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Abstract

In this paper we discuss the structure of certain kinds of strong semilattices of
monoids, the so called free semilattices of monoids to obtain its properties
analogous to the basic known properties of free monoids. We also define the
notion of partial codes in free semilattices of monoids showing that every
partial code is "biprefix" (i.e. prefix and suffix), and give characterizations of
partial and maximal partial codes in an analogy to the known characterizations
of codes and maximal codes in free monoids. This prepare the ground for
studing generalized languages and autumata.
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1 Introduction and Preliminaries

Perhaps one may recognize that the theory of languages and automata is based on
certain properties of particular subsets of free monoids the so called rational sets.
Besides the uniqueness of factorization of words in free monoids plays a central role
in developing such a theory. It is thus not surprising that characterizations of
submonoids of free monoids which are also free has obtained considerable interest
from both semigroups and languages theorists. This naturally lead to study and
characterizing certain types of codes, i.e. the bases or generating sets of free monoids.
Prefix codes in particular has its significant role in the study of rational languages and
finite automata . In nature, there are different languages expressed in terms of



554 M. El- Ghali M. Abdallah and S.K. Elagan

different (and disjoint) alphabets. Interaction between different languages may be
viewed as mappings (or translators) between the corresponding alphabets. Formally, a
natural model of the situation may have the structure of certain kinds of strong
semilattices of monoids, the so called free semilattices of monoids. In the present
work we discuss this structure to obtain its properties analogous to the basic known
properties of free monoids. We also define the notion of partial codes in free
semilattices of monoids showing that every partial code is "biprefix" (i.e. prefix and
suffix), and give characterizations of partial and maximal partial codes in an analogy
to the known characterizations of code and maximal codes in free monoids. In a
subsequent paper we use the present work in developing particular kinds of
generalized languages and autumata . For sake of reference and fixing notation we
cite here some basic definitions and results needed for our work. A semilattice is a
pair (S, <) where Sis a set and < is a partial ordering on S (i.e. < is a reflexive,
antisymmytric and transitive relation on S), such that every pair of elements a,b € S
has a greatest lower bound a A b in S. A semigroup S is called a band if every element
a € S is idempotent i.e. aa =a (or a? =a). We have : A semigroup S is a
commutative band iff S (with the same partial ordering) is a semilattice. Actually if S
IS a commutative band, then the relation < defineon Sbya <b iff ab=aturns S
into a semilattice where for every pair a,b € S,a A b is given by ab (the product of
a, b in S). Conversely, if (S, <) is a semilattice, then S is a commutative band with the
operation in S defined by V a,b € S,ab = a Ab(= b A a) = ba. (Thus in particular
a’?=a=aAa=a).

Let Y be a semilattice and let {S,: a € Y}be a collection of (disjoint) semigroups
of particular type C.

Then the disjoint union S ZaLEJY S, is called a strong semilattice of semigroups S, ,

a € Yifforall a,f € Y with « > [ there exists a homomorphism
(pa,ﬁ: Sa - S[g

such that ¢, , is the identical homomorphism, and fora > f >y inY,
(pﬁ,y ° (pa,ﬁ = Pay-

We may write S = [Y,S,, @] to indicate that S is a strong semilattice Y of
semigroups Sy, a € Y. If S = [Y,S,, ¢, 5], then there is a (unique) operation on S that
extends the binary operation of S, for every a €Y, given by, for a,b €S, say
a€S,bce Sp

ab = (pa,aﬁa ° (pﬁ,aﬁb-

Here the operation in RHS is the multiplication in S,z of the elements
Pa,apQ (pﬁ,aﬁb in Sa,[?'

In particular a strong semilattice of groups is a Clifford semigroup (i.e. a regular
semigroup with centeral idempotents). For our work we discuss the structure of strong
semilattices of monoids. In the rest of this section we cite from [5] some requried
materials.
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A semigroup S is called an & —semigroup (in words, epsilon semigroup) if it is
equipped with a unary operation : S — S, sending x ~ &, with the following axioms
satisfied: for all x,y € §

(PM1) &, is idempotent (i.e. &, &, = &)

(PM2) g,y = & (i.e. the operation ¢ is idempotent)
(PM3) e, x =x¢&, =x

(PM4) E(xy) = ExEy

the element ¢, is called the partial identity of x.

The subset of idempotents in an & —semigroup S is denoted by E(S), and the set
of all partial identities in S, {e,: x € S} is denoted by £(S).

If S is an & —semigroup, then by (PM1), £(S) c E(S) and so by (PM4), £(S) is
idempotent subsemigroup of S.

A subset B of an & —semigroup S is an & —subsemigroup of S, if B is a
subsemigroup of S and ¢, € B for every b € B.

A mapping ¢ of an &-—semigroup S into an & —semigroup T is an
& —homomorphism if it preserves the operations of S, i.e. p(xy) = p(x)p(y),x,y €
S and g¢yxy) = @ (&), for all x € S. Hence g,y is the partial identity in T of ¢x, and
&, 1s the partial identity in S (of x). Clearly, the variety of £ —semigroups contains
monoids, bands, and Clifford semigroups. Those &€ —semigroup S for which £(S) is in
the center of S have a structure theorem of strong sort. First, a definition: An
€ —semigroup S is called a partial monoid if (PM5) ¢, is central (for all x € S)

If S is a partial monoid, then an & —subsemigroup of S is called a subpartial
monoid of S. A partial monoid homomorphism is defined similarly.

In view of (PM2), we have £(S) is an idempotent & —subsemigroup (subpartial
monoid) of S whenever S is an € —semigroup (partial monoid). In particular (by
PMB5), if S is a partial monoid, then £(S) is a commutative semigroup of idempotents,
I.e. a semilattice (with the usual partial ordering &, < ¢, iff & ¢, =¢,)

Theorem 1.1 The following two statements about a semigroup S are equivalent.
(A) S is a partial monoid.
(B) S is a strong semilattice of monoids.

Remark
The above theorem shows that if S is a partial monoid, then S is a strong semilattice
of monoids

S= [E(S),ng,(pnggy]
we have for &, in the semilattice £(S), S, is the maximal monoid {y € S: ¢, = &,}
with the identity &, and for e, = ¢, (i.e. &, &, = ¢))

Pepey- e, ™ S, @ AEy,

Conversely, if S is a strong semilattice of monoids S = [T v Ses wa'[g] ,then S'is a
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partial monoid with & — operation for x € S, say x € S,, &, = e, Where e, is the
identity of the monoid S,. In [5] some topological and categorical aspects of partial
monoids (not needn’t in our present work) are obtained as well as a representation
theorem says that every partial monoid S is empeddablle in a certain partial monoid of
partial mappings in analogy with the same sort of theorem known for strong
semilattices of groups i.e. Clifford semigroups (see [1], where they are called partial
groups) and for strong semilattices of rings (see[4], where they are called partial
rings). In [5] examples are given to show that :

For an £ — semigroup S, £(S) may be a proper subset of E(S), i.e. an idempotent
in S may not be a partial identity.

There may exist different ¢ — semigroup structures on the same semigroup S.

There may exist an € — semigroup S which is not a partial monoid (and hence not
a monoid).

Non trivial partial monoids exists, i.e. partial monoids which are not monoids (
These are introduced, in particular by partial mappings (from sets to monoids). Less
trivially, every partial monoid S is embeddablle in a certian partial monoid of partial
mappings [5, Theorem 3.4].

As shown in [5], it is easy to observe that the class of partial monoids is a variety
(9, E) of algebras for some generator domain 2, and set of equations E, whence free
partial monoids exist. In the next section, we introduce explicit construction of free
partial monoids and develop the basic properties and characterization of them.

Our references are , in semigroups, in general , [15] , [16], [17], [24], in
semilattices of monoids [5],[25], and in free monoids and codes [9], [22] .

2 Free partial monoids. Construction and basic characterizations
Let A be a non empty (not necessarily finite) set. For every nonempty finite subset B
of A, let 5 denote the identity element of the free monoid B* on B. In other words, €5
stands for the empty word in B*. There exists a natural embedding (satisfying the
usual universal property)

ng.:B —» B*

Actually, ng sends each element b in the set B to the word in B* that consists only
of one alphabet b.

Let £(4) = {e5: B is anon empty finite subset of A}. Partially ordered £(4) by

ec < egifandonlyif B c C.

Then £(A4) with < is clearly a semilattice, whence the greatest lower bound of any
g, &c € €(4) is given by
&Ep N &c = Epuc-

Equivalently, £(4) is a commutative band with binary operation given by
Ep&c = Epuc for all &g, &c € E(A),
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and we have for all g5, . € €(4)
egec = ecifand only if e, < ggifand only if B c C.

For eg = . in (4),(i.e. B c (), we define a mapping
Pepec B* > C*

as follows: For any non empty word w € B*, say w = ngb;...ngb,(b; € B), we set
PepecW = anl- e TICbn-

For the empty word ez of B*, we set
Pepec€B = EC (the empty word in C*).

We observe that ¢, .. is a well defined mapping (since B c C) and clearly a
monoid homomorphism. Actually, ¢, .. is @ monoid monomorphism. It is also easy
to see that ¢, ., is the identity automorphism of B* and that

Pecep " Pepec — Pepiep

for all e5,ec,6p in €(A), satisfying €5, > €; = 5. Summing up, we have a strong
semilattice of monoids
FPM(A) = ((A), B*, ey .).

Whence,
FPM(A) = Y B:,
is a partial monoid, with operation (extending the operation of B; ., 5 € £(A) given

ER!
by, for any two elements in FPM(A), say
wg =ngby...ngb, € B* and w; = n¢Cy...NeCp € C*

we have
Wg - W¢ = q)EB,EBUcWB : q)&‘c,EBUcWC
= Npuchi. . . MeuchnMBucts. - Npuctm € (B U C)*

We define a mapping
n:A-FPM(A)= U B:

eg€ee(4)

by

a - n{a}a

i.e. sending each element a € A to the word in {a}* consisting of one letter, namely a.
Now, let S be any partial monoid and let 1): A — S be any mapping of sets . Define

W FPM(4) - S
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as follows: Let w € FPM(A), be arbitrary. Then, there is a (unique) nonempty finite
subset B of A, say B ={b;,b,,...,b.} and a unique (may be empty) subset
{bi, by, ...,b; } of B, with

iy
w = wg =ngb;, ... ngb;,.
Define
1,[)W - ¢bi1- . ¢bin 1:[ El/)bi

where &, is the partial identity of the element 1b; in the partial monoid S. It follows
that for each wy; € B* we have

Elpws) = Ewb Epy o Epp, = I1 €yp;-
Identifying a € A with ng,a and ggqy With &4, then the identity e, viewed as the

empty word in B*, may be written

€8 = EngpyybrEngp yba + Engpybr

= Eblgbz"'gbr = H Ebi

By the definition of 12) 1:063 = 1‘[ Epp;» and since g,y = &g, it follows that
Sows = w(E(WB))'
Clearly, v is a partial monoid homomorphism, with @(B;‘B) cS, , Where

Sf[ is the maximal monoid in S with identityJJ(eB) = Eyp;
LI &b,

7 Fgr every a e_A, we haye
(11”7) (a) = ¥(na) = P(nma)
=Ya- ey, =Ya

whence, Jm = 1), that is the diagram
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74

FPM(A)

Commutes.
If o: FPM(A) - S is a partial monoid homomorphism with ¢n = 1, we have for any
w € FPM(A), say w = wg = ngb;,...ngh; € B* (with B = {b,,...,b,}),

pw =@ (rl{bil}bil- - M, }Piy, - EB)

= N, ybiy- - PN, 1bi, - 9 (e)

= gnb;,...onb;, - ¢(ep)

=Yb;,...pb; - ¢(ep)

since ¢ is a partial monoid homomorphism, we have ¢ (B,) € Sye5)- Now,

€= ¢ ( npyy D180y b2- - E’I{br}bf)

thus
(eg) = ¢
Ve 9 (ngpyP1ngp,yD2-Eng, 1r)
= E€(onby..onby)
= E@pby..apby) = EPby- - Eb,
= 1:1[ El/)bi'
Thus,

ow = Yb; ... Yb; - ¢(ep)

- ¢bi1"'¢bin . 1:[ El/)bi

= pw.
_ Hence ¢ = 12) Therefore 12) is the unique partial monoid homomorphism such that
Yn = 3, and we have proved ,
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Theorem 2.1 For any non empty set A, the partial monoid FPM(A) is (up to an
isomorphism) the free partial monoid on A.

Remakes
In the free partial monoid FPM(A), the effect of multiplying a "word" wg by an
gc € £(A) (for some finite subsets B, C c A) is nothing but transforming wy € B* to
the word wg . € (B U C)* having the same string of alphabets as wy. In particular if
b € B, then nzb € B* may be viewed as ny,;b.e5. (Hence ny,;b € {b}) As we
identify n (,3b = nb with b, we may write ngb = beg. Thus if wg = ngb; ...ngb; Is
aword in B*, we may write

wg =nb;,...nb; &g

=b;,...b; .

It follows that each (non empty) word w in FPM(A) say w = wg, for some non
empty finite subset B of A, has a unique representation as product of alphabets from
B c A with 5.

In the rest of this section we give some characterizations of free partial monoids
analogous to the known characterizations [22] of free monoids. We start with a
definition.

Let M be a partial monoid (i.e. strong semilattice [e(A),Mga, qoga,gb] of monoids).
We call a subset A of M a set of partial generators of (or partially generates) M if for
every b € M, with b # ¢, there is a finite set {a,,...,a,} © A such that

b=x1x,...x,¢ .

aj
i1

with x;, i =1,2,...,n (possibly not all distinct) are elements of {a,,...,a,}.

Theorem 2.2 Let A be a (non empty) set, M a partial monoid and leti: A — M be an
injection onto a set of partial generators of M. The following two statements are
equivalent:

(@) M is free on i(A).

(b) For any partial monoid M and map ¢:A > M ' there is a unique homomorphism
of partial monoids ¢: M — M such that ¢ = ¢i.

Proof. (a) = (b). Let n:i(4) > M be the natural embedding (as in Theorem 2.1).
Define ¢ 1i(4) » M’ by i(a) » ¢(a), where ¢:4 - M is a given map. ¢ is a
well defined map, since i is injection. By Theorem 2.1, there exists a unique partial

monoid homomorphism ¢ :M — M such that ¢ ' = @' o7n. We have ¢ ' (i(a)) =
¢(a), (a € A). Thus

0@ =¢'(i@) = ¢ o n(i(a)
=9 ’(i(a)gni(a))



Generalized Codes in Free Partial Monoids 561
=¢ '(i(a))e - = "i(a).
¢ ni(a)

Therefore, ¢ = ¢ 'i.
(b) = (a). Let M =T[i(A)]* be the free partial monoid on i(4), and let n:i(4) —
M’ be the natural embedding. Let ¢:i(A) - M be the inclusion map. As in the proof
(a) = (b), (since M is free on i(A)), there is a partial monoid homomorphism

®: FPM(i(A)) =M - M

such that ®n = ¢. That is ®n(i(a)) = ¢(i(a)) =i(a), (a € A), and ® is the
identity on the partial generators of M. Let ):4 - M ' be given by

n ’
W=ni:A>i(A) > M

By (b) there is a partial monoid homomorphism W: M — M such that Wi = 1.
For i(a) € M, we have

LP(i(a)) =Yi(a) = yY(a) =ni(a).

Let x e M, (x # ¢&,) be arbitrary, say x = iajliajz...iajneﬁ with a;, €
ial

{ai,...,a,},k=12,...,n  (observe that i(A) partially generates M), and &, =
Ef[ . We have Wx € M’ and so Yx € B* for some finite set B ={b,,..., b} C

ial
i(A). Now clearly e, = ¢,

H ial

which gives

& —E&r =&, = &,.

Fx e ] da *

Therefore,

OPWx = QJ(LPiajl. . .LPiajn)‘PEx
= d)(r,iajl. . T[iajn)&lfx

= Pnia;,... Pnia; Epwy

= q)(iajl). .. go(iajn)EdD‘Px

Thus ®¥ = id,, (the identity map M — M). Likewise, for x € M, say
x =nia;,...nia; & where &, is the identity of the maximal monoid, say B* in M
for some finite subset B = {ia,,...,ia,} of i(A). Thus &, = &g = &iq,. .- Eniq, =
Enial...niar = €iaq.iap We have
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Yo (x) = ¥(Pnig;,... Pnia;, Pe,)
= LI—’(lah . iajngq)(x))

= l'I"I,Clj1 . .LI—’iajn&pq)x
=nia;,...nia; & = x.

Thus W® =id . It follows that M is isomorphic to M’ and the proof is
complete.

Given a partial monoid M, we set S = M — (M) and
A={x € S—S? ¢, ismaximal in e(M)}. Then we have:

Theorem 2.3 Let M be a partial monoid and let A be the subset of Mdefined as
above. The following two statements are equivalent:

(@ Misfreeon A

(b) For each x € M with x # &,, there exists a unique finite set {a,,...,a,} € A4 such

that e, = 1‘[ &q, and x has a unique factorization

X = Xq... Xy
with {x,,...,x,} c {a;,...,a,}

Proof. (a) = (b). Follows from the definition of a free partial monoid and the
property of A.

(b) = (a). Let M be the free partial monoid on A, and let n: 4 > M ' be the natural
embedding. Let

o A-M
be the inclusion map, that is ¢ '(a) = ag, = a (a € A). By the universal properly
(cf. Theorem 2.1), there exists a unique partial monoid homomorphism

o' M > M

such that ¢ =¢ on. We have ¢ :4 -» M is the inclusion onto the partial
generators of M. Define

Y:M->M

by

Y(xx5. . X Ey) = NXqNX5. ..nxm]:[ Enx;-

Clearly 1y is partial monoid homomorphism and n = wq)'. Let b € M. By (b),
there exists a unique set {a,,...,a,} € A such that ¢, = 1‘[ Eq, = € and b has a

ai
i1
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unique factorization
b = ble' s bngb = ble' e bng r

@
i=1 '

with {b;,b,,...,b,} € {ay,...,a,}. As in the proof (b) = (a) of theorem 2.2 we can

show e -, = ¢,. Thus we have
_ p yb

@b =¢' (o 'by... Yo byeyy)
= qo_'(nbl. : -IIbnEt/Jb)

=@ nby... Nbye -,
@ Yb

=¢ by... byey, = byb,...bye, = b.

Thus @'y = idy. Let be M, say b € B* for some finite B c A, there exist
by, by,....b, € A with
b = T’bl . .T’bngb.

We have
Yo'b =1 (qo Mby... 'nbnew-,b)
=1/)<g0'b1...g0'bn£—, )

@b

=Y 'bl...¢¢'bn£ -,
Yo b

=nb;..nby e -,
Yo b

=nb,...nb,ep = b.

Thus o ' = id,, . Therefore M = M, and so, M is free on A.
We may conclude directly the following

Corollary 2.1 Let M be a partial monoid satisfying one of the two equivalent
conditions of Theorem 2.3
(i) For every x € M,M,_is free monoid with finite set of (free) generators

{ai&y,... a,6.} where {a;,...,a,} © A is the unique set such that &, = [] &,,. In
particular, for every x € A, M, _is cyclic with one generator a, where a is the unique
element in A such that e, = ¢,

(i) Every &, € €(A) = (M) has a unique factorization ¢, = ]‘[ €q;@; EA. In

particular if &, = [] &, and &, = [] €y, ai, bj € A then

j=1

&x =&y ff {ai:iz1,...,r}={bj:j=1,...,s}
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(iii) For every ¢, = g,
(p&‘a,é‘b: M&‘a - M&‘b

is @ monomorphism of monoids
(iv) For every b € S — S2, there exists a unique a € A such that ag, = b
(v) For every b € S — S?, we have be, € S — 52, for every ¢, € (A)

3 Equidivisability and Codes in free partial monoids
In this section we define equidivisibility in partial monoids and develope results
analogous to the results in [19] concerning equidivisibility in monoids.
A partial monoid M is called equidivisible if for every a,b,c,d € M — (M)
ab = cd

implies either ae = cue,ube = de for some u € M or ave = ce, be = vde for some
v EMwhere e = g4, = €4

Lemma 3.1 A partial monoid M is equidivisible if and only if every maximal monoid
M, is equidivisible

Proof. Suppose that M is equidivisible. Choose any e € (M) and let a,b,c,d €
M, — {e} be such that ab = cd. Since M is equidivisible and &,;, = €.y = &, = & =
&, = &4 = e, We have either ae = cue, ube = de for some u € M or ave = ce,be =
vde for some v € M. That is either a = cu,ub = d for some u € M or av =c,b =

vd for some v € M. Settingu’ = ue and v’ = ve, we have
£, = &e= eandevr =ge=e

andsou’, v’ € M,. Then we have either
a=cu=(ce)u=clue) =cu,
u'b=(ue)b=ulbe) =ub=d

for some u’ € M, or
av' = a(ve) = (ae)v = av = c,
b=vd=v(de) =(ve)d=v d

for some v’ € M,. Thus M, is equidivisible
Lemma 3.2 Every free partial monoid is equidivisible
Proof. Since a free partial monoid is a strong semilattice of (its maximal) free

monoids (c.f. Theorem 2.1) and every free monoid is clearly equidivisible
[19,Ch5,Cor1.6 or 1.7], the result obtains from (the if part of ) Lemma 3.1
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Theorem 3.1 Let M be a partial monoid with non trivial maximal monoids and let
S = M — e(M). Suppose the following three conditions hold
(1) @ s is @ monomorphism for all e > f in £(M)
(ii) For every b € S — S2, there exists a unique a € A such that ag, = b
(iii) For every x € M, there exists a unique (finite non empty) set {a;,...,a,} c A
such that

EX = 1:[ Eai
where A = {a € § — 5% ¢, is maximal}.

Then M is free on A if and only if M is equidivisible and n, §n-1l =g,

n

Proof. If M is free on A, then M is equidivisible by Lemma 3.2 and hence by Lemma

3.1 every maximal monoid in M is ( free by definition) equidivisible. It follows that

n St =¢@ for every e € e(M). Since S = eLfM) S, and {S.:e € (M)} are
eece

neN
pairwise disjoint, we have

2n-1
n sl =n ( U Se) =N ( U 53”‘1)
neN neN \eee(M) neN \eee(M)

SZn—l = Q.

c e

Ui (
ece(M) \neN

Conversely, suppose that M is equidivisible and n S-l=¢.If a€S, is
n
idempotent, we have a = a™ for all n € N which implies a € 0, §n-l=0g a
n

contradiction. Thus we have (iv) e(M) = E(M).

By assumption, every structure arrow ¢@.r ( e = f) is a monomorphism.
Equivalently, we have :
(v) For every x,y € M, x & (M) implies xe, & e(M). Now let a € S be a unit, that is
there exists a! € S such that aa™! € e(M) and hence by (iv) a~la € e(M) say
a~la = e € ¢(M). We have by (v) ae & e(M). Thus ae € S and

ae = aa taala... €n S§2k-1 =@

a contradiction. Hence the set of units is e(M). Thus (v) may be refined as follows:

(vi) For all x,y € M,xy € e(M) if and only if x,y € e(M). Thus we have a
descending chain § 2522 532...28% 2 5**1 o, If the chain statilizes, say
Sk = §k+1 then Sk = ns"=o which gives (by(vi)) S = @ and M is the free partial
n
monoid on the empty set . If $©5S52>5853o.. . oSk skl 5 | Is strictly
descending, then for every m € S, there exists k such that m € Sk — §¥*1  (otherwise
men S™ = @ a contradiction). Thus m = x;x,...x, Withx; €S — 52,1 <i<k.If
n
m=x;x;,...x; =Xjxj,...x; are two factorizations of m, then (using
equidivisibility and (i)) we can show by induction on n = min(l, k) that k = [ and
Xi&€m = Xj,Emy- -1 Xi, Em = Xj, &p. It follows by (iii) that for each i,1 <i < k there
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exists a unique a; € A, 1 <i <k such that a;e,, = x;. Hence m has a unique
factorization

k
m — alaz...akl_[ Exi
i=1
= a,a,...AxE, (aq; €A1 <i<k).

Lemma 3.3 Let M be a full subpartial monoid of FPM(A), and let Mt = M — (M),
then M* — (M*)? generates M and contained in every set that generates M

Proof. By the above theorem we have QN St =@ where Sy, = M*. The result
n
obtains .

Let M be as above and let C = {a € M* — (M™*)?: g,is maximal}

C is a (possibly empty) set contained in every set generating M. If C partially
generates M it is called a base for M in the sense that, m € M implies m =
a,a;...0,&, forsomea; €EC (1 <i<p).

Lemma 3.4 If M has a base C, then

For every m € Mt — (M*)? there exists a (not necessery unique) element a € C such
that ag,, = m

(ii) For everym € Mt — (M*)? and every € € e(M), mes € M+ — (M™*)?

Proof. (i) By assumption there exist a,,a,,...,a, € C such that m = a,a,...a,&y.
We have a;s,, € MT (1 < i < p) (c.f.(v)). Thusm € Mt — (M*)? implies p = 1 and

m=a;&y.

(ii) By assumption and (v) we have me € (M*).If me € (M*)?2, we would have
me = x,x, forsomex; e M*,i =12

Write m = ag,,,a € C ( by (i)) we would have
a&m = aa,... apgam

which implies by maximality ¢, = ¢4, for all (1 < i < p). Thus

(pea,eama = (pea,eam a... (pea,eam ap
which implies that a = a, a,... a, (since ¢ is monomorphism) a contradiction.

Lemma 3.5 M full subpartial monoid of FPM(A) has a base if and only if m € M* —
(M™*)? implies there exists a € M+t — (M*)?, g, maximal and m = as¢,,

Proof. Follows from Lemma 3.3 and Lemma 3.4.

Theorem 3.2 Let M be a full subpartial monoid of a free partial monoid FPM(4).
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Suppose M has a base C. The following conditions are equivalent:

(@) M is free

(b) Foreveryw € FPM(A), MwNM #= @andwM NM # @ implyw € M
(c) For everyw € FPM(A), Mw N M NnwM # @ impliesw € M.

Proof. (a) = (b). Assume m;w € M and wm, € M for some m,,m, € M. Thus
m;(wm,) = (myw)m, € M . Since M is equidivisible (by Lemma 3.2), either
my &, = mywme,Wheree, = &in,wm,), for somem € M

or
! !
mwe, =mym g, forsomem €M

In the first case by cancellation in FPM(A)
&y = wmey,

and so wm = g,,,,, (cf.(v)) which implies w = ¢,, and m = ¢, and thus w € M since
M is wide. In the second case we,, = m 'su. Thus for some finite set of free generators
S1...S, € FPM(A) we must have

w=s;...5,&,and m' = S1...Sp€, 1.

Since M is free and m’ € M the free generators of m ' in M are uniquely given in
terms of s;...s,. In particular s;...s, € M. Whencew = s,...s,&, € M.
(b) = (c). Obvious
(c) = (a). Suppose (c) holds but M is not free. There exists w € M* with (at least )
two different factorization, as product of partial generators from C. We choose such a
w € M* with minimal length in FPM(A)

W = i, iy Ciy€w = Cj Cjye - CoEwy Cipoi Gy € C forall k,land ¢;, # cj,. Q)

By equividivisibility in FPM(A) either
ci, &w = cj,us,, for some u € FPM(A)

or
ci, Ve, = ¢j,&, for some v € FPM(A)

we only deal with the first case as the other being similar
ci, &w = cjugyand (1) yield
uciz. . CipEW = Cjz' . quEW.

It follows that
CjZst. . quCilgw = Cjz' .. quleugw
= uciz. . Cipcilgw
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may be written
Cj, Cy -+ Cjg Cin Ew = €, G-+ G Ew (UEy)
= (uey)cy,. .. Ci, Ciy &

By (c) u€M and c; ¢, = cjue, implies u =g, otherwise c; g, (in M* —
(M*)? by Lemma 3.4 (ii)) would have a factorization (c;, &, )(ue,) € (M*)2. Thus
ci, &w = Cj, &y Cancelling in (1) by ¢; &, we have

’
w = Ciz' . CipEW — Cjz Cj3. . quEW

are two distinct factorization of w ' contradicting the minimality of w. To complete
the proof we must show for every m € M there exists unique finite set m,,...,m, €

C with &, = ] &, and there also exists set {a;,...,a,} € {my,...,m,} such that

m=a... apEm.

It is sufficient to show that for every a € C, M, _ is cyclic (with generator b). This
is clear otherwise we would have b € M, ,b # a,b € C, and since ¢, is maximal,
Eq = &g, for some a; € A. Thus for some m # n,b = af,a = ai*,w = ai™ € M has
two distinct factorizations w = a™ = b™ a contradiction. Therefore, M is free.

A subset C of a free partial monoid FPM(A) is called a partial code over A if C is
the base of a free subpartial monoid M of FPM(A), we write M = FPM(C)

Corollary 3.1 Let C partial code over A, M free subpartial monoid of FPM(A), with
base C. Then for each a € M*, M, is a free submonoid of (FPM(A))E with code

(base)
Ce, ={ceqic €C ec 2 g4}

over B*, where B is the set of free generators of (FPM(4)), .
a

Proof. We have M, is a submonoid of B* = (FPM(4))_ . Actually
M,, =MnB".

Letw € B* with M, w N M, N wM, # @. Thus, in particular we have
MwnNMnwM #+ @

and since M is free it follows by previous Lemma that w € M. Whence w € M N
B* = M, . The result follows by proposition 2.2 Ch.5 [19]

Corollary 3.2 A subset C of FPM(A) is a partial code over A if and only if
(@) Foreveryce C,c =a™ forsomea € A,n>0
(b) For everyc,d € C,say c = a™, d = b™,c # d ifand only if a # b.
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Proof. Follows from the definition of a partial code and the properties of a free (sub)
partial monoid.

Proposition 3.1 Let M be a (wide) subpartial monoid of a free partial monoid
FPM(4), and let M have a base C. Then the following conditions are equivalent:

(a) For everyw € FPM(A),Mw N M # @ impliesw € M

(b) CFPM(A) NC =@

[ observe condition (b) doesn’t necessarily hold in general, e.g. let M at level
a € A have partial generators a?,a® € C and a® & C. Therefore CFPM(A) NC + @
since aa® = a® € CFPM(A) n C]

Proof. (a) = (b). Assume (a) and suppose for some ¢ € C,w € FPM(A),cw = ¢;
for some ¢; € C. Thus Mw N M # @, and so by (a) w € M. It follows that ¢c; € (M*)?
a contradiction. (b) = (a).Assume (b) and suppose mw € M for some m € M and
w € FPM(A). We prove by induction on length of m (in FPM(A4)) that w € M. If
I(m) = 0, then m = &,,, which gives we,, € M that is we,, = m ' for some m’ € M.
Therefore w and m ' have the same partial generators as elements in FPM(A). Thus
for some ay, ..., a, € A we have

!
m = ag...apE v,

w=a... apEW.

Since C partially generates M we must have a;...a, = c;...c, for some ¢; € C
(r <p). Thus a,...a, € M which gives w € M. If I(m) > 0, then since C partially
generates M, we have (since mw € M)

Ciy Ciye - CyWEWmM = Cj,Cjy.. . G E 7

for some m” = ¢;,c;,...cie, 1 ¢ ¢ € C (1< k,1<1). By (b)and equidivisibility
in FPM(A) we have c; &ym = ¢j,ugy, for some u EFPM(A) or ¢; veym = Cj Ewm
for some v EFPM(A). We deal only with the first case, the second being similar. By
maximality of elements of C, we have for some a € A,n > 0,¢;, = a™. Thus

aEym = Cj,UEym

this gives
¢, =aP and u=a'g,

for some p>0,r>0 and p+r =n. We have a™ = aPa” with a™ € C,a? €€
C,a” € FPM(A). Thus by (b) we must have p =n,r = 0. This gives u = ¢, and
c;, = cj,. Therefore, (by cancellation in FPM(A))

Ciz' . Cikwewm = Cjz' . leEml.

Now the induction hypothesis implies w € M.
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If C is a partial code over the alphabet A, then the characterization given by
Corollary 3.2 for C indicates that no word of C is a proper left factor of another word
of C [ otherwise we would have two words a™, a™,n # m for some a € A which is
impossible]. This is equivalent to the condition (b) of the above proposition

CFPMA)NC =9

in which case C is called a prefix partial code. Similarly FPM(A)C n C = @ always
hold, for any partial code C, for which C is called a suffix partial code. Thus we have
shown

Proposition 3.2 Every partial code C over A is a biprefix partial code ( i.e. prefix and
suffix).
The above two propositions give another simple characterization of partial codes.
Let C be a base for subpartial monoid M of FPM(A4), then the following
conditions are equivalent

Corollary 3.3 (a) M is free i.e. C is a partial code over A
(b) For every w eEFPM(4), Mw N M # @ impliesw € M
(c) For every w EFPM(A4), wM N M # @ impliesw € M
(d) CFPM(A)NC =@
(e) FPM(A)C N C = @.

A partial code C over an alphabet A is called a maximal if C # A and for every

partial code c'ccc’ implies C = c'. Using characterization of partial codes in
Corollary 3.2 , we have

Corollary 3.4 A partial code C over A is maximal if and only if C n {a}* # @ for
every a € A. equivalently C is maximal iff for every a € A there is some ¢ € C with
Ec = &4

Example 3.3 For each n > 1 the partial codes C = {a™: a € A} are maximal

Proposition 3.4 Let C be a partial code over an alphabet A. The following conditions
are equivalent

(@) C is maximal

(b) For every w eFPM(A), with &, is maximal w has a left factor in C or is a left
factor of some c € C

(c) For every w € FPM(A), with &, is maximal wFPM(A) N FPM(C) # @

(d) FPM(A) yax = FPM(C) maxPnax Where P, is the set of all proper left factors of
words in C, with maximal identities. [ For each

a € A, (FPM(4)), = (FPM(C)), P., where P., is the set of all proper left factors
of words in C;.
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Proof. (a) = (b). Assume (a). Let w eEFPM(A) with ¢, is maximal . Thus w = a™
for some a € A,n > 1. Since € maximal C n{a}* # @. Thus ¢ = a™ € C for some
m > 1. If m < n, cis clearly a left factor of w. If m >n a™ = a"a™ ™" =wa™ ™" €
C and w is a left factor for a™ =c € C. For w = a,...a,¢,. By maximality of
C,c = a:‘i € C for all i, and hence q; is a left factor of c;.

(b) = (c). Assume (b). By induction on I(w), every w eFPM(A) with &, maximal ,
can be written as w = ¢™w, for some n = 1,¢ € C, where w has no left factor in
C,e, maximal. Applying (b) to w ', there exists ¢ ' € C such that w'w " = ¢ for

somew € FPM(A). Thusww = c"c’ eFPM(C)
(c) = (a).By(c), foreverya € A,n > 1,
a*FPM(A) N FPM(C) # @.

Thus (for every n > 1) a™w, = ¢;¢,...cp&,, for some w, € FPM(A),c; € C. By
cancellation on left , ¢; = a™ for some m > 1. Thus a™ € C and C is therefore, a
maximal partial code.

Finally (d) is another formulation of (b).

A partial code satisfies one of the above conditions is called complete.
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