Characterization Of Various G-Inverses Of Intuitionistic Fuzzy Matrices

Dr.T. Gandhimathi
Department of Science and Humanities, P.A.College of Engineering and Technology- 642 002, India.
E.mail:gandhimahes@rediffmail.com

Abstract

: In this paper, we represent an intuitionistic fuzzy matrix as the Cartesian product representation of its membership and non-membership matrices. By using this representation, we shall discuss the characterization of set of all ginverses of an IFM and characterized the set of various g-inverses associated with the IFM.

Keywords: Fuzzy matrix, Intuitionistic fuzzy matrix, g-inverse.

1. Introduction:

We deal with fuzzy matrices that is, matrices over the fuzzy algebra F^{M} and F^{N} with support $[0,1]$ and fuzzy operations $\{+,$.$\} defined as a+b=\max \{a, b\}$, $\mathrm{a} . \mathrm{b}=\min \{\mathrm{a}, \mathrm{b}\}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{F}^{\mathrm{M}}$ and $\mathrm{a}+\mathrm{b}=\min \{\mathrm{a}, \mathrm{b}\}, \mathrm{a} . \mathrm{b}=\max \{\mathrm{a}, \mathrm{b}\}$ for all $\mathrm{a}, \mathrm{b} \in$ F^{N}. Let $\mathrm{F}_{m \times n}^{M}$ be the set of all mxn Fuzzy matrices over F . A matrix $\mathrm{A} \in \mathrm{F}_{m \times n}^{M}$ is said to be regular if there exists $\mathrm{X} \in \mathrm{F}_{n x m}^{M}$ such that $\mathrm{AXA}=\mathrm{A}, \mathrm{X}$ is called a generalized inverse (g-inverse) of A. In [3], Kim and Roush have developed the theory of fuzzy matrices, under max min composition analogous to that of Boolean matrices. Cho [2] has discussed the consistency of fuzzy matrix equations, if A is regular with a ginverse X, then $b . X$ is a solution of $x A=b$. Further every invertible matrix is regular. For more details on fuzzy matrices one may refer [4]. Atanassov [1] introduced and studied the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. The concept of intuitionistic fuzzy matrices (IFMs) as a generalization of fuzzy matrix was studied and developed by Madhumangal Pal et.al.[6]. In [7], Sriram and Murugadas have derived the equivalent condition for the existence of the generalized inverses. In our earlier work, we have studied on regularity of IFM [5].

In this paper, we discussed the characterization of set of all various g-inverses of an IFM.

2. Preliminaries

Let $(I F)_{m x n}$ be the set of all intuitionistic fuzzy matrices of order mxn. Let $(I F)_{m x n}$ be the set of all intuitionistic fuzzy matrices of order mxn. First we shall represent A $\in(I F)_{m x n}$ as Cartesian product of fuzzy matrices. The Cartesian product of any two matrices $\mathrm{A}=\left(a_{i j}\right)_{m \times n}$ and $\mathrm{B}=\left(b_{i j}\right)_{m x n}$, denoted as $\langle A, B\rangle$ is defined as the matrix whose $\mathrm{ij}^{\text {th }}$ entry is the ordered pair $\langle A, B\rangle=\left(\left\langle a_{i j}, b_{i j}\right\rangle\right)$. For $A=\left(a_{i j}\right)_{m x n}=\left(\left\langle a_{i j \mu}, a_{i j \nu}\right\rangle\right)$ $\in(I F)_{m x n}$. We define $A_{\mu}=\left(a_{i j \mu}\right) \in \mathrm{F}_{m \times n}^{M}$ as the membership part of A and $A_{v}=\left(a_{i j v}\right) \in \mathrm{F}_{m \times n}^{N}$ as the non membership part of A. Thus A is the Cartesian product of A_{μ} and A_{v} written as $A=\left\langle A_{\mu}, A_{v}\right\rangle$ with $A_{\mu} \in \mathrm{F}_{m x n}^{M}, A_{v} \in \mathrm{~F}_{m x n}^{N}$.

Here we shall follow the matrix operations on intuitionistic fuzzy matrices as defined in our earlier work [5].

For $A, B \in(I F)_{m x n}$, if $A=\left\langle A_{\mu}, A_{\nu}\right\rangle$ and $B=\left\langle B_{\mu}, B_{v}\right\rangle$, then

$$
\begin{equation*}
A+B=\left\langle A_{\mu}+B_{\mu}, A_{v}+B_{v}\right\rangle \tag{2.1}
\end{equation*}
$$

For $A \in(I F)_{m x p}, B \in(I F)_{p x n}$ if $A=\left\langle A_{\mu}, A_{v}\right\rangle$ and $B=\left\langle B_{\mu}, B_{v}\right\rangle$, then
$A B=\left\langle A_{\mu} \cdot B_{\mu}, A_{v} \cdot B_{v}\right\rangle$
$A_{\mu} \cdot B_{\mu}$ is the max min product in $\mathrm{F}_{m \times n}^{M}$,
$A_{v} \cdot B_{v}$ is the min max product in $\mathrm{F}_{m \times x}^{N}$.
For $A \in(I F)_{m x n}, \mathrm{R}(\mathrm{A})(\mathrm{C}(\mathrm{A}))$ be the space generated by the rows (columns) of A .
Let us define the order relation on (IF $)_{\mathrm{mxn}}$ as,

$$
\begin{equation*}
A \leq B \Leftrightarrow A_{\mu} \leq B_{\mu} \text { and } A_{v} \geq B_{v} \Leftrightarrow A+B=B . \tag{2.3}
\end{equation*}
$$

Definition 2.1[5]:

An $A \in(I F)_{m x n}$ is said to be regular if there exists $X \in(I F)_{n x m}$ satisfying AXA $=\mathrm{A}$ and X is called a generalized inverse (g -inverse) of A . which is denoted by A^{-}. Let $\mathrm{A}\{1\}$ be the set of all g-inverses of A.

Definition 2.2:

For an IFM A of order mx n , an IFM X of order n x m is said to be $\{1,2\}$-inverse or semi inverse of A , if $\mathrm{AXA}=\mathrm{A}$ and $\mathrm{XAX}=\mathrm{X}$
X is said to be $\{1,3\}$-inverse or a least square g-inverse of A , if $\mathrm{AXA}=\mathrm{A}$ and $(A X)^{T}=A X$.

X is said to be $\{1,4\}$-inverse or a minimum norm g-inverse of A , if $\mathrm{AXA}=\mathrm{A}$ and $(X A)^{T}=X A$.

X is said to be a Moore-Penrose inverse of A , if $\mathrm{AXA}=\mathrm{A}, \mathrm{XAX}=\mathrm{X}$, $(A X)^{T}=A X$ and $(X A)^{T}=X A$. The Moore-Penrose inverse of A is denoted by A^{+}.

Lemma 2.3[5]:

Let $A \in(I F)_{m \times n}$ be of the form $A=\left\langle A_{\mu}, A_{\nu}\right\rangle$. Then A is regular $\Leftrightarrow A_{\mu}$ is regular in F ${ }_{m \times n}^{M}$ under max min composition and A_{v} is regular in $\mathrm{F}_{m \times n}^{N}$ under min max composition.

Lemma 2.4[5]:

If $A \in(I F)_{m \times n}$ is of the form $A=\left\langle A_{\mu}, A_{v}\right\rangle$, then (i) $\mathrm{R}(\mathrm{A})=\left\langle R\left(A_{\mu}\right), R\left(A_{v}\right)\right\rangle \quad$ and
(ii) $\mathrm{C}(\mathrm{A})=\left\langle C\left(A_{\mu}\right), C\left(A_{v}\right)\right\rangle$.

3. Characterization of various g-inverse:

In this section, we derive the characterization of the set of $\mathrm{A}\{1\}$ in terms of a particular element of the set.

Let $A, B \in(I F)_{m \times n}$. If $A \geq B$ then by (2.3) $A_{\mu} \geq B_{\mu}$ and $A_{v} \leq B_{v}$. Let $A_{\mu}-B_{\mu}=H_{\mu}$ and $A_{v}+B_{v}=H_{v}$ are an IFMs, but $A_{\mu} \neq B_{\mu}+H_{\mu}$ and $A_{v} \neq H_{v}-B_{v}$. Therefore $A \geq B$ then A-B $=\mathrm{H}$ is an IFM, but $\mathrm{A} \neq \mathrm{B}+\mathrm{H}$.

Lemma 3.1:

For $A \in(I F)_{m \times n}$ if G^{*} and G are g-inverse of A such that $G^{*} \geq G$, then $G+H$ is a $g-$ inverse of A for some $H \in(I F)_{n x m}$ such that $G^{*} \geq G+H \geq G$.

Proof:

Let $G^{*}-G=H$. Then $G^{*} \geq H$.Since $G^{*} \geq G$ and $G^{*} \geq H$, it follows that $\mathrm{G}^{*} \geq \mathrm{G}+\mathrm{H} \geq$ G.Then $\mathrm{AG}^{*} \mathrm{~A} \geq \mathrm{A}(\mathrm{G}+\mathrm{H}) \mathrm{A} \geq \mathrm{AGA}$
$\Rightarrow \mathrm{A} \geq \mathrm{A}(\mathrm{G}+\mathrm{H}) \mathrm{A} \geq \mathrm{A}$
$\Rightarrow \mathrm{A}(\mathrm{G}+\mathrm{H}) \mathrm{A}=\mathrm{A}$
Thus $(\mathrm{G}+\mathrm{H})$ is a g-inverse of A .

Theorem 3.2:

Let $A \in(I F)_{m \times n}$ and G be a particular g-inverse of A. Then

$$
\begin{equation*}
\mathrm{A}_{\mathrm{G}}\{1\}=\left\{\mathrm{G}+\mathrm{H} / \text { for all } \mathrm{H} \in(\mathrm{IF})_{\mathrm{nxm}} \text { such that } \mathrm{A} \geq \mathrm{AHA}\right\} \tag{3.1}
\end{equation*}
$$

is the set of all g -inverse of A dominating G .

Proof:

Let B denote the set on the R.H.S of (3.1). Suppose $G^{*} \in A_{G}\{1\}$, then $G^{*} \geq G$.
Let $\mathrm{G}^{*}-\mathrm{G}=\mathrm{H}$. By Lemma (3.1), $\mathrm{G}^{*} \geq \mathrm{G}+\mathrm{H} \geq \mathrm{G}$ and $\mathrm{G}+\mathrm{H}$ is a g-inverse of A dominating G. Further $\quad A(G+H) A=A \quad \Rightarrow A G A+A H A=H$ $\Rightarrow \mathrm{A}+\mathrm{AHA}=\mathrm{A}$ $\Rightarrow \mathrm{A} \geq \mathrm{AHA}$.

Hence $G+H \in B$. Thus for each $G^{*} \in A_{G}\{1\}$ there exist a unique element in B.
Conversely, for any $G^{*} \in B, G^{*}=G+H \geq G$, with $A \geq$ AHA
Now, $\mathrm{AG}^{*} \mathrm{~A}=\mathrm{A}(\mathrm{G}+\mathrm{H}) \mathrm{A}=\mathrm{AGA}+\mathrm{AHA}=\mathrm{A}+\mathrm{AHA}=\mathrm{A}$. Thus G^{*} $\in A_{G}\{1\}$.Hence the proof.

Corollary 3.3:

Let $\mathrm{A} \in(\mathrm{IF})_{\mathrm{n}}$ be an idempotent IFM.Then $\left\{\mathrm{G}+\mathrm{H} /\right.$ for all $\mathrm{H} \in(\mathrm{IF})_{\mathrm{n}}$ such that A $\geq A H A\} \ldots(3.2) \quad$ is the set of all g-inverses of A dominating A.

Proof:

This follows from Theorem (3.2) by taking $G=A$. Since A is an idempotent IFM, A itself is a g-inverse.

Next we discuss the characterization of the sets $A\{1,3\}$ and $A\{1,4\}$ in terms of a particular element of the set.

Theorem 3.4:

The set $\mathrm{A}\{1,3\}$ consists of all solutions for X of $\mathrm{AX}=\mathrm{AG}$. Where G is a $\{1,3\}$ inverse of A.

Proof:

Since $\mathrm{G} \in \mathrm{A}\{1,3\}$, by Definition (2.2), $\mathrm{AGA}=\mathrm{A}$ and $(\mathrm{AG})^{\mathrm{T}}=\mathrm{AG}$. For $\mathrm{X} \in \mathrm{A}\{1,3\}$ we have $A X A=A$ and $(A X)^{T}=A X$. Then

$$
\begin{array}{rlr}
\mathrm{AG} & =(\mathrm{AXA}) \mathrm{G} & =(\mathrm{AX})(\mathrm{AG}) \\
& =(\mathrm{AX})^{\mathrm{T}}(\mathrm{AG})^{\mathrm{T}}=\left(\mathrm{X}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}\right)\left(\mathrm{G}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}\right) \\
& =\mathrm{X}^{\mathrm{T}}\left(\mathrm{~A}^{\mathrm{T}} \mathrm{G}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}\right)=\mathrm{X}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}} \\
& =(\mathrm{AX})^{\mathrm{T}} \quad \text { (By Definition (2.1)) } \\
& =\mathrm{AX} &
\end{array}
$$

Hence X is a solution of $A X=A G$.
Conversely, let $A G=A X$ with $G \in A\{1,3\}$. Then $A=A G A$
$\Rightarrow \mathrm{A}=\mathrm{AXA}$
$\Rightarrow \mathrm{X} \in \mathrm{A}\{1\}$
Since $A G=A X \Rightarrow(A G)^{T}=(A X)^{T}$
$\Rightarrow A G=(A X)^{T}$
$\Rightarrow A X=(A X)^{T}$
$\Rightarrow \mathrm{X} \in \mathrm{A}\{3\}$
From (3.3) and (3.4), it follows that $\mathrm{X} \in \mathrm{A}\{1,3\}$.Hence the proof.

Theorem 3.5:

For $A \in(I F)_{m \times n}$ and $G \in A\{1,3\}, \mathrm{A}_{G}\{1,3\}=\left\{\mathrm{G}+\mathrm{H} /\right.$ for all $\mathrm{H} \in(\mathrm{IF})_{\mathrm{mxn}}$ such that AG $\geq A H\} \ldots(3.5)$ is the set of all $\{1,3\}$ inverses of A dominating G.

Proof:

Let B denote the set on the R.H.S of (3.5). Suppose $G^{*} \in A_{G}\{1,3\}$, then $G^{*} \geq G$.
Let $\mathrm{G}^{*}-\mathrm{G}=\mathrm{H}$. Since $\mathrm{A}_{\mathrm{G}}\{1,3\} \subseteq \mathrm{A}_{\mathrm{G}}\{1\}$, by theorem (3.2), $\mathrm{G}^{*} \geq \mathrm{G}+\mathrm{H} \geq \mathrm{G}$.

$$
\Rightarrow \quad \mathrm{AG}^{*}=\mathrm{A}(\mathrm{G}+\mathrm{H}) \geq \mathrm{AG}
$$

By Theorem (3.4), $G^{*} \in A_{G}\{1,3\}$ and $G \in A_{G}\{1,3\}$

$$
\begin{aligned}
& \Rightarrow A G^{*}=A G \\
& \Rightarrow A(G+H)=A G \\
& \Rightarrow A G \geq A H .
\end{aligned}
$$

Hence $G+H \in B$. Thus for each $G^{*} \in A_{G}\{1,3\}$, there exists an unique element in B.

Conversely for any $\mathrm{G}^{*} \in \mathrm{~B}, \mathrm{G}^{*}=\mathrm{G}+\mathrm{H} \geq \mathrm{G}$ with $\mathrm{AG} \geq \mathrm{AH}$. Hence $\mathrm{AG}^{*}=\mathrm{AG}+\mathrm{AH}$ $=$ AG.By Theorem (3.4), it follows that $\mathrm{G}^{*} \in \mathrm{~A}_{\mathrm{G}}\{1,3\}$. Hence the theorem.

Corollary 3.6:

For $\mathrm{A} \in(\mathrm{IF})_{\mathrm{n}}$ be a symmetric idempotent fuzzy matrix then $\left\{\mathrm{A}+\mathrm{H} /\right.$ for all $\mathrm{H} \in(\mathrm{IF})_{\mathrm{n}}$ such that $\mathrm{AG} / \mathrm{AH}\}$ is the set of all $\{1,3\}$ inverses of A dominating A.

Proof:

This follows from Theorem (3.5) by taking $G=A$. Since A is symmetric and idempotent IFM, A itself is a $\{1,3\}$ inverse.

Remark 3.7:

The condition that G is a $\{1,3\}$ inverse of A is essential. This is illustrated in the following example.

Example 3.8:

$$
\text { For } \quad A=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle \in A\{1,3\}
$$

$\Rightarrow \quad A\{1,3\} \neq \Phi$
Consider $\mathrm{G}=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ .7 & 0\end{array}\right)\right) \notin A\{1,3\}$

$$
\begin{aligned}
& A G=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
.7 & 0
\end{array}\right)\right\rangle \\
= & \left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
.7 & 0
\end{array}\right)\right\rangle
\end{aligned}
$$

For $\mathrm{H}=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & .2\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ .3 & 0\end{array}\right)\right\rangle$

$$
\begin{aligned}
& \mathrm{AH}=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & .2
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
.3 & 0
\end{array}\right)\right\rangle \\
& =\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & .2
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
.3 & 0
\end{array}\right)\right\rangle \\
& \Rightarrow A G \geq A H \\
& \text { but } \mathrm{G}+\mathrm{H} \\
& \quad=\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
.7 & 0
\end{array}\right)\right\rangle+\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & .2
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
.3 & 0
\end{array}\right)\right\rangle \\
& \quad=\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
.3 & 0
\end{array}\right)\right\rangle \\
& \Rightarrow \mathrm{G}+\mathrm{H} \notin \mathrm{~A}\{3\} \\
& \Rightarrow \mathrm{G}+\mathrm{H} \notin \mathrm{~A}_{\mathrm{G}}\{1,3\}
\end{aligned}
$$

Since $G \in A\{1,3\} \Leftrightarrow G^{T} \in A^{T}\{1,4\}$

Theorem 3.9:

The set $A\{1,4\}$ consists of all solutions for X of $\mathrm{XA}=\mathrm{GA}$, where G is a $\{1,4\}$ inverse of A.

Proof:

This can be proved in the same manner as that of Theorem (3.4).

Theorem 3.10:

For $\mathrm{A} \in(\mathrm{IF})_{\mathrm{mxn}}$ and $\mathrm{G} \in \mathrm{A}\{1,4\}, \mathrm{A}_{\mathrm{G}}\{1,4\}=\left\{\mathrm{G}+\mathrm{H} /\right.$ for all $\mathrm{H} \in(\mathrm{IF})_{\mathrm{nxm}}$ such that $\left.\mathrm{GA} \geq \mathrm{HA}\right\}$...(3.6)
is the set of all $\{1,4\}$ inverse of A dominating G.

Proof:

Let B denote set on the R.H.S of (3.6).Suppose $G^{*} \in A_{G}\{1,4\}$ then $G^{*} \geq G$. Let $G^{*}-G=H$. Since $A_{G}\{1,4\} \subseteq A_{G}\{1\}$, by lemma (3.1), $G^{*} \geq G+H \geq G$. This implies that $\mathrm{G}^{*} \mathrm{~A} \geq(\mathrm{G}+\mathrm{H}) \mathrm{A}=\mathrm{GA}$ By Theorem (3.9), $\mathrm{G}^{*} \in \mathrm{~A}_{\mathrm{G}}\{1,4\}$ and $\mathrm{G} \in \mathrm{A}_{\mathrm{G}}\{1,4\}$

$$
\begin{aligned}
& \Rightarrow \mathrm{G} * \mathrm{~A}=\mathrm{GA} \\
& \Rightarrow(\mathrm{G}+\mathrm{H}) \mathrm{A}=\mathrm{GA}
\end{aligned}
$$

$$
\Rightarrow \mathrm{GA} \geq \mathrm{HA}
$$

Thus $\mathrm{G}+\mathrm{H} \in \mathrm{B}$. Hence for each $\mathrm{G}^{*} \in \mathrm{~A}_{\mathrm{G}}\{1,4\}$, there exists an unique element in B .
Conversely, for any $G^{*} \in B, G^{*}=G+H \geq G$ with $G A \geq H A$. Hence $G^{*} A=G A+H A$ $=$ GA. By Theorem (3.9), it follows that $G^{*} \in A_{G}\{1,4\}$. Hence the proof.

Corollary 3.11:

Let $\mathrm{A} \in(\mathrm{IF})_{\mathrm{n}}$ be a symmetric and idempotent intuitionistic fuzzy matrix. Then $\left\{\mathrm{A}+\mathrm{H} /\right.$ for all $\mathrm{H} \in(\mathrm{IF})_{\mathrm{n}}$ such that $\left.\mathrm{GA} \geq \mathrm{HA}\right\}$ is the set of all $\{1,4\}$ inverse of A dominating A .

Proof:

This follows from Theorem (3.10) by taking $\mathrm{G}=\mathrm{A}$. Since A is a symmetric idempotent IFM, A itself is a $\{1,4\}$ inverse.

Remark 3.12:

In Theorem (3.10), G is a $\{1,4\}$ inverse of A is essential. This is illustrated in the following example.

Example 3.13:

$$
\text { For } \begin{aligned}
\mathrm{A} & =\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle, \quad\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle \in A\{1,4\} \\
& \Rightarrow A\{1,4\} \neq \phi
\end{aligned}
$$

Consider G $=\left\langle\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}0 & .7 \\ 0 & 0\end{array}\right)\right\rangle$

$$
\begin{aligned}
\text { G A } & =\left\langle\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & .7 \\
0 & 0
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle \\
& =\left\langle\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & .7 \\
0 & 0
\end{array}\right)\right\rangle
\end{aligned}
$$

$$
\text { For } \mathrm{H} \quad=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & .2
\end{array}\right)\left(\begin{array}{ll}
0 & .3 \\
0 & 0
\end{array}\right)\right\rangle
$$

$$
\text { HA } \quad=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & .2
\end{array}\right),\left(\begin{array}{ll}
0 & .3 \\
0 & 0
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle
$$

$$
=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & .2
\end{array}\right),\left(\begin{array}{ll}
0 & .3 \\
0 & 0
\end{array}\right)\right\rangle
$$

$$
\Rightarrow G A \geq H A
$$

But

$$
\begin{aligned}
& \mathrm{G}+\mathrm{H}=\left\langle\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & .7 \\
0 & 0
\end{array}\right)\right\rangle \\
&=\left\langle\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & .7 \\
0 & 0
\end{array}\right)\right\rangle \\
& \Rightarrow \mathrm{G}+\mathrm{H} \notin \mathrm{~A}\{4\} \\
& \Rightarrow \mathrm{G}+\mathrm{H} \notin \mathrm{~A}_{\mathrm{G}}\{1,4\} .
\end{aligned}
$$

Theorem 3.14:

Let A be symmetric idempotent matrix in $(\mathrm{IF})_{\mathrm{n}}$. Then $\mathrm{A}^{+}=\mathrm{A}$.

Proof:

By Theorem (3.5) and Theorem (3.10),
$\mathrm{A}^{(1,3)}=\mathrm{A}+\mathrm{K}$ where $\mathrm{A} \geq \mathrm{AK}$ and $\mathrm{A}^{(1,4)}=\mathrm{A}+\mathrm{H}$ where $\mathrm{A} \geq \mathrm{HA}$
$\mathrm{By}(2.3), \mathrm{A}+\mathrm{AK}=\mathrm{A}=\mathrm{A}+\mathrm{HA}$

$$
\begin{aligned}
\mathrm{A}^{+} & =\mathrm{A}^{(1,4)} \mathrm{AA} \mathrm{~A}^{(1,3)} \\
& =(\mathrm{A}+\mathrm{H}) \mathrm{A}(\mathrm{~A}+\mathrm{K}) \\
& =\left(\mathrm{A}^{2}+\mathrm{HA}\right)(\mathrm{A}+\mathrm{K}) \\
& =(\mathrm{A}+\mathrm{HA})(\mathrm{A}+\mathrm{K}) \\
& =\mathrm{A}(\mathrm{~A}+\mathrm{K}) \\
& =\mathrm{A}^{2}+\mathrm{AK} \\
& =\mathrm{A}+\mathrm{AK} \\
& =\mathrm{A} \\
\Rightarrow \mathrm{~A}^{+} & =\mathrm{A} .
\end{aligned}
$$

By Theorem (3.9), for some $\mathrm{A}^{(1,3)}$ and $\mathrm{A}^{(1,4)}$ inverses of A .

Hence the theorem.

References

[1] K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, vol.20, 8796 (1986).
[2] H.H.Cho, Regular fuzzy matrices and fuzzy equations, Fuzzy Sets and Systems, 105, (1999), 445-451.
[3] K.H.Kim ,F.W.Roush, Generalised fuzzy matrices, Fuzzy sets and Systems. 4, (1980), 293-315.
[4] AR.Meenakshi, Fuzzy matrices: Theory and its applications, MJP Publishers, Chennai, 2008.
[5] AR.Meenakshi and T.Gandhimathi, On Regular intuitionistic Fuzzy matrices, Int. J. of Fuzzy Math. Vol. 19, No. 2, 2011, 599-605.
[6] M.Pal , S.K.Khan, A.K.Shyamal, Intuitionistic fuzzy matrices,NIFS,8(2),(2002),51-62.
[7] S. Sriram and P. Murugadas, The Moore-Penrose Inverse of Intuitionistic Fuzzy Matrices, Int. Journal of Math. Analysis, Vol. 4, 2010, no. 36, 1779 1786.

