
Global Journal of Pure and Applied Mathematics. 
ISSN 0973-1768 Volume 8, Number 2 (2012), pp. 145-159 
© Research India Publications 
http://www.ripublication.com/gjpam.htm 

 
 

Numerical Solutions to the Second Order Fredholm 
Integro-Differential Equations using the Spline 

Functions Expansion 
 
 

S.T. Mohamed1 and M.M. Khader2 
 

1Department of Mathematics, Faculty of Art and Science, 
Garyounis University, Al-Kofra, Libya 

E-mail: dr.samer2008@yahoo.com, 
2Department of Mathematics, Faculty of Science, 

Benha University, Benha, Egypt 
E-mail: mohamedmbd@yahoo.com 

 
 

Abstract 
 

In this Letter, we introduce a new technique to find an approximate solution 
for second order Fredholm integro-differential equations (FIDEs). This 
technique depends on approximate the solution using the spline functions 
expansion. Special attention is given to study the error estimation and the 
convergence of the proposed method. Also, the stability of the technique is 
presented. The numerical results are compared with the conventional 
approximate method, variational iteration method.  
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Introduction 
Consider the following second order Fredholm integro-differential equation:  

 b,xa       dt, )
b

a
 (t))y' y(t), t,K(x,(x),y'y(x),f(x,(x)'y' ≤≤∫=   (1) 

 
with the following initial conditions: 
 ,

2
c)

0
(xy'         ,

1
c)

0
y(x ==   (2) 
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where f is given function and y is the unknown function to be found in the interval 

b] [a, . In [1] and [6] the authors introduced a method is an one-step method )αmo(h +  

in (x)(i)y , .2,1,0=i  Assuming that 1α0   ,4Rb]C[a,f ≤<×∈  and m is an arbitrary 
positive integer which is the number of iterations used in computing the spline 
functions defined in the method ([5]-[8]).  
 The rest of this paper is organized as follows: Section 2 is assigned to introduce 
some assumptions and procedure of the proposed method. In section 3, the error 
estimation and convergence are given. In section 4, the stability of the method is 
presented. In section 5, an example is solved by the proposed method, to illustrate and 
show the efficiency of the method. Also, the conclusions and remarks will appear in 
section 6. 
 
 
Assumptions and procedure solution 
We write (1) in the following form 
 b,xa       , z(x)) (x),y'y(x),f(x,(x)'y' ≤≤=   (3) 
 
where  

 dt,
b

a
 (t))y' y(t), t,K(x,z(x) ∫=   

 .
2

c)
0

(xy'     ,
1

c)
0

y(x ==  

 

 Suppose that the function R4Rb][a,:f →×  is continuous and satisfies the 
Lipschitz condition: 
  [ ], |

2
z

1
z| |

2
v

1
v| |

2
y

1
y| 

1
|)2z,2v,2yf(x,)1z,1v,1yf(x,| −+−+−≤− L   (4) 

 
for any )1z,1v,1y(x,  and )2z,2v,2y(x,  in the domain of definition of the function f. 

 Also, assume that the kernal R2Rb][a,b][a,:K →××  is a smooth bounded 
function and satisfies the Lipschitz condition [4]: 
 ], |2v1v| |2y1y|  [

2
L|)2v,2yt,K(x,)1v,1yt,K(x,| −+−≤−   (5) 

 
for any )1v,1yt,(x,  and )2v,2yt,(x,  in the domain of definition of the kernal K. 

These conditions assure the existence of the unique solution of problem (1).  
 Let Δ  be an uniform partition of the interval  b][a,  defined by the nodes: 

 b,:nx...1kxkx...2x1x0xa:Δ =<<+<<<<<==  

 

where 1
n

a-b
h   kh,0xkx <=+=  and 1.n0,1,2,...,k −=  
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 Assume that the function 'y'  has a modulus of continuity:  

 1.0            ),αo(hw(h)h),'w(y' ≤<== α  
 
 Choosing the required positive integer m, then for any 

1.n0,1,2,...,k   ],1kx,k[x −=+  We define the spline function approximating the 

solution y(x) by (x)
Δ

S  where: 

 m m mS (x) S (x) S (x ) S ' (x )(x-x )
Δ k k-1 k k-1 k k

= = + +   

 
x t m-1 m-1 m-1 f(u, S (u), S' (u), Z (u))  dudt,

k k k
x x

k k

∫ ∫   (6) 

 

where ∫=− b

a
du, ) (u)1-m

k
' S  (u),1-m

k
S t,u, K( (u)1m

k
Z  

  .2c (t)m
1- S'        ,1c (t)m

1- S      ,2c )
0

(xm
1-' S     ,1c )

0
(xm

1- S ====  

 
 In Eq.(6) we use the following m iterations for   
 m.1,2,...,j   1,n0,1,2,...,k   ],1kx,k[xx =−=+∈  

 j m mS (x)  S  (x ) S' (x ) (x x )k k-1 k-1k k k
= + − +   

 
x t j-1 j-1 j-1 f( u, S (u), S' (u), Z (u) )  dudt,

k k k
x x

k k

∫ ∫   (7) 

 

where ∫=
b

a
,du  ) (u)1-j

kS' (u),1-j
kS t,u, K(   (u)1-j

k Z  

 ,2)
k

x-(x
2
k

M
)

k
x-(x ) 

k
(xm

1-k S'  )
k

(xm
1-k S (x)0

k S ++=   (8) 

 . ) 
b

a
dt ) (t)m

1-k
S' (t),m

1-k
S  t,,

k
 xK(  ),

k
 x(m 

1-kS' ),
k

 x(m
1-kS ,

k
 xf(

k
M ∫=   (9) 

 
 The Eqs.(7)-(9) present the main scheme which produced from the proposed 
method. From this scheme, we can obtain the approximate solution of the problem 
(1). 
 
 
Error estimation and convergence 
To estimate the error, it is convenient to represent the exact solution  y(x) in various 
forms as described by the following scheme: 
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 ,2)
k

x-(x
2

)
k

(ξ'y'
)

k
x-(x ) 

k
(xy'  )

k
y(xy(x) (x)0y ++==   (10) 

 ).1kx,k(xkξ        ,
k

y') 
k

(xy'      ,
k

y)
k

y(x +∈==  

 
 For m1,2,...,i =  we write: 

 iy (x) y(x) y(x ) y'(x ) (x x )
k k k

= = + − +   

 
x t i-1 i-1 i-1 f( u, t,y (u), y' (u), Z (u) )  dudt,

x x
k k

∫ ∫   (11) 

 

where ∫=
b

a
du.  ) (u)1-iy' (u),1-iy t,u, K(   (u)1i- Z  

 

 Moreover, we denote to the estimated error of (x)(i)y  at any point 
  b] [a, x ∈ where 0,1,2i =  by: 

     |,)k(x
Δ

Sky|ke           |,(x)
Δ

Sy(x)|e(x) −=−=   (12) 

  .|)k(x
Δ

S'ky'|ke'          |,(x)
Δ

S'(x)y'|(x)e' −=−=   (13) 

 
Lemma 1 
Let α  and β  be non-negative real numbers and m

0i}i{A =  be a sequence satisfying 

1iβAαiA ++≤  for 1,-m1,2,...,i =  then: 

 ∑

=
+≤

2-m

0i
.iβαmA1-mβ1A  

 
Lemma 2 

Let α and β  be non-negative real numbers, 1β ≠  and k
0i}i{A =  be a sequence 

satisfying 00A ≥  and iβAα1iA +≤+  for k,1,2,...,,0i =  then: 

 .
1β

1-1kβ
α0A1kβ1kA

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

+
++≤+  

 
Definition 1 
For any  1,n0,1,2,...,k   ],1kx,k[xu −=+∈ and m1,2,...,j =  we define the operator 

(u)kjT by: 
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 |,(u)j-m
k

S'-(u)j-my'||(u)j-m
k

S-(u)j-my|(u)
kj

T +=  

 
whose norm is defined by: 
 (u)}.

kj
{Tmax||kjT||
]

1k
x,

k
[xu +∈

=  

 
Lemma 3 
For any 1,n0,1,2,...,k   ],1kx,k[xu −=+∈  and m1,2,...,j =  

 h w(h),
2

3
k

)e'
0

b
2

3
(2

k
)e

0
b

2

3
(1||kmT|| ++++≤   (14) 

  w(h).mh
1k

e'
2

b
k

e
1

b||k1T|| C++≤   (15) 

 
Proof 
Using (4), (5), (8), (10), (12) and (13), we get: 

 0 0 m m|y (x) S (x)| |y S (x )| |y' S' (x )k k k 1 k k k 1 k− ≤ − + −− −   

 
1 2|x x | |y''(ξ ) M |. |x x | .k k k k2

− + − −   (16) 

 
 Since: 

 

].

 [

dt  ) |(t)m
1-kS'-(t)y'|                               

b

a
|(t)m

1-k
S-y(t)|  ( 

2
L|)

k
(xm

1k
S'

k
y'| |)

k
(xm

1k
S

k
y| 

1
Lw(h)                  

|kM
k
'y'| |k'y')

k
(ξ'y'| |kM

k
'y'|

+

∫+
⎥⎦
⎤

⎢⎣
⎡

−−+−−+≤

−+−≤−

 

 

 But for 
k

e|(t)m
1-k

S-y(t)|e(t)    ],1kx,k[xt →=+∈  and   

 .
k

x tas   
k
' e|(t)m

1-k
' S-(t)y'|(t)' e →→=  

 
 Hence 
 |y''(ξ ) M | w(h) L (e e' ) L (b a)(e e' )1 2k k k k k k− ≤ + + + − +   

 w(h) b (e e' ),0 k k= + +   (17) 

 
where a)(b2L1L1L0b −+=  is a constant independent of h. 

 Using (17) in (16) we get: 
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1).(h       ], )
k

e'
k

(e
0

b w(h)[
2

h
k

e'
k

e                         

] )
k

e'
k

(e
0

b w(h)[
2

2h
k

e'h 
k

e|(x)0
kS(x)0y|

<++++≤

++++≤−
  (18) 

 
 Similarly 

 ]. )
k

e'
k

(e
0

b w(h)[h 
k

e'|(x)0
k' S(x)0y'| +++≤−   (19) 

 
 Adding (18) and (19) we get: 

 h  w(h).
2

3
k

)e'
0

b
2

3
(2

k
)e

0
b

2

3
(1(x)}km{T

]
1k

x,
k

[xx
max||kmT|| ++++≤

+∈
=  

 
 To prove (15), we compute ||kmT||  and using (4), (5), (7), (11), (12) and (13) 

 dt,
x

k
x

t

k
x

b

a
(t)

1)k(j
T

2
L(x)dx

1)k(j
T

1
L

k
he'

k
e|(x)jm

kS(x)jmy| ∫ ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫ +++++≤−−−  

 
2hm j m jmax |y (x) S (x)| e he' bk k k 02x [x ,x ]

k k 1

− −− ≤ + +
∈ +

  

 ||T ||,                 (h 1).
k(j 1)

<+   (20)  

 
 Similarly: 

 .||
1)k(j

T||
0

hb
k

e'|(x)jm
kS'(x)jmy'|

]
1k

x,
k

[xx
max ++≤−−−

+∈
  (21) 

 
 Adding (20) and (21), we obtain: 

 .||
1)k(j

T||h
0

b
2

3
k

2e'
k

e||
kj

T|| +++≤  

 
 Using Lemma 1, and the inequality (14) we get: 

 

w(h),mh
1

c
k

e'
2

b
k

e
1

b           

2-m

0i

i
h

0
b

2

3
 )

k
2e'

k
(ehw(h)

2

3
k

)e'
0

b
2

3
(2

k
)e

0
b

2

3
(1

1-m
h0b

2

3
          

2-m

0i

i
h

0
b

2

3
 )

k
2e'

k
(e||

km
T||

1-m
h

0
b

2

3
||

k1
T||

++≤

∑
=

⎟
⎠

⎞
⎜
⎝

⎛++⎥⎦
⎤

⎢⎣

⎡ ++++⎟
⎠

⎞
⎜
⎝

⎛≤

∑
=

⎟
⎠

⎞
⎜
⎝

⎛++⎟
⎠

⎞
⎜
⎝

⎛≤
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where ∑
=

⎟
⎠

⎞
⎜
⎝

⎛=∑
=

⎟
⎠

⎞
⎜
⎝

⎛=
1-m

0i

i

0
b

2

3
2

2
b   ,

m

0i

i

0
b

2

3
1

b  and 
1-m

0b
2

3

2

3
1

c ⎟
⎠

⎞
⎜
⎝

⎛= , are constants 

independent of h. 
 
Lemma 4 
Let e(x)  and  (x)e' be defined as in (12), (13), then there exist constants 

2
c  ,6b  ,5b  ,4b  ,3b  and 3

c  independent of h such that the following inequalities 

hold: 

 
w(h),1mh3ck)e'6hb(1

k
e5hb(x)e'

 w(h),2mh2cke'4hb
k

)e3hb(1e(x)

++++≤

++++≤
 

 

where ,
2

1c0b

2c    ,2b0b6b   ,1b0b5b   ,
2

2b0b
14b  ,

2
1b0b

3b ===+==  and 

1
c

0
b3c = . 

 
Proof 
Using (4), (5), (6), (11), (12), (13) and (15) it is easy to prove the lemma. 
 
Definition 2 
Let ]ij[aA =  and ]ij[bB =  be two matrices of the same order, then we say that 

BA ≤  iff: 
[i.] both ija  and ijb  are non-negatives; 

[ii.] j.i,        ,ijbija ∀≤  

 
 In view of this definition and using the matrix notation: 

 T)
k

e'
k

(eE     ,T(x))e' (e(x)E(x) ===  and T)
3

c
2

(cC = , 

 
where T stands for the transpose, then from Lemma 4, we can write: 

 w(h),1mCh
k

hA)E(IE(x) +++=  (22) 

 

where I is unit matrix and .
6b          5b

4b         3b
A

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=  
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Definition 3 
Let ]ij[tT =  be a nm×  matrix then, we define: 

 .
n

0j
|ijt|

i
max||T|| ∑

=
=  

 
 Using this definition, the inequality (22) yields: 

 w(h).1mh||C||||kE||||)A||h(1||E(x)|| +++≤  

 This inequality holds for b] [a,x ∈ . Setting 1k xx += , we obtain: 

 w(h).1mh||C||||kE||||)A||h(1||
1k

E|| +++≤+  

 
 Using Lemma 2, and noting that 0||0E|| =  we get: 

 w(h),mh
7

b||E(x)|| ≤  

 

where 1]a)(b||A||[e
||A||

||C||
7

b −−=  is a constant independent of h. Using Definition 

3, we get: 
 w(h),mh7be(x) ≤   (23) 

 w(h).mh7b(x)e' ≤   (24) 

 
 Now we are going to estimate |(x)

Δ
'S'(x)'y'| − . Using (4), (5), (6), (11), (12), 

(13), (15), (23), and (24), we get: 

 w(h),mh
8

b|(x)
Δ
'S'(x)'y'| ≤−  

 
where ]1c)2b1(b7[b0b8b ++=  is a constant independent of h. Hence from above 

Lemma we have arrive to the following theorem. 
 
Theorem 1 
Let  y(x) be the exact solution of the problem (1),  (x)

Δ
S  given by (6) is the 

approximate solution for the problem, 4Rb]C[a,f ×∈ , then the following inequalities 

 w(h),mh9b|(x)(p)
Δ

S(x)(p)y| ≤−  

 
hold for b][a,∈x and  2 1, 0,  p =  and 9b  is a constant independent of h. 
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Stability of the method 
To study the stability of the method, we change  (x)

Δ
S to  (x)

Δ
W  where  

 m mW (x) W (x ) W' (x )(x-x )
Δ k 1 k k 1 k k

= + +− −   

 
x t m 1 m 1 m 1f( u,W (u),W' (u),P (u) ) dudt,

k k k
x x

k k

− − −
∫ ∫   (25) 

 dt,
b

b
) (u)1-m

k
' W (u),1-m

k
Wt,u, K( (u)1m

k
P ∫=−  

 

where ,
1

c(x)m
1-

W = .
2

c(x)m
1-

'W =  In Eq.(25) we use the following m iterations. For 

 ],1kx,k[xx +∈  1-n0,1,...,k =  and m1,2,...,j =  

 i m mW (x) W (x ) W ' (x )(x x )
k k 1 k k 1 k k

= + +− − −   

 
x t j 1 j 1 j 1f( u,W (u),W' (u),P (u) ) dudt,

k k k
x x

k k

− − −
∫ ∫   (26) 

 dt,
b

b
) (u)1-j

k
' W (u),1-j

k
Wt,u, K( (u)1j

k
P ∫=−  

 2)
k

x-(x
2
k

N
)

k
x-)(x

k
(xm

1-kW')
k

(xm
1-kW(x)0

kW ++= ,  (27) 

 )dt). 
b

a
(t)m

1-k
'W (t),m

1-k
Wt,,

k
 xK( (u),m

1k'W (u),m
1kWu, f(

k
N ∫−−=   (28) 

 
 Moreover, we use the following notations: 

    |,)
k

(x
Δ

W-)
k

(x
Δ

S|
k

e    |,(x)
Δ

W-(x)
Δ

S|(x)*e ==   (29)  

   .|)
k

(x
Δ

W-)
k

(x
Δ

S|
k

e'    |,(x)
Δ

W'-(x)
Δ

S'|(x)*e' ==   (30)  

 
Definition 4 
For any 1-n0,1,...,k   ],1kx,k[xx =+∈  and m1,2,...,j =  we define the operator 

(x)*
kjT  by: 

 |,(x)j-m
k
'W -(x)j-m

k
' S||(x)j-m

k
W -(x)j-m

k
S|(x)*

kjT +=  

 
whose norm is defined by: 
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 (x)}.*
kj{Tmax||*

kjT||
]

1k
x,

k
[xx +∈

=  

 
Lemma 5 
For any 1-n0,1,...,k   ],1kx,k[xx =+∈  and m1,2,...,j =  then: 

 ,*
k

)e'
0

b
2

3
(2*

k
)e

0
b

2

3
(1||*

kmT|| +++≤   (31) 

 ,*
k

e'
2

b*
k

e
1

b||*
k1T|| +≤   (32) 

 
where 2b ,1b ,0b  are constants defined as in Lemma 3.  

 
Proof 
To prove (31), using (4), (5), (8), (27), (29), and (30). To prove (32), using (4), (5), 
(7), (26), (29), (30), (32), and Lemma 3. The proof is similar to the proof of Lemma 3. 
 
Lemma 6 

Let (x)*e , (x)*e'  be defined as in (29), (30), then there exist constants 
 ,6b ,5b ,4b ,3b independent of h  such that the following inequalities hold:  

 *
ke'4hb*

k)e3hb(1(x)*e ++≤ , 

 ,*
k)e'6hb(1*

ke5hb(x)*e' ++≤  

 

where .2b0b6b      ,1b0b5b    ,
2

1b0b
14b   ,

2
1b0b

3b ==+==  

 
Proof 
Using (3), (4), (5), (25), (29), and (30). The proof is similar to the proof of Lemma 4. 
 
Theorem 2 
Let (x)

Δ
S  given by (6) is the approximate solution of the problem (1) with the initial 

conditions 1c)0y(x =  and 2c)0(xy' =  and let (x)
Δ

W  given by (25) be the 

approximate solution for the same problem with initial conditions *
1

c)0(x*y =  and 

*
2

c)0(x*y' =  , 4Rb]C[a,f ×∈  then the inequalities: 

 ||,*
0E||10b|(q)

Δ
W-(q)

Δ
S| ≤  

 
hold for 0,1,2,q    b],[a,x =∈  
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 }, |*
0y'0y'|  |*

0y0y| {max||*
0E||

b][a,x
−+−=

∈
 

 
where 10b  is a constant independent of h. 

 
 
Numerical example 
In this section, we consider the following equation:  

 ∫ +−=
1

0
1.71828,(t)dty'(x)y'(x)'y'   (33) 

 
with the initial conditions 1(0)y'   1,y(0) == . The exact solution of this problem is 

xey(x) =  . 
 The VIM gives the possibility to write the solution of Eq.(33) with the aid of the 
correction functional: 

 .
1

0
dτ 1.71828(t)dt

nt
y~

nτ
y~-

nττ
y

x

0
 λ(τ)  (x)

n
y(x)

1n
y ][ ∫ −+∫+=+   (34) 

 
 It is obvious that the successive approximations 0n  ,ny ≥  (the subscript n 

denotes the n-th order approximation), can be established by determining, the general 
Lagrange multiplier, λ , which can be identified optimally via the variational theory 
([2], [9]-[11]). The function 

n
y~  is a restricted variation, which means 0

n
y~ =δ . 

Therefore, we first determine the Lagrange multiplier λ that will be identified 
optimally via integration by parts. The successive approximations 1n  ,ny ≥ , of the 

solution y will be readily obtained upon using the Lagrange multiplier obtained and 
by using any selective function 0y . The initial values of the solution are usually used 

for selecting the zeroth approximation 0y . With determined, then several 

approximations 1n  ,ny ≥ , follow immediately. Consequently, the exact solution may 

be obtained by using: 
 (x).ny

n
limy(x) ∞→=   (35) 

 
 Making the above correction functional stationary, and noticing that 0

n
y~ =δ , we 

obtain: 
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,0d]
n

y 
x

0
 [ )(λ  

xτ
]

n
y )(λ

n
y  λ(τ)[

n
y                   

1

0
dτ 1.71828(t)dt

nt
y~

nτ
y~-

nττ
y

x

0
 λ(τ)  (x)

n
y (x)

1n
y ][

=∫+=−+=

∫ −+∫+=+

τδτδτδδ

δδδ

���

 

 
where 

n
y~ δ is considered as a restricted variation i.e., 0

n
y~ =δ , yields the following 

stationary conditions: 
 0.xτ|)(λ-1            0,xτ|)λ(-1        0,)(λ ===== τττ ���   (36) 

 
 The equation (36) is called Lagrange-Euler equation, the Lagrange multiplier, 
therefore, can be readily identified τ.xλ(τ) −=  
 Now, the following variational iteration formula can be obtained: 

 .
1

0
dτ1.71828(t)dt

nt
y

nτ
y-

nττ
y

x

0
 τ)-(x  (x)

n
y(x)

1n
y ][ ∫ −+∫+=+   (37) 

 
 We start with an initial approximation and by using the above iteration formula 
(37), we can obtain directly the components of the solution as follows: 

 
,20.8591xx1(x)1y 

x,1(x)0y         

++=

+=
 

 

.60.0023x50.0072x40.0418x30.1671x20.4999xx1(x)5y

,50.0143x40.03358x30.1671x20.5012xx1(x)4y           

,40.0716x30.1432x20.5011xx1(x)3y                       

,30.2864x20.4296xx1(x)2y                                 

++++++=

+++++=

++++=

+++=

 

 
 In the same manner, we can obtain other components of the solution. In order to 
verify numerically whether the proposed methodology lead to higher accuracy, we 
can evaluate the numerical solutions using  8 n = terms approximation.  
 Table 1, shows the numerical results of the problem (33) using the spline function 
expansion. In this Table, we compute the first approximate solution (First app. sol.), 
first absolute error (the difference between the exact and approximate solution before 
change), the second approximate solution (Scond app. sol.) and the second absolute 
error (the difference between the first and second solutions), with different iterations 
number m at some values of 0.5. 0.4, 0.3, 0.2,  0.1,x =  
 The above simulation proves that the proposed method is a very useful numerical 
method to get accurate solutions to second order Fredholm integro-differential 



Numerical Solutions to the Second Order 157 
 

 

equations. Figure 1, presents a comparison between the exact solution, y exact , the 

solution obtained from the proposed method, spliney and the solution using VIM, 

VIMy  in the interval [0,1]. Figure 1, shows that the proposed method provides 

excellent approximations to the solution of related equation to second-order Fredholm 
integro-differential equations. The numerical results showed that the proposed method 
has very accuracy and reductions of the size of calculations compared with the VIM 
([3], [11]). 
 
Concluding remarks and discussion 
This paper centralized to present a new method for solving the second order FIDEs. 
This analysis shows that the proposed technique has much impact on the accuracy and 
efficiency of the solution on the second order FIDEs. We investigated the error 
estimation and the stability of the proposed method. The analytical approximation to 
the solutions is reliable, and confirms the power and ability of the proposed technique 
as an easy device for computing the solution of such these problems. The presented 
example shows that the results of the proposed method are in excellent agreement 
with those of exact solution. Also, a comparison with the approximate method, VIM 
is given. All computations in this paper are done using Mathematica 6. 

 
 

Table 1 
 

x m First app. sol. First absolute error Second app. sol. Second absolute error
0.1 1 

2 
3 
4 
5 

1.10458208 
1.10516199 
1.10518243 
1.10517102 
1.10517063 

5.9
-410× 

8.9 610 −× 

1.1 510−× 

1.0 710 −× 

2.8
-710× 

1.10459305 
1.10517300 
1.10519343 
1.10518202 
1.10518164 

5.8
-410× 

2.1
-610× 

2.3
5-10× 

1.1
5-10× 

1.1
5-10× 

0.2 1 
2 
3 
4 
5 

1.22061315 
1.22122640 
1.22142326 
1.22124071 
1.22140219 

7.9
-410× 

1.7
-410× 

2.1
5-10× 

4.4
-610× 

5.6
-710× 

1.22062508 
1.22123841 
1.22143511 
1.22141914 
1.22141419 

7.8
-410× 

1.6
-410× 

3.6
5-10× 

1.6
5-10× 

1.1
5-10× 

0.3 1 
2 
3 
4 

1.35039036 
1.34493612 
1.34985298 
1.34987245 

5.3
-410× 

4.9
-410× 

1.35040325 
1.34937428 
1.34986598 
1.34988545 

5.4
-410× 

4.8
-410× 
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5 1.34985878 
5.8

-610× 

1.3
-610× 

2.8
8-10× 

1.34987178 
7.2

-610× 

2.7
5-10× 

1.3
5-10× 

0.4 1 
2 
3 
4 
5 

1.49481911 
1.49097150 
1.49175776 
1.49184910 
1.49182610 

2.9
-310× 

8.5
-410× 

6.7
5-10× 

2.4
5-10× 

1.4
-610× 

1.49832956 
1.49098552 
1.49177176 
1.49186310 
1.49184010 

3.0
-310× 

8.4
-410× 

5.3
5-10× 

3.8
5-10× 

1.5
5-10× 

0.5 1 
2 
3 
4 
5 

1.65503267 
1.64753396 
1.64856616 
1.64875591 
1.64872483 

6.3
-310× 

1.1
-310× 

1.5
-410× 

3.4
5-10× 

3.5
-610× 

1.65504746 
1.64754899 
1.64858117 
1.64877091 
1.64873983 

6.3
3-10× 

1.2
-310× 

1.4
-410× 

4.9
5-10× 

1.8 
5-10× 

 
 
 

 
 

Figure 1: Comparison between the exact solution and solution obtained from the 
proposed method with the solution using VIM. 
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