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Abstract 
 

This paper presents the theory of recurrent H-curvature tensors in a Para-
Sasakian manifolds. Section 1 is devoted to the study of H-curvature tensors. 
Section 2 deals to the study of recurrent H-curvature tensors. In this section, 
we have proved that every Para-Sasakian H-projective curvature tensor is a 
Para-Sasakian manifold with recurrent H-projective curvature tensor. 
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Introduction 
The Riemannian curvature tensor Rλ

αβγ is expressed as 

(1.1) Rλ
αβγ = ∂β{α

λ
γ}-∂γ{α

λ
β} + {α

μ
γ}{μ

λ
β}  

  -{α
μ

β}{μ
λ

γ} 

 

 Wherein  ∂β = ∂/∂xβ.  

 
 The Riemannian curvature tensor, the Ricci tensor and the  
 Scalar curvature satisfies the following conditions: 
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(1.2) Rλαβγ = gλμ Rμ
αβγ, 

(1.3) Rαβ = gλγ Rλαβγ, 

(1.4) Rαβ = Rλ
αβλ = Rβα, 

(1.5) Rλ
αβγ =-Rλ

αγβ , 

(1.6) Rλ
λαβ = 0, 

(1.7) Rλαβγ =-Rαλβγ, 

(1.8) Rλαβγ =-Rλαγβ, 

(1.9) Rλαβγ = Rβγλα, 

(1.10)  Rλλβγ = Rλαββ = 0, 

(1.11)  Rαβ = gλβ Rλ
α, 

(1.12)  Rαβ = δλ
β Rλα, 

(1.13)  R = gαβ Rαβ, 

(1.14)  Rλ
αβγ + Rλ

βγα + Rλ
γαβ = 0 

(1.15)  Rλαβγ + Rλβγα + Rλγαβ = 0 

(1.16)  Rλ
αβγ,ε + Rλ

αγε,β + Rλ
αεβ,γ = 0 

 
and 
(1.17)  Rλαβγ,ε + Rλαγε,β + Rλαεβ,γ = 0. 

 
Now, we define a tensor Sαβ by 

(1.18)  Sαβ =-Fλ
α Rλβ, 

 
Consequently yields 
(1.19)  Sαβ =-Sβα, 

(1.20)  Fλ
α Sλβ =-Sαλ Fλ

β  

 
and 

(1.21)  Fλ
λ = 0. 
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Definition 1.1 
The Para-Sasakian H-projective curvature tensor is given by 

(1.22)  Pλ
αβγ = Rλ

αβγ + {1/(n+2)}(Rαγδλ
β-Rαβδλ

γ  

  + SαγFλ
β-SαβFλ

γ + 2SβγFλ
α). 

 
Contracting equation (1.22) by gλμ , we get 

(1.23) Pμαβγ = Rμαβγ + {1/(n+2)}(Rαγgμβ-Rαβgμγ 

  + SαγFμβ-SαβFμγ + 2SβγFμα). 

 
Definition 1.2 
The Para-Sasakian H-conformal or Bochner curvature tensor is given by 

(1.24)  Bλ
αβγ = Rλ

αβγ + {1/(n+4)}(Rαγδλ
β-Rαβδλ

γ + gαγRλ
β  

  -gαβRλ
γ + SαγFλ

β-SαβFλ
γ + FαγSλ

β-FαβSλ
γ + 2SβγFλ

α  

  + 2FβγSλ
α)-{R/(n+2)(n+4)}(gαγδλ

β-gαβδλ
γ + FαγFλ

β  

  -FαβFλ
γ + 2FβγFλ

α). 

 
Contracting equation (1.24) by gλμ , we get 

(1.25) Bμαβγ = Rμαβγ+{1/(n+4)}(Rαγgμβ -Rαβgμγ+gαγRμβ 

  -gαβRμγ + SαγFμβ-SαβFμγ + FαγSμβ-FαβSμγ  

  + 2SβγFμα + 2FβγSμα)-{R/(n+2)(n+4)}(gαγgμβ  

  -gαβgμγ + FαγFμβ-FαβFμγ + 2FβγFμα). 

 
 In this regard, we have the following theorems: 
 
Theorem 1.1 
The Para-Sasakian H-projective curvature tensor is skew-symmetric in the last two 
indices i.e. 

  Pλ
αβγ =-Pλ

αγβ . 

 
Proof 
On interchanging β  and γ in equation (1.22), we get 

(1.26) Pλ
αγβ = Rλ

αγβ + {1/(n+2)}(Rαβδλ
γ-Rαγδλ

β  
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  + SαβFλ
γ-SαγFλ

β + 2SγβFλ
α) 

 
From equations (1.5), (1.19) and (1.26), we obtain 

(1.27) Pλ
αγβ =-[Rλ

αβγ + {1/(n+2)}(Rαγδλ
β-Rαβδλ

γ  

  + SαγFλ
β-SαβFλ

γ + 2SβγFλ
α)] 

 
In view of equations (1.22) and (1.27), we get 
 

(1.28)  

 
Theorem 1.2 
Show that Pμαβγ =-Pμαγβ . 

 
Proof 
Contracting equation (1.28) by gλμ , we obtain 

 

(1.29)  

 
Theorem 1.3 

Prove that Pλ
λαβ = 0. 

 
Proof 
Contraction of equation (1.22) with regard to the indices λ  and α  yields 

(1.30) Pλ
λβγ = Rλ

λβγ + {1/(n+2)}(Rλγδλ
β-Rλβδλ

γ  

  + SλγFλ
β-SλβFλ

γ + 2SβγFλ
λ) 

 
From equations (1.6), (1.12), (1.19) and (1.30), we get 

(1.31) Pλ
λβγ = {1/(n+2)}(-SγλFλ

β-SλβFλ
γ + 2SβγFλ

λ) 

 
 In view of equations (1.20), (1.21) and (1.31) yields 
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(1.32)  

 
Theorem 1.4 

 Prove that Pλ
αβγ + Pλ

βγα + Pλ
γαβ = 0. 

 
Proof 
By virtue of equation (1.22), we get 

(1.33) Pλ
βγα = Rλ

βγα + {1/(n+2)}(Rβαδλ
γ-Rβγδλ

α  

  + SβαFλ
γ-SβγFλ

α + 2SγαFλ
β) 

 
and 

(1.34) Pλ
γαβ = Rλ

γαβ + {1/(n+2)}(Rγβδλ
α-Rγαδλ

β  

  + SγβFλ
α-SγαFλ

β + 2SαβFλ
γ) 

 
Adding equations (1.22), (1.33) and (1.34), we obtain 

(1.35) Pλ
αβγ + Pλ

βγα + Pλ
γαβ = (Rλ

αβγ + Rλ
βγα + Rλ

γαβ) 

  + {1/(n+2)}(Rαγδλ
β-Rαβδλ

γ + SαγFλ
β-SαβFλ

γ  

  + 2SβγFλ
α + Rβαδλ

γ-Rβγδλ
α + SβαFλ

γ-SβγFλ
α  

  + 2SγαFλ
β +Rγβδλ

α-Rγαδλ
β +SγβFλ

α-SγαFλ
β +2SαβFλ

γ) 

 
From equations (1.4), (1.14) and (1.35), we get 

(1.36) Pλ
αβγ + Pλ

βγα + Pλ
γαβ = {1/(n+2)}(SαγFλ

β-SαβFλ
γ  

  + 2SβγFλ
α + SβαFλ

γ-SβγFλ
α + 2SγαFλ

β + SγβFλ
α  

  -SγαFλ
β + 2SαβFλ

γ) 

 
In view of equations (1.19) and (1.36) yields 

(1.37) Pλ
αβγ + Pλ

βγα + Pλ
γαβ = 0 
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i.e. 
 

(1.38)  

 
Theorem 1.5 
Prove that 
  Pμαβγ + Pμβγα + Pμγαβ = 0. 

 
Proof 
Contracting equation (1.37) by gλμ , we obtain 

 

(1.39)  

 
i.e. 

(1.40)  

 
 
Recurrent H-Curvature Tensors 
Definition 2.1 
The Para-Sasakian manifold is called recurrent if we have  

(2.1) Rλ
αβγ,θ-Aθ R

λ
αβγ = 0, 

 
for some non-zero recurrence vector Aθ . 

Contracting Rλ
αβγ,θ  for λ  and γ, we get 

(2.2) Rαβ,θ-Aθ Rαβ = 0, 

 

Contracting equation (2.2) by gαβ, we obtain 
(2.3) R,θ-Aθ R = 0. 

 
Definition 2.2 
The Para-Sasakian manifold satisfies the relation 

(2.4) Pλ
αβγ,θ-Aθ P

λ
αβγ = 0, 
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for some non-zero recurrence vector Aθ , will be called the Para-Sasakian manifold 

with recurrent H-projective curvature tensor. 
 
Definition 2.3 
The Para-Sasakian manifold satisfies the relation 

(2.5) Bλ
αβγ,θ-Aθ B

λ
αβγ = 0, 

 
for some non-zero recurrence vector Aθ , will be called the Para-Sasakian manifold 

with recurrent H-conformal or Bochner curvature tensor. 
 In this regard, we have the following theorems: 
 
Theorem 2.1 
If the Para-Sasakian manifold is recurrent then every Para-Sasakian H-projective 
curvature tensor is a Para-Sasakian manifold with recurrent H-projective curvature 
tensor. 
 
Proof 

Differentiating equation (1.22) covariantly with respect to xθ, we get 

(2.6) Pλ
αβγ,θ = Rλ

αβγ,θ + {1/(n+2)}(Rαγ,θδλ
β-Rαβ,θδλ

γ  

  + Sαγ,θFλ
β-Sαβ,θFλ

γ + 2Sβγ,θFλ
α) 

 
From equations (1.18) and (2.6), we obtain 

(2.7) Pλ
αβγ,θ = Rλ

αβγ,θ + {1/(n+2)}(δλ
β Rαγ,θ-δλ

γ Rαβ,θ  

  - F
λ

β F
ν

α Rνγ,θ + Fλ
γ F

ε
α Rεβ,θ-2Fλ

α F
τ
β Rτγ,θ) 

  By virtue of equations (2.1), (2.2) and (2.7), we get 
 

(2.8) Pλ
αβγ,θ = Aθ[Rλ

αβγ + {1/(n+2)}(δλ
β Rαγ-δλ

γ Rαβ  

  - F
λ

β F
ν

α Rνγ + Fλ
γ F

ε
α Rεβ-2Fλ

α F
τ
β Rτγ)] 

 
In view of equations (1.18) and (2.8), we obtain 

(2.9) Pλ
αβγ,θ = Aθ[Rλ

αβγ + {1/(n+2)}(Rαγδλ
β-Rαβδλ

γ  

  + SαγFλ
β-SαβFλ

γ + 2SβγFλ
α)] 
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 From equations (1.22) and (2.9), we get 
 

(2.10)  

 
 Hence, we have the desired result. 
 
Theorem 2.2 
If the Para-Sasakian manifold is Para-Sasakian manifold with recurrent H-projective 
curvature tensor then prove that  

  Pλ
λαβ,θ = 0. 

 
Proof 
By virtue of equation (2.4), we get 

(2.11) Pλ
λαβ,θ = Aθ P

λ
λαβ  

 
In view of equations (1.32) and (2.11), we obtai n 
 

(2.12)  

 
Theorem 2.3 
If the Para-Sasakian manifold is Para-Sasakian manifold with recurrent H-projective 
curvature tensor then prove that  

  Pλ
αβγ,θ =-Pλ

αγβ,θ. 

 
Proof 
In view of equation (2.4), we obtain 

(2.13) Pλ
αβγ,θ = Aθ P

λ
αβγ 

 
From equations (1.28) and (2.13), we get 

(2.14) Pλ
αβγ,θ =-Aθ P

λ
αγβ 

 
By virtue of equations (2.4) and (2.14), we obtain 
 

(2.15)  
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