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Abstract

In this Letter, we introduce a new technique to find an approximate solution
for second order Fredholm integro-differential equations (FIDEs). This
technique depends on approximate the solution using the spline functions
expansion. Special attention is given to study the error estimation and the
convergence of the proposed method. Also, the stability of the technique is
presented. The numerical results are compared with the conventional
approximate method, variational iteration method.
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Introduction
Consider the following second order Fredholm integro-differential equation:
b
y'(x)= f(X,Y(X),Y'(X),éfK(X,t, y®,y'(9))dt, asx<b, (1)

with the following initial conditions:
Y =cp Yxg)=cy, 2)
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where f is given function and y is the unknown function to be found in the interval

[a,b]. In [1] and [6] the authors introduced a method is an one-step method 0(hm+a)

in y(l) (x), 1=0,1,2. Assuming that f € C[a, b]xR4, 0<a <1 and m is an arbitrary
positive integer which is the number of iterations used in computing the spline
functions defined in the method ([5]-[8]).

The rest of this paper is organized as follows: Section 2 is assigned to introduce
some assumptions and procedure of the proposed method. In section 3, the error
estimation and convergence are given. In section 4, the stability of the method is
presented. In section 5, an example is solved by the proposed method, to illustrate and
show the efficiency of the method. Also, the conclusions and remarks will appear in
section 6.

Assumptions and procedure solution
We write (1) in the following form

y'(x) =f(x,y(x),y'(x),2(x)), a<x<b, (3)
where

b
z(x) = 2{ K(x,t, y(0),y' (1) dt,

y(xg)=cy Yy =c,.
Suppose that the function f :[a,b]XR4 — R is continuous and satisfies the

Lipschitz condition:
If(x,yl,vl,zl)—f(x,yz,vz,zz) I< Llll Y=Y, [+1 ViTV, | +1 z, -2, IJ, 4)

for any (X, T Zl) and (x, Yo:Vs z2) in the domain of definition of the function f.

Also, assume that the kernal K: [a,b]><[a,b]><R2 — R is a smooth bounded
function and satisfies the Lipschitz condition [4]:
I K(X,t,yl,vl)—K(x,t,yz,vz) I< L2[ I Y1—Ys [+] Vi—V, [, ®))

for any (x,t,yl,vl) and (x, t,y2,v2) in the domain of definition of the kernal K.

These conditions assure the existence of the unique solution of problem (1).
Let A be an uniform partition of the interval [a,b] defined by the nodes:

A:=a=x0 <Xy <Xp <Xy <Xy <en<Xp =Db,

+1

where x. =x+kh, h=2"% <1 and k=012..n—1.
kK = X0 "
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Assume that the function y" has a modulus of continuity:
w(y",h) = w(h) =o(h®), O<a<l.

Choosing  the  required  positive  integer m, then for any
[xk,xk +1], k=0,1,2,...n—1. We define the spline function approximating the

solution y(x) by S A (x) where:

S () =S]I<n(x) :slffl(xk)+s 'km_l(xk)(x—xk)+

X t
[ ] fa, s{?‘l(u), S’{(n'l(u), zlr(“‘l(u)) dudt, (6)
X, X
k Xk
b
where zf(“‘l(u)= [ K(u, t,skm‘l(u), sf‘l(u))du,
a

sﬁl(xo)=cl, S'T(XO)=C2, ST(t)=C1, S'flll(t)=c2.

In Eq.(6) we use the following m iterations for
X € [Xk’xk+1]’ k=0,1,2,...n-1, j=1.2,.. m.

$100 =S ) +8' T (x) (x—x )+

f(u, sf(‘l . S'f'('l(u), zf(‘l(u) ) dudt, %

~ —

X
J
XkX

. b . .
where Z 71w = [ K(u,t8 .7 @) du,
a
M

Sg(x)=S (X )+ 1rjfl(xk)(x-xk)+7k(x-xk)z, (8)
b

M, =f(x, S (x .80 (x) ), JK(x, L 687 (0,877 (0)do). 9)
a

The Eqs.(7)-(9) present the main scheme which produced from the proposed
method. From this scheme, we can obtain the approximate solution of the problem

(1).

Error estimation and convergence
To estimate the error, it is convenient to represent the exact solution y(x) in various
forms as described by the following scheme:
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O =yx) =yx ) +y(x, )(x-x, )+ ” k)(x-x )2 (10)
y y() = y(x, ) +y'(x KT O

Y(Xk) = YK’ y’(Xk ): y'k B ék € (Xk7xk+1)-

For 1=1,2,....m we write:

Y =y =0 ) +Y(x) (x=x, )+

X t i1 i1 i1
[ ] futy™ @,y ", Z" () dudt, (11)
K *k

. b . .
where Z )= [K(u, ty' T, y' T @) du
a

Moreover, we denote to the estimated error of y(l) (x) at any point
x €[a,b] where i=0,1,2 by:

e(x) =l y(x)—SA(x) l, €L = Y —SA (xk) l, (12)
e'(x)=ly'(x) —S’A x) 1, e'k = y'k—S'A (Xk) [l (13)
Lemma 1

Let a and B be non-negative real numbers and {Ai}inzlo be a sequence satisfying
Ai < OL+BAi+1 fori=1,2,....m-1, then:

m-2 .
A <p™ A va 3B
i=0

Lemma 2

Let aand B be non-negative real numbers, B#1 and {Ai }%( -0 be a sequence

satisfying AO >0 and Ai+1 < OL-I-BAi for 1=0,1,2,....k, then:

k+1
k+1 B -1
Ay SBETAGH a[—1]

Definition 1
For any ue [Xk,xk+1], k=0,1,2,...,n—-1, and j=1,2,...,m we define the operator

Tkj (u)by:
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S m-jo o om-j m-j o m-j
Tk_] (U.) =l y (U.) Sk (U) I+ y (l.l) S k (u) |7

whose norm is defined by:
Il Tkj ll= - [Xma)): ]{Tkj (u)}.
K’k +1

Lemma 3
Forany ue [Xk,Xk+1], k=0,1,2,...,n—1, and j=1,2,...m

3 3 3
<(1+= = =
IITk 1< (1+2b0)ek+(2+2b0)ek+2hw(h), (14)

| m
I Tkl lI< blek + bze k+C1h w(h). (15)

Proof
Using (4), (5), (8), (10), (12) and (13), we get:

iy (0 -SPI<ly, —ST (e )y, —ST Gy )

1
b=y 141y )My x—x 1. (16)

Since:
" M LY )~y Y M |

b
m ' mn m
Sw(h)+L1[ka _Sk—l(xk)|+|yk_sk—l(xk)l}rLZ[E{( Y-S O]

+ y'(t)-S‘km_l ®hdt].

But for te [x; ,x, ], e® =] y(t)—Skm_l(t) e, and

' | ' _ m [
e'(t)=ly'(t) Sk_l(t)l—>ek ast — X, .

k
Hence
Iy"(ék) - Mkl <w(h)+ L1 (ek + e'k) + L2 (b— a)(ek + e'k)
= w(h)+bg(e, +€' ) (17

where b0 = L1 + L1L2 (b—a) is a constant independent of h.
Using (17) in (16) we get:



150 S.T. Mohamed and M.M. Khader

0 0 h?
ly (X)—Sk(x)ISek+hek+7[w(h)+b0(ek+ek)] as)
1 h Al

Sek+ek+5[w(h)+b0(ek+ek)], (h<1).

Similarly

1y -5 1< ¢ +h{wh)+by (e, +e\ )] (19)

Adding (18) and (19) we get:

3 3 .3

Il Tkm lI= e [Xma;( ]{Tkm(x)} < (1+§b0)ek +(2+§b0)ek+5h w(h).

k’"k+1

To prove (15), we compute || Tkm II'and using (4), (5), (7), (11), (12) and (13)

) ) X t b
I ym—J (x)_s{{n_J (x) I< e +he‘k+L1 [ Tk(j+1)(x)dx +L2 kaGH)(t)}dt,
a

*k 'k
m—j m—j h2
— < ! -
Xe[xma;( ]Iy (x) Sk (X)I_ek+hek+ 5 bO
k’k+1
”Tk(j+1)”’ (h<1). (20)
Similarly:
lm_j _ |m_j '
max ly x)-S K x) < ek+hb0 Il Tk(j+1) . 21D
Xe XXy 4y

Adding (20) and (21), we obtain:

. 3
I Tkj 1< €y +2ek+5b0h ”Tk(j+1) II.

Using Lemma 1, and the inequality (14) we get:
3

m-1 m-2/73 i
Il Tkl lI< (zbohj Il Tkm Il +(ek +2€:k ) i §0(2b0hj
< éb h m (1+§b ) +(2+§b )e' +§h (h) |+ (e, +2¢ )mz_z Eb hi
=370 5°0”%k 520k, MW k e1<i=020

. m
< blek + bze k+clh w(h),
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m (3 )l m-1r3 i 303, ™

where blz.z (Eboj, b2=2'2 (Eboj and Clzz(zboj , are constants
1=0 1=0

independent of h.

Lemma 4
Let e(x) and e'(x) be defined as in (12), (13), then there exist constants

b3, b 4 b 5 b 6 €2 and C3 independent of h such that the following inequalities
hold:

e(x) < (1+hby)e, +hb e’ e h ™ 2w (h),

e'(x) < hbsek +(1+ hb6)e'k +c3hm+1w(h),

b,b b,b b.c

01 b4:1+M, b =b.b,. b, =b.b =071 4nd
2 2

where by = 5 =bgbps bg=bgby, ¢y =

c3 =b001.

Proof
Using (4), (5), (6), (11), (12), (13) and (15) it is easy to prove the lemma.

Definition 2
Let A:[aij] and B:[bij] be two matrices of the same order, then we say that

A <B iff:
[i.] both aij and bij are non-negatives;

[ii] a..<b.., Viij.

In view of this definition and using the matrix notation:
— ' T - [ T _ T
Ex)=(ex)e'(x)", E==(ee) ) and C=(cycq)",

where T stands for the transpose, then from Lemma 4, we can write:
E(X) = (I+hA)E, +Ch™ 7 Lym). 22)

where I is unit matrix and A = .
bs  bg
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Definition 3
Let T= [tij] be a mXn matrix then, we define:

n
ITIl=max Y It..|
1 =0

Using this definition, the inequality (22) yields:
TE)IK(1+hITAT)I Ek H+ncCl hm+1w(h).

This inequality holds for x € [a,b]. Setting x = X141 Ve obtain:

I Ek 1 I<(I+hITAT)I Ek I+1ncCil hm+1w(h).

Using Lemma 2, and noting that || E0 =0 we get:

I E(x)lI< b7hmw(h),
where b7 = %[e” All(b—a) _ 1] is a constant independent of h. Using Definition
3, we get:
e(x) < b,hMw(h), (23)
e'(x) < b7hmw(h). (24)

Now we are going to estimate Iy"(x)—S"A (x) 1. Using (4), (5), (6), (11), (12),
(13), (15), (23), and (24), we get:

ly"(x) —S"A x)I< bghmw(h),

where b8 = bO[b7 (b1 +b 2) + Cl] is a constant independent of h. Hence from above

Lemma we have arrive to the following theorem.

Theorem 1
Let y(x) be the exact solution of the problem (1), S A(x) given by (6) is the

approximate solution for the problem, f € C[a, b]x R4 , then the following inequalities

1y ) -5 P () 1< bgh Mw(h),

hold for xe [a,b]land p=0,1,2 and b9 is a constant independent of h.
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Stability of the method
To study the stability of the method, we change S A x) to W A (x) where

W, () =w1?“_1(xk)+W'm () )%, )+

k-1
X t
[ ] u,Wlin_l(u),W'lr(n_l(u),Pl?l_l(u) ) dudt, (25)
K Xk

b
PP )= [KCu,t W T, w1 w) e

b

where W_Hl1 x) = cs W '_1 x) = €y In Eq.(25) we use the following m iterations. For

xe[xk,xk+l], k=0,1,...,n-1 and j=1,2,....m

Wli((x) =W xO+W T (x )(x-x )+

X i=1 uni=1 pi=1

[ ] 1 u,Wk (u),W'k (u),Pk (u) ) dudt, (26)
*k %k

Pj_1 —bK Wj_1 W'j_1 d
k (ll)— I (u’ta k (ll), k (U)) t,

b
0 m m Nk 2
Wk x) = VVk_1 (Xk)+ W'k_1 (xk)(x - Xk) +T(X - xk) , 27
b
_ m m m m
Moreover, we use the following notations:
%
e (X)=|SA(X)-WA(X)|, ey :ISA(Xk)-WA(Xk)I, (29)
%k
e (x)=l S'A (x)—W‘A x) 1, e'k = SA(Xk)—WA(xk) . (30)

Definition 4
For any xe [Xk’xk+l]’ k=0,1,.,n-1 and j=1,2,...,.m we define the operator

%
Tkj (x) by:

sz(x)=|slfl‘j(x)-w km‘j(x)|+|S'km‘j(x)-wf‘j(xn,

whose norm is defined by:
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k *k
I Tkj ll= . [xma)): ]{Tkj (x)}.
k> k+1

Lemma 5
For any x € [Xk’xk+1]’ k=0,1,.,n-1and j=1,2,....m then:

1T I d42b e +2+2b e 31
km 'S (1+5Dp)e +@F-bg)ey GD

%

*k %
I Tkl lI< blek + bze K (32)

where b0 , b1 , b2 are constants defined as in Lemma 3.

Proof
To prove (31), using (4), (5), (8), (27), (29), and (30). To prove (32), using (4), (5),
(7), (26), (29), (30), (32), and Lemma 3. The proof is similar to the proof of Lemma 3.

Lemma 6

Let e>l< (%), e'>l< (x) be defined as in (29), (30), then there exist constants
b3 ,b 4° b 5 b 6 independent of h such that the following inequalities hold:
’*
4%k
%k k k
e x)< hbSek +(1+ hb6)e'k ,

e*(x)S(l+hb3)e; +hb

b,b; b,b

_ 0”1 _ —
—_—, b4—1+ 5 b5—b b, =b,b

6 072

where b3 = 0P’

Proof
Using (3), (4), (5), (25), (29), and (30). The proof is similar to the proof of Lemma 4.

Theorem 2
Let S A (x) given by (6) is the approximate solution of the problem (1) with the initial

conditions y(xo)=c1 and y'(xO)=c2 and let W A(x) given by (25) be the

approximate solution for the same problem with initial conditions y (xO) =c, and

1
y'>I< (xo) = c; , f e Cla, b]><R4 then the inequalities:

%
TE I

@ w@
1S, - W, I<b g IIEq Il

A

hold for x € [a,b], q=0,1,2,
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* * *
IEyll= max {lyy—yql+lyy=yylh
X € [a,b]

where b 10 is a constant independent of h.

Numerical example

In this section, we consider the following equation:
1
y'x)=y'(x)— [y'(t)dt+1.71828, (33)
0

with the initial conditions y(0)=1, y'(0)=1. The exact solution of this problem is

y(x)= e .
The VIM gives the possibility to write the solution of Eq.(33) with the aid of the
correction functional:

X 1
Yol (x) = Yy (x) + ({ M| Y yer ym + ({ynt (H)dt —1.71828 ]dr. (34)

It is obvious that the successive approximations y,, n=0 (the subscript n

denotes the n-th order approximation), can be established by determining, the general
Lagrange multiplier, 4, which can be identified optimally via the variational theory
([2], [9]-[11]). The function 37n is a restricted variation, which means ¢ ’in =0.

Therefore, we first determine the Lagrange multiplier Athat will be identified
optimally via integration by parts. The successive approximations yp,, n =1, of the

solution y will be readily obtained upon using the Lagrange multiplier obtained and
by using any selective function Yo The initial values of the solution are usually used

for selecting the zeroth approximation Yo With determined, then several

approximations y,, n 21, follow immediately. Consequently, the exact solution may
be obtained by using:
y(o=_lim 'y, (x). (35)

Making the above correction functional stationary, and noticing that J in =0, we

obtain:
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X 1
5yn +1(X) = 5yn(x) + 5({ Mo)[ Y ee Ve +({ynt (H)dt—1.71828 ]dt

. X .o
=0y +Mdy -Mndy 1 _ +({ MD)[8y 1dT=0,
where 0 ?n is considered as a restricted variation i.e., J in =0, yields the following

stationary conditions:
M7)=0,  1-M7)l=x=0, 1-M7) lg=x = 0. (36)

The equation (36) is called Lagrange-Euler equation, the Lagrange multiplier,
therefore, can be readily identified A(t)=x —T.

Now, the following variational iteration formula can be obtained:

X 1
Y, +1(x) =y, (x) + ({ x-1)[ Yore Yoo T ({ynt (t)dt —1.71828]dt. (37)

We start with an initial approximation and by using the above iteration formula
(37), we can obtain directly the components of the solution as follows:

yO(X) =1+X$
¥ (x)=1+x+0.8591x7,

2

Yo (X) =1+ X +0.4296x " + 0.2864x°,

2 10.1432x3 +0.0716x %,

3 1

y3(x) =1+x+0.5011x

2 5

+0.1671x~ +0.03358x * +0.0143x~,

3 +0.0418x% +0.0072x°

y4(x)=l+x+0.5012x

2 6

Y5 (x) =1+x+0.4999x“ +0.1671x +0.0023x ™.

In the same manner, we can obtain other components of the solution. In order to
verify numerically whether the proposed methodology lead to higher accuracy, we
can evaluate the numerical solutions using n =8 terms approximation.

Table 1, shows the numerical results of the problem (33) using the spline function
expansion. In this Table, we compute the first approximate solution (First app. sol.),
first absolute error (the difference between the exact and approximate solution before
change), the second approximate solution (Scond app. sol.) and the second absolute
error (the difference between the first and second solutions), with different iterations
number m at some values of x =0.1, 0.2,0.3,0.4,0.5.

The above simulation proves that the proposed method is a very useful numerical
method to get accurate solutions to second order Fredholm integro-differential
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equations. Figure 1, presents a comparison between the exact solution, y,, .., the

solution obtained from the proposed method, y and the solution using VIM,

spline
YVIM in the interval [0,1]. Figure 1, shows that the proposed method provides

excellent approximations to the solution of related equation to second-order Fredholm
integro-differential equations. The numerical results showed that the proposed method
has very accuracy and reductions of the size of calculations compared with the VIM

([31, [11D).

Concluding remarks and discussion

This paper centralized to present a new method for solving the second order FIDEs.
This analysis shows that the proposed technique has much impact on the accuracy and
efficiency of the solution on the second order FIDEs. We investigated the error
estimation and the stability of the proposed method. The analytical approximation to
the solutions is reliable, and confirms the power and ability of the proposed technique
as an easy device for computing the solution of such these problems. The presented
example shows that the results of the proposed method are in excellent agreement
with those of exact solution. Also, a comparison with the approximate method, VIM
is given. All computations in this paper are done using Mathematica 6.

Table 1
x | m | First app. sol. | First absolute error | Second app. sol. | Second absolute error
0.1] 1] 1.10458208 10 1.10459305 <10-4
2 | 1.10516199 5.9 1.10517300 5.8
3| 1.10518243 8.9x1070 1.10519343 ’ 1><10‘6
4 | 1.10517102 -5 1.10518202 '
1.1x10 5
5| 1.10517063 7 1.10518164 2.3%10
1.0x10 5
-7 1.1x10
2.8X10 . 5
1'1><10_
021 1] 1.22061315 4 1.22062508 4
2 | 122122640 7.9%10 1.22123841 7.8%10
3| 1.22142326 1_7><10‘4 1.22143511 1.6><10'4
4 | 122124071 1.22141914
107 107
5| 1.22140219 2.1% 1.22141419 3.6%
4.4x1070 16%107
s ex107 %107
03] 1] 135039036 4 1.35040325 4
2 | 1.34493612 5.3x10 1.34937428 5.4x10
3 | 1.34985298 4_9><10'4 1.34986598 4.8><10‘4
4 | 1.34987245 1.34988545




158

S.T. Mohamed and M.M. Khader

5 [ 1.34985878 5_8X10-6 1.34987178 7.2X10—6
1.3><10_6 2.7X10_5
2.8X10-8 1_3)(10_5

04| 1| 1.49481911 3 1.49832956 3

2 | 1.49097150 2.9x10 1.49098552 3.0x10

3| 149175776 | g sx107 1.49177176 g.4x1074

4 | 1.49184910 ' 5 1.49186310 ’ 5

5| 1.49182610 6.7%10 1.49184010 5.3%10
2.4x107 3.5x10”
14107 15x107

05| 1| 1.65503267 3 1.65504746 3

2 | 1.64753396 6.3x10 1.64754899 6.3x10

3| 1.64856616 L x1073 1.64858117 1.x1073

4 | 1.64875591 ' 4 1.64877091 ' 4

5| 1.64872483 1.5x10 1.64873983 1.4%10
3.4X10_5 4'9X10_5
3.5><10_6 1.8 x107

28 T T T T
—Yexact /EL
26 3rspline ]
54l ¥ Yum '5/ i
22} *ﬁ/ R

yd
2tk & n
g | o _
16F -
14F .
1.2+¢ .
1 1 1 1 1 1 1 1 1 1

u 0.1 02 03 04 05 06 07 08 09 1

Figure 1: Comparison between the exact solution and solution obtained from the

proposed method with the solution using VIM.
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