Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 8, Number 2 (2012), pp. 113-124
© Research India Publications
http://www.ripublication.com/gjpam.htm

An Analytical Solution of One-dimensional
Advection-Diffusion Equation in a Porous Mediain
Presence of Radioactive Decay

Doreswamy H.S., R.C. Lakshmi Janardhan*
and S.R. Sudheendra**

Department of Mathematics, East Point College of Engineering & Technology,
Bangalore, India
* Department of Mathematics, Government First Grade College, Bangalore, India
** Professor and Head, Dept. of Mathematics,
T. John Institute of Technology, Bangalore, India
E-mail: hsdoreswamy@r ediffmail.com, ljrcmaths@gmail.com and
surakshasr s@yahoo.com

Abstract

We present a solution of the Transport of Pollutants with Radioactive Decay in
Porous Media considering boundary conditions. The solutions are obtained by
using Duhamel’s theorem and integral solution technique. The effects of the
concentration with time and depth on the solute transport are studied
separately with the help of graphs.
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Introduction

In recent years considerable interest and attention have been directed to dispersion
phenomena in flow through porous media. Numerous analytical solutions have been
developed to qualitatively describe one-dimensional convective-dispersive solute
transport. In this paper, a more direct method is presented for solving the differential
equation governing the process of dispersion. It is assumed that the porous medium is
homogeneous and isotropic and that no mass transfer occurs between the solid and
liquid phases. It is assumed also that the solute transport, across any fixed plane, due
to microscopic velocity variations in the flow tubes, may be quantitatively expressed
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as the product of dispersion co-efficient and the concentration gradient. The flow in
the medium is assumed to be unidirectional and the average velocity is taken to be
constant throughout the length of the flow field.

Reactive transport in porous media is of growing interest because of frequent
contamination of aquifers with reactive substances like petroleum hydrocarbons and
chlorinated solvents [Vogel et al. (1987), Hinchee et a. (1994), Wiedemeier et al.
(1999), and Peter et al. (2001)].

Convective-dispersive system is common in many scientific and technologic
domains such as: hydrogeology, soil science, biology, medicine and chemical
engineering. To learn about the dynamic behaviour of the major components of such a
system, mathematical and laboratory models are constructed and tracers are often
utilized.

The analysis has been restricted here to one-dimensional cases. While this is an
obvious limitation, many useful applications can be treated as one-dimensional. The
various solutions of the one-dimensional convective-dispersive system are presented
here in a systematic fashion. Several cases still remain, especialy for nonequilibrium
reactions, where analytic solutions are not available. To facilitate the discussion of the
initial and boundary conditions and the effect of decay and chemical reaction on the
distribution of tracers, these solutions have been presented in a unified form whenever
possible as functions of non-dimensional variable.

The solutions for transport of decay in porous media, derived in this paper are
useful for severa reasons: First, they are widely applicable. Although only radioactive
decay is atrue first-order process, a'so chemical and biological transformations can be
often described approximately in terms of first-order decay.

Mathematical Formulation and M odel
We consider one-dimensiona unsteady flow through the semi-infinite unsaturated
porous mediain the x - z plane in the presence of atoxic material. The uniform flow is
in the z-direction. The medium is assumed to be i sotropic and homogeneous so that all
physical quantities are assumed to be constant. Initially the concentration of the
contaminant in the mediais assumed to be zero and a constant source of concentration
of strength Cy exists at the surface. The velocity of the groundwater is assumed to be
constant. With these assumptions the basic equation governing the flow is
2
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where C isthe constituent concentration in the soil solution, t is the time in minutes, D
is the hydrodynamic dispersion coefficient, z is the depth, u is the average pore-water
velocity and A is the radioactive decay (Chemical reaction term).

Initially saturated flow of fluid of concentration, C = 0, takes place in the medium.
At t = 0, the concentration of the plane source is instantaneously changed to C = C,.
Then the initial and boundary conditions for a semi-infinite column and for a step
input are
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C(z,0)=0; z>0
Cc(0,t)=C,; t>0 )
C(o,t)=0; t>0

The problem then is to characterize the concentration as a function of x and t.
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Physical Layout of the M odel

To reduce equation (1) to amore familiar form, let

C(zt)=1z t)exp{z—ﬂ—;tt}
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Substitution of equation (3) reduces equation (1) to Fick’s law of diffusion
equation

or o°T
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ot 0z° )
The above initial and boundary conditions (2) transform to
u’t
ro,t)=C, exp|—+At|; t=0
0=, ep Y+ 2
C (z 0)=0; z>0 (5)

C(e, 1)=0; t>0

It is thus required that equation (4) be solved for a time dependent influx of fluid
at z = 0. The solution of equation (4) can be obtained by using Duhamel’s theorem
[Cardlaw and Jeager, 1947].



116 Doreswamy H.S et al

If C= F(x, Y, Z, t) is the solution of the diffusion equation for semi-infinite

media in which the initial concentration is zero and its surface is maintained at
concentration unity, then the solution of the problem in which the surface is

maintained at temperature #(t) is
0
C= —F(x, y,z,t-7)d4
Jol) S Floy.zt-7)

This theorem is used principally for heat conduction problems, but above has been
specialized to fit this specific case of interest.

Consider now the problem in which initial concentration is zero and the boundary
ismaintained at concentration unity. The boundary conditions are

rot)=0; t>0
I (x,0)=0; x>0},
[ (o0, t)=0; t>0

This problem can be solved by the application of the Laplace transform. The
concentration I" which is function of t and whatever space coordinates, say z, t, occur
in the problem. We write

I(z p)= Tep‘ I(zt)dt

Hence, if equation (4) is multiplied by e ™ and integrated term by term it is
reduced to an ordinary differential equation
dT _p E

dZ? D (©)

The solution of the equation (6) can be written as
r=Ae®+Be*

where q= _p.

D
The boundary condition as z — oo requires that B = 0 and boundary condition at z
= 0 requires that A= }/p thus the particular solution of the Laplace transform

eguation is

rF=lew
p

The inversion of the above function is given in a table of Laplace transforms
(Cardaw and Jaeger, 1947). Theresult is
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r=1- qf(ZJ_J = !e‘” dn. (7

2Dt

Utilizing Duhamel’s theorem, the solution of the problem with initial
concentration zero and the time dependent surface conditionat z=0is

t

=]l at\/—je

0
2J/Dt

_'72d77 dr

since €’ is a continuous function, it is possible differentiate under the integral,
which gives
eiz%D(t—T)'

\/_at Te”d” . %
z \/E(t—f)z

2,/D(t-7)

The solution of the probl emsis
I¢ /D t T dz—
(t - T)%

Letting
z

A= b0

the solution can be written as

2 < Z2 2

r=-=2 t——— _|e“dA. 8

~ j¢[ 4Dﬂ2]e ©®
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Since ¢(t):C0exp(:—E;+/1tJ the particular solution of the problem can be

written as
2C [434}‘” [ 2 eZJ 1 [ ) 82J
(z,t)=22¢ expl — 1? — = |du— |exp — u? -== |d 9
(@)=2e o] a7 £ o fef - o
where &= [u—2+/1]ianda—i
4D 2D 2Dt
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Evaluation of the Integral Solution
Theintegration of the first term of equation (9) gives (Pierce, 1956)

0 */12*122
J'e “ di:%e‘zg

0

For convenience the second integral can be expressed in terms of error function
(Horenstein, 1945), because this function is well tabulated. Noting that

) 2
—,uz—g—zz—(,uwtij +2¢
H H

2
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The second integral of equation (9) can be written as
| = Texp(— e —gzzjdy = 1{e25j'exp{— (y +8j } du+ e‘zgjzexp{— (,u —gj } d,u} (10)
0 u 2| 5 )z 0 7z
Since the method of reducing integral to a tabulated function is the same for both

integrals in the right side of equation (10), only the first term is considered. Let
a=% and adding and subtracting, we get

y7]

e jex;{—(aJrgj }da.

Ta
The integral can be expressed as
a 2 S 2
| = ezgjexp[—(/HfJ ] du=—€* J'(l—izj.exp{—(£+ aj } da
0 Iu g a a
+e25jexp{—(—+aj }da.
5 a
Further, let g = (£+ a]
a

in the first term of the above equation, then

) © 2
|, =—€* Ieﬂzdﬂ+e2‘9jexp{—(f+aj }da.
arZ A a
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Similar evaluation of the second integral of equation (10) gives
_e—zsjexp{—(g— j :lda—e Iexp{ (5— j :|da
Ta Ta
Again substituting — 3 = £ _a intothefirst term, the result is
a

je dg - e‘z‘gJ'expl: (——aﬂda.

o

jex;{ ( —j +25}da J'exp{—(f— j —Zg}da
5 a
substitute this into equation (10) gives
je dg—e* je dgs.

L
o o

Noting that

Thus, equation (9) can be expressed as
F(z,t)z% e[‘lDM]t{ﬁe” ——[ je P dp—e* _[e A dﬂ” (12)
T &

2

fta

However, by definition

e” J'e‘ﬁ dﬂ—\/— erfc(a+aJ

a+t

j e’ df = */_ 2{“ erf (0{ —iﬂ
7_a a
Writing equation (11) in terms of the error functions, we get

ﬁ+/"L t
I(zt)= G e[4D J {ez"erfc (a + fj + e *erfc (a - ﬁﬂ
2 a o

also,
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Substitute the value of T1(z,t) in equation (3) the solution reduces to
C_ 1exp{z} e“erfc (a + fj +e “erfc (a —~ f) . (12)
C, 2 'l2D a o

Resubstituting the value of € and o gives

C 1 {uz}{exp{mz]eﬁc(umq

—=Zexp

C, 2 '|2D 2D 2,/Dt
JUu?+4DA z—+Ju®>+4DA
+exp| ————z|-erfc t]|. (13)
2D 2~/ Dt

Results and Discussion

The main limitations of the analytica method are the applicability for relatively
simple problems. The geometry of the problem should be regular. The properties of
the soil in the region considered must be homogeneous or at least homogeneous in the
sub region. The anaytical method is somewhat more flexible than the standard form
of other methods for one — dimensional transport model.

From the equation (13) C/C, was numerically computed using "Mathematica' and
the results are presented graphically in figures 1 to 12. Figures 1 to 6 represent the
Break-Through-Curves for C/Cy vs time for different depth z. It is seen that the
concentration field increases in the beginning and reaches a steady state value for a
fixed z but decreases with an increase in the radioactive decay coefficient A. An
increase in A will make the solute concentration decreasing as evident from the
physical grounds. Similar pattern is observed in figures 4 to 6 for different values of
average velocity w and dispersion coefficient D.

Figures 7 to 12 represent the Break-Through-Curves for C/Cy, and is maximum at
the surface z=0 and decreases to reaches zero at the depth of 100 meters. With an
increase in A most of the contaminants get absorbed by the solid surface and thereby
retarding the movements of the contaminants as evident from the graphs. Most of the
contaminants are attenuated in the unsaturated zone itself and thus the threat of
groundwater being contaminated is minimized. Similar pattern is observed in the
graphs 10 to 12 for different values of average velocity w and dispersion coefficient
D.

We conclude that the integral transform method is a powerful method to derive
analytica solutions for solute transport of a decay chain and adsorption in
homogeneous porous media and under different flow conditions. Steady-state
concentration distributions and temporal moments can be directly derived from these
solutions and transient concentration distribution is accessible via numerical
inversion. The derived solutions are of great value for bench-marking numerical
reactive transport codes.
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Concentration ( c/cg )

Concentration ( C/Cy )
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