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Abstract 
 

We present a solution of the Transport of Pollutants with Radioactive Decay in 
Porous Media considering boundary conditions. The solutions are obtained by 
using Duhamel’s theorem and integral solution technique. The effects of the 
concentration with time and depth on the solute transport are studied 
separately with the help of graphs. 
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Introduction 
In recent years considerable interest and attention have been directed to dispersion 
phenomena in flow through porous media. Numerous analytical solutions have been 
developed to qualitatively describe one-dimensional convective-dispersive solute 
transport. In this paper, a more direct method is presented for solving the differential 
equation governing the process of dispersion. It is assumed that the porous medium is 
homogeneous and isotropic and that no mass transfer occurs between the solid and 
liquid phases. It is assumed also that the solute transport, across any fixed plane, due 
to microscopic velocity variations in the flow tubes, may be quantitatively expressed 
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as the product of dispersion co-efficient and the concentration gradient. The flow in 
the medium is assumed to be unidirectional and the average velocity is taken to be 
constant throughout the length of the flow field. 
 Reactive transport in porous media is of growing interest because of frequent 
contamination of aquifers with reactive substances like petroleum hydrocarbons and 
chlorinated solvents [Vogel et al. (1987), Hinchee et al. (1994), Wiedemeier et al. 
(1999), and Peter et al. (2001)].  
 Convective-dispersive system is common in many scientific and technologic 
domains such as: hydrogeology, soil science, biology, medicine and chemical 
engineering. To learn about the dynamic behaviour of the major components of such a 
system, mathematical and laboratory models are constructed and tracers are often 
utilized. 
 The analysis has been restricted here to one-dimensional cases. While this is an 
obvious limitation, many useful applications can be treated as one-dimensional. The 
various solutions of the one-dimensional convective-dispersive system are presented 
here in a systematic fashion. Several cases still remain, especially for nonequilibrium 
reactions, where analytic solutions are not available. To facilitate the discussion of the 
initial and boundary conditions and the effect of decay and chemical reaction on the 
distribution of tracers, these solutions have been presented in a unified form whenever 
possible as functions of non-dimensional variable. 
 The solutions for transport of decay in porous media, derived in this paper are 
useful for several reasons: First, they are widely applicable. Although only radioactive 
decay is a true first-order process, also chemical and biological transformations can be 
often described approximately in terms of first-order decay.  
 
 
Mathematical Formulation and Model 
We consider one-dimensional unsteady flow through the semi-infinite unsaturated 
porous media in the x - z plane in the presence of a toxic material. The uniform flow is 
in the z-direction. The medium is assumed to be isotropic and homogeneous so that all 
physical quantities are assumed to be constant. Initially the concentration of the 
contaminant in the media is assumed to be zero and a constant source of concentration 
of strength C0 exists at the surface. The velocity of the groundwater is assumed to be 
constant. With these assumptions the basic equation governing the flow is 
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where C is the constituent concentration in the soil solution, t is the time in minutes, D 
is the hydrodynamic dispersion coefficient, z is the depth, u is the average pore-water 
velocity and λ is the radioactive decay (Chemical reaction term). 
 Initially saturated flow of fluid of concentration, C = 0, takes place in the medium. 
At t = 0, the concentration of the plane source is instantaneously changed to C = C0. 
Then the initial and boundary conditions for a semi-infinite column and for a step 
input are 



An Analytical Solution of One-dimensional Advection-Diffusion Equation 115 
 

 

  
( )
( )
( ) ⎪

⎭

⎪
⎬

⎫

≥=∞
≥=
≥=

0;0,
0;,0
0;00,

0

ttC

tCtC

zzC

  (2) 

 
 The problem then is to characterize the concentration as a function of x and t. 

 

 
 

Physical Layout of the Model 
 
 
 To reduce equation (1) to a more familiar form, let 
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 Substitution of equation (3) reduces equation (1) to Fick’s law of diffusion 
equation 
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 The above initial and boundary conditions (2) transform to 
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 It is thus required that equation (4) be solved for a time dependent influx of fluid 
at z = 0. The solution of equation (4) can be obtained by using Duhamel’s theorem 
[Carslaw and Jeager, 1947]. 
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 If ( )tzyxFC ,,,=  is the solution of the diffusion equation for semi-infinite 
media in which the initial concentration is zero and its surface is maintained at 
concentration unity, then the solution of the problem in which the surface is 
maintained at temperature φ(t) is 

  ( ) ( ) λττφ dtzyxF
t
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 This theorem is used principally for heat conduction problems, but above has been 
specialized to fit this specific case of interest. 
 Consider now the problem in which initial concentration is zero and the boundary 
is maintained at concentration unity. The boundary conditions are 
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 This problem can be solved by the application of the Laplace transform. The 
concentration Γ which is function of t and whatever space coordinates, say z, t, occur 
in the problem. We write 
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 Hence, if equation (4) is multiplied by pte−  and integrated term by term it is 
reduced to an ordinary differential equation 
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 The solution of the equation (6) can be written as 
  qzqz eBeA +=Γ −  

where  
D

p
q = . 

 
 The boundary condition as z → ∞ requires that B = 0 and boundary condition at z 
= 0 requires that pA 1= , thus the particular solution of the Laplace transform 

equation is 

  qze
p
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 The inversion of the above function is given in a table of Laplace transforms 
(Carslaw and Jaeger, 1947). The result is 
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 Utilizing Duhamel’s theorem, the solution of the problem with initial 
concentration zero and the time dependent surface condition at z = 0 is  
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since 

2η−e  is a continuous function, it is possible differentiate under the integral, 
which gives  

  

( )
( )

( )τ

τ

η

τπ
η

π
−

−∞

−

−

−
=

∂
∂

∫ tD
z

tD

z

e
tD

z
de

t
4

2
3

2

2
2

2

2 . 

 
 The solution of the problems is 
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the solution can be written as 
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Evaluation of the Integral Solution 
The integration of the first term of equation (9) gives (Pierce, 1956) 

  εμ
εμ πλ 2

0 2
2

2
2

−
∞ −−

=∫ ede  

 
 For convenience the second integral can be expressed in terms of error function 
(Horenstein, 1945), because this function is well tabulated. Noting that 
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 The second integral of equation (9) can be written as 
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 Since the method of reducing integral to a tabulated function is the same for both 
integrals in the right side of equation (10), only the first term is considered. Let 
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 The integral can be expressed as 
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in the first term of the above equation, then 
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 Similar evaluation of the second integral of equation (10) gives 
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 Again substituting a
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εβ  into the first term, the result is 
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 Noting that 
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substitute this into equation (10) gives 
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 Thus, equation (9) can be expressed as 
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also, 

  ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+= −

∞

−

−− ∫ α
εαπβ ε

α

βε

α
ε

erfedee 1
2

22 2

 

 
 Writing equation (11) in terms of the error functions, we get 
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 Substitute the value of ( )tz,Γ  in equation (3) the solution reduces to 
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 Resubstituting the value of ε and α gives 
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Results and Discussion 
The main limitations of the analytical method are the applicability for relatively 
simple problems. The geometry of the problem should be regular. The properties of 
the soil in the region considered must be homogeneous or at least homogeneous in the 
sub region. The analytical method is somewhat more flexible than the standard form 
of other methods for one – dimensional transport model.  
 From the equation (13) C/C0 was numerically computed using `Mathematica' and 
the results are presented graphically in figures 1 to 12. Figures 1 to 6 represent the 
Break-Through-Curves for C/C0 vs time for different depth z. It is seen that the 
concentration field increases in the beginning and reaches a steady state value for a 
fixed z but decreases with an increase in the radioactive decay coefficient λ. An 
increase in λ will make the solute concentration decreasing as evident from the 
physical grounds. Similar pattern is observed in figures 4 to 6 for different values of 
average velocity w and dispersion coefficient D. 
 Figures 7 to 12 represent the Break-Through-Curves for C/C0, and is maximum at 
the surface z=0 and decreases to reaches zero at the depth of 100 meters. With an 
increase in λ most of the contaminants get absorbed by the solid surface and thereby 
retarding the movements of the contaminants as evident from the graphs. Most of the 
contaminants are attenuated in the unsaturated zone itself and thus the threat of 
groundwater being contaminated is minimized. Similar pattern is observed in the 
graphs 10 to 12 for different values of average velocity w and dispersion coefficient 
D.  
 We conclude that the integral transform method is a powerful method to derive 
analytical solutions for solute transport of a decay chain and adsorption in 
homogeneous porous media and under different flow conditions. Steady-state 
concentration distributions and temporal moments can be directly derived from these 
solutions and transient concentration distribution is accessible via numerical 
inversion. The derived solutions are of great value for bench-marking numerical 
reactive transport codes. 
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