one of the following is a Nasty number:
 - (i) $15y(A,1) + 300Gno_A + 150$
 - (ii) 5[z(A, A) w(A, A)]
- 2. Each of the following is a perfect square:

(i)
$$25Dec_A - 25Oct_A - z(A,1)$$

(ii)
$$z(1,B) + 50T_B$$

3.
$$x(A,1) - 20Nan_A - 70Dec_A + 140Hex_A + 20 = 0$$

4.
$$w(A,1) - DD_A + 5 \equiv 0 \pmod{51}$$

5.
$$x(1,B) + 60Gno_R + 40HD_R - 20(OD_R) - 10 = 0$$

6.
$$y(1, B) - 20DD_B + 10IC_B \equiv 0 \pmod{40}$$

7.
$$w(1,B) + 5 \Pr o_B + 25 G n o_B + 20 = 0$$

Conclusion

One may search for other patterns of solutions and the corresponding observations.

References

- [1] L.E. Dickson, *History of Theory of Numbers*, Vol. II, Chelsea Publishing Company, New York, 1971.
- [2] Andre Weil, Number Theory: An approach through history; Rom Hammurapi to Legendre, Birkhauser, Boston, 1984.
- [3] Bibhotibhusan Batta and Avadhesh Narayan Singh, *History of Hindu Mathematics*, Asia Publishing House, Bombay, 1938
- [4] L.J. Mordell, *Diophantine Equations*, Academic Press, New York, 1969.

- [5] M.A.Gopalan and S. Vidhyalakshmi, *Parametric Solutions of* x + y = u + v and $x^2 + xy + y^2 = u^2 uv + v^2$, Acta Ciencia Indica, XXXIIM(3)(2006), 1207-1208.
- [6] M.A.Gopalan and S. Vidhyalakshmi, *Integral Solutions of kxy* $w(x + y) = z^2$, Advances in Theoretical and Applied Mathematics, I(2), (2006), 167-172.
- [7] M.A.Gopalan, Manju Somanath and N. Vanitha, *On a Quadratic Diophantine Equation with four Variables*, Antarctica J. Math., 4(1)(2007), 41-45.
- [8] M.A.Gopalan, Manju Somanath and N. Vanitha, *On Space Pythogorean Equation* $x^2 + y^2 + z^2 = w^2$, International Journal of Mathematics, Computer Science and Information Technology, I(1)(2008), 129 133.
- [9] M.A.Gopalan and A.Vijayasankar, An observation on Integral Solutions of $2mn + 2m^2 = uv$, Impact J. Sci. Tech., 3(3)(2009), 1–9.
- [10] M.A.Gopalan, S. Vidhyalakshmi and S. Devibala, *Integral Solutions of Homogeneous Quadratic with four Unknowns* $Z(X+Y)=W^2$, Impact J. Sci. Tech., 2(1)(2008), 31–35.
- [11] M.A.Gopalan and J. Kaligarani, *Integral Solutions of* $x^2 y^2 = zw$, Impact J. Sci. Tech., 3(3)(2009), 61-70.
- [12] M.A.Gopalan and S. Vidhyalakshmi, *Quadratic Diophantine Equation with* four variables $x^2 + y^2 + xy + x y = u^2 + v^2 + uv + u v$, Impact J. Sci. Tech., 2(3)(2008), 125-127.
- [13] M.A.Gopalan and S. Vidhyalakshmi, *On the Diophantine equation* $kxy + yz + zx = w^2$, Pure and Applied Mathematica Sciences, LXVIII(1-2) (2008), 33-39.
- [14] M.A.Gopalan and S. Vidhyalakshmi, *Integral Solutions of* $x^2 + y^2 = w^2 + Dz^2$, Advances in Theoretical and Applied Mathematics, I(2)(2006), 115–118.
- [15] B.L.Bhatia and Supriya Mohanty, *Nasty Numbers and their characterizations*, Mathematical Education, July Sept. 1985, 34–37.
- [16] G. Janaki and S.V idhyalakshmi, *Integral solutions of* $xy + x + y + 1 = z^2 w^2$ Antarctica Journal of Mathematics, 7(1)(2010), 31-37.
- [17] M.A. Gopalan , S. Vidhyalakshmi and S. Devibala, *Observations on the quadratic equation with four unknowns* xy = 2(z + w), International Journal of thematical Sciences, 9(1-2)(2010), 159-164.