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Abstract

Using fibering method, we prove the existence of multiple positive solutions of
qausilinear problem{ −�pu(x) = λa(x)|u|α−1u + b(x)|u|γ−1u x ∈ �,

u(x) = 0, x ∈ ∂�

where λ and α are real parameters, � is an open bounded domain in R
N , N ≥ 3,

with the smooth boundary ∂�, a, b : �̄ → R are smooth sign changing functions.
The existence results are obtained by the variational method.

AMS subject classification:
Keywords: Variational method, Nehari manifold, Fibering maps, minimizing se-
quence.

1. Introduction

In this paper we study the existence of positive solutions of the Dirichlet boundary value
problem:{ −�pu(x) = λa(x)|u|α−1u + b(x)|u|γ−1u x ∈ �,

u(x) = 0, x ∈ ∂�
(1.1)
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where� is a bounded region with smooth boundary in R
n, where�p(x) = div(|∇u|p−2∇u)

is the p-Laplacian λ > 0 is a real parameter, 1 < α + 1 < 2 < p < γ + 1 < p∗, where

p∗ = np

n − p
f or p < n and p∗ = ∞ f or p ≥ n

and a, b : �̄ → R are smooth sign changing functions.
Equation (1.1) had been studied by Figueiredo et al. in the case p = 2 by using the

Mountain Pass lemma [2] and by Il’yasova et al. and Afrouzi et al. by using the Negari
manifold [5],[6] and [7]. Furthermore this problem in the case p = 2 has been studied
by Brown and Wu [8].

In [4] and [3] the results are obtained by using fibering maps (i.e maps of the from
t → Jλ(tu)) which are closely related to the Nehari manifold. In this paper we show
how a fairly complete knowledge of all possible froms of the fibering maps provides a
very simple and comparatively elementary means of establishing results similar to those
proved in [5] and [7] on the existence of multiple solutions of (1.1). The plan of the
paper is as follows:

In section 2 we recall the properties which we shall require of fibering maps and of
the Nehari manifold. In section 3 we give a fairly complete description of the fibering
maps associated with (1.1) and in section 4 we use this information to give a very simple
variational proof of the existence of at least two positive solutions of (1.1) for sufficiently
small λ.

2. Notation and Preliminaries

Let � be a bounded domain in R
n. We will work in the Sobolev space W := W

1,p
0 (�)

equipped with the norm

‖u‖W =
(∫

�

|∇u|pdx

) 1
p

.

First we give the definition of the weak solution of (1.1).

Definition 2.1. We say that u ∈ W is a positive weak solution to (1.1) if for any v ∈ W

we have ∫
�

|∇u|p−2∇u∇vdx = λ

∫
�

a(x)|u|αvdx +
∫

�

b(x)|u|γ vdx.

It is clear that problem (1.1) has a variational structure. Let Jλ : W → R be the
corresponding Euler functional of problem (1.1) which is defined by:

Jλ(u) = 1

p

∫
�

|∇u|pdx − λ

α + 1

∫
�

a(x)|u|α+1dx − 1

γ + 1

∫
�

b(x)|u|γ+1dx. (2.1)
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It is well known that the weak solutions of Eq. (1.1) are the critical points of the Euler
functional Jλ.

When Jλ is bounded below on W ; Jλ has a minimizer on W which is a critical point
of Jλ. In many problems such as (1.1) Jλ is not bounded below on W but is bounded
below on an appropriate subset of W and a minimizer on this set (if it exists) may give
rise to a solution of the corresponding differential equation.

A good candidate for an appropriate subset of W is the so-called Nehari manifold

Mλ(�) = {u ∈ W : 〈J ′
λ(u), u〉 = 0},

where 〈, 〉 denotes the usual duality between W and W ∗. It is clear that all critical points
of Jλ must lie on Mλ(�) and, as we will see below, local minimizers on Mλ(�) are
usually critical points of Jλ.

It is easy to see that u ∈ Mλ(�) if and only if∫
�

|∇u|pdx − λ

∫
�

a(x)|u|α+1dx −
∫

�

b(x)|u|γ+1dx = 0.

Hence if u ∈ Mλ(�), then

Jλ(u) =
(

1

p
− 1

α + 1

) ∫
�

|∇u|pdx +
(

1

α + 1
− 1

γ + 1

) ∫
�

b(x)|u|γ+1dx

=
(

1

p
− 1

γ + 1

) ∫
�

|∇u|pdx − λ

(
1

α + 1
− 1

γ + 1

) ∫
�

a(x)|u|α+1dx

(2.2)

The Nehari manifold is closely linked to the behaviour of the functions of the form
φu : t �−→ Jλ(tu) (t > 0). Such maps are known as fibering maps and were introduced
by Drabek and Pohozaev in [4] and are also discussed in Brown and Zhang [3].

It is clear that if u is a local minimizer of Jλ, then φu has a local minimum at t = 1.

Theorem 2.2. [3] Let u ∈ W − {0} and t > 0. Then tu ∈ Mλ(�) if and only if
φ′

u(t) = 0.

It is easy to see that u ∈ Mλ(�) if and only if φ′
u(1) = 0.

If u ∈ W , we have

φu(t) = 1

p
tp

∫
�

|∇u|pdx − λ
tα+1

α + 1

∫
�

a(x)|u|α+1dx

− tγ+1

γ + 1

∫
�

b(x)|u|γ+1dx, (2.3)

φ′
u(t) = tp−1

∫
�

|∇u|pdx − λtα
∫

�

a(x)|u|α+1dx − tγ
∫

�

b(x)|u|γ+1dx, (2.4)
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φ′′
u (t) = (p − 1)tp−2

∫
�

|∇u|pdx − λαtα−1
∫

�

a(x)|u|α+1dx

− γ tγ−1
∫

�

b(x)|u|γ+1dx. (2.5)

Thus points in Mλ(�) correspond to stationary points of fibering maps φu and so it
is natural to divide Mλ(�) three subsets M+

λ (�), M−
λ (�) and M0

λ(�) corresponding to
local minima, local maxima and points of inflexion of fibering maps.

Hence we define:

M+
λ (�) = {u ∈ Mλ(�) : φ′′

u (1) > 0},
M−

λ (�) = {u ∈ Mλ(�) : φ′′
u (1) < 0},

M0
λ(�) = {u ∈ Mλ(�) : φ′′

u (1) = 0}.
Note that if u ∈ Mλ(�), i.e., φ′

u(1) = 0, then

φ′′
u (1) = (p − α − 1)

∫
�

|∇u|pdx − (γ − α)
∫

�

b(x)|u|γ+1dx

= (p − γ − 1)
∫

�

|∇u|pdx + λ(γ − α)
∫

�

a(x)|u|α+1dx

(2.6)

Also as, proved in Binding, Drabek and Huang [1] or in Brown and Zhang [3], we
have the following Lemma.

Lemma 2.3. Suppose that u0 is a local maximum or minimum for Jλ on Mλ(�).
Then, if u0 
∈ M0

λ(�), u0 is a critical point of Jλ.

Lemma 2.4. Jλ is coercive and bounded below on Mλ(�).

Proof. It follows from (2.2) and the Sobolev embedding theorems that there exist positive
constants c1, c2 and c3 such that

Jλ(u) ≥ c1‖u‖p

W − c2

∫
�

|u|α+1dx ≥ c1‖u‖p

W − c3‖u‖α+1
W

and so Jλ is coercive and bounded below on Mλ(�). �

Define

mu(t) = tp−α−1
∫

�

|∇u|pdx − tγ−α

∫
�

b(x)|u|γ+1dx

Then for t > 0, tu ∈ Mλ(�) if and only if t is a solution of

mu(t) = λ

∫
�

a(x)|u|α+1dx. (2.7)
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Figure 1: Possible forms of mu

Moreover,

m′
u(t) = (p − α − 1)tp−α−2

∫
�

|∇u|pdx − (γ − α)tγ−α−1
∫

�

b(x)|u|γ+1dx (2.8)

Theorem 2.5.

(i) If
∫

�

b(x)|u|γ+1dx ≤ 0, mu is a strictly increasing function for t ≥ 0.

(ii) If
∫

�

b(x)|u|γ+1dx > 0, mu(t) > 0 for t small and positive but mu(t) → −∞ as

t → ∞, also mu(t) has a unique (maximum) stationary point. (see Fig.1)

Lemma 2.6.

(i) Suppose tu ∈ Mλ(�). Then φ′′
u (t) = tαm′

u(t).

(ii) If m′
u(t) > 0( < 0), then tu ∈ M+

λ (�)(M−
λ (�)).

We shall now describe the nature of the fibering maps for all possible signs of∫
�

a(x)|u|α+1dx and
∫

�

b(x)|u|γ+1dx. We have the following results.

(i) If
∫

�

a(x)|u|α+1dx ≤ 0 and
∫

�

b(x)|u|γ+1dx ≤ 0, φu is an increasing function of

t . And so no multiple of u lies in Mλ(�). (see Fig 2(a)).

(ii) If
∫

�

a(x)|u|α+1dx > 0 and
∫

�

b(x)|u|γ+1dx ≤ 0, φu(t) < 0 for t small and

positive but φu(t) → +∞ as t → ∞, also there is exactly one solution of (2.7).
Thus there is a unique value t(u) > 0 such that t(u)u ∈ M+

λ (�). Hence φu has a
unique critical point at t = t(u) which is a local minimum. (see Fig.2(b)).

(iii) If
∫

�

a(x)|u|α+1dx ≤ 0 and
∫

�

b(x)|u|γ+1dx > 0, φu(t) > 0 for t small and

positive but φu(t) → −∞ as t → ∞, also there is exactly one solution of (2.7).
Thus there is a unique value t(u) > 0 such that t(u)u ∈ M−

λ (�). Hence φu has a
unique critical point at t = t(u) which is a local maximum. (see Fig.2(c)).
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Figure 2: Possible forms of fibering maps.

(iv) If
∫

�

a(x)|u|α+1dx > 0 and
∫

�

b(x)|u|γ+1dx > 0,

a) If λ > 0 is sufficiently large, (2.7) has no solution and so φu has no critical
points, in case φu is a decreasing function. Hence no multiple of u lies in
Mλ(�).

b) If λ > 0 is sufficiently small, there are exactly two solutions t1(u) < t2(u)
of (2.7) with m′

u(t1(u)) > 0 and m′
u(t2(u)) < 0. Thus there are exactly two

multiples of u ∈ Mλ(�), namely t1(u)u ∈ M+
λ (�) and t2(u)u ∈ M−

λ (�). It
follows that φu has exactly two points - a local minimum at t = t1(u) and a
local maximum at t = t2(u); moreover φu is decreasing in (0, t1), increasing
in (t1, t2) and decreasing in (t2, ∞). (see Fig 2(d)).

The following result ensures that when λ is sufficiently small the graph of φu must
be as shown in Figure 2(a − d) for all non-zero u.

Lemma 2.7. There exists λ1 > 0 such that, when λ < λ1, φu takes on positive values
for all non-zero u ∈ W .

Proof. If
∫

�

b(x)|u|γ+1dx ≤ 0, then φu(t) > 0 for t sufficiently large. Suppose u ∈ W

and
∫

�

b(x)|u|γ+1dx > 0. Let

hu(t) = 1

p
tp

∫
�

|∇u|pdx − tγ+1

γ + 1

∫
�

b(x)|u|γ+1dx.
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Hence

h′
u(t) = tp−1

∫
�

|∇u|pdx − tγ
∫

�

b(x)|u|γ+1dx,

and so if we have h′
u(t) = 0 then tp−1

∫
�

|∇u|pdx − tγ
∫

�

b(x)|u|γ+1dx = 0 and so

tγ−p+1 =
∫
�

|∇u|pdx∫
�

b(x)|u|γ+1dx
.

Therefore we let

tmax = t =
[ ∫

�
|∇u|pdx∫

�
b(x)|u|γ+1dx

] 1
γ−p+1

.

Thus hu takes on a maximum value of
γ − p + 1

p(γ + 1)

[
(
∫
�

|∇u|pdx)γ+1

(
∫
�

b(x)|u|γ+1dx)p

] 1
γ−p+1

when

t = tmax.
By the Sobolev embedding: W

1,p
0 (�) ↪→ Lγ+1(�), we have

(∫
�

|u|γ+1dx

) 1
γ+1 ≤ Sγ+1

(∫
�

|∇u|pdx

) 1
p

.

where Sγ+1 denotes the Sobolev constant.
Hence

(
∫
�

|∇u|pdx)γ+1

(
∫
�

|u|γ+1dx)p
≥ 1

S
p(γ+1)
γ+1

.

Thus

hu(tmax) ≥ γ − p + 1

p(γ + 1)

[
1

‖b+‖p∞S
p(γ+1)
γ+1

] 1
γ−p+1

= δ,

where δ is independent of u.
We shall now show that there exists λ1 > 0 such that φu(tmax) > 0, i.e.,

hu(tmax) − λ(tmax)α+1

α + 1

∫
�

a(x)|u|α+1dx > 0,
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for all u ∈ W − {0} provided λ < λ1. We have

(tmax)α+1

α + 1

∫
�

a(x)|u|α+1dx ≤ 1

α + 1

[ ∫
�

|∇u|pdx∫
�

b(x)|u|γ+1dx)

] α+1
γ−p+1

‖a‖∞Sα+1
α+1

(∫
�

|∇u|pdx

) α+1
p

= 1

α + 1
‖a‖∞Sα+1

α+1

[
(
∫
�

|∇u|pdx)γ+1

(
∫
�

b(x)|u|γ+1dx)p)

] α+1
p(γ−p+1)

= 1

α + 1
‖a‖∞Sα+1

α+1

[
p(γ + 1)

γ − p + 1

] α+1
p

hu(tmax)
α+1
p

= chu(tmax)
α+1
p

where c is independent of u. Hence

φu(tmax) ≥ hu(tmax) − λchu(tmax)
α+1
p = hu(tmax)

α+1
p

[
hu(tmax)

p−α−1
p − λc

]
.

and so, since hu(tmax) ≥ δ for all u ∈ W − {0}, it follows that

φu(tmax) ≥ δ
α+1
p

[
δ

p−α−1
p − λc

]
.

Thus φu(tmax) > 0 for all non-zero u provided λ <
δ

p−α−1
p

c
= λ1. This completes the

proof. �

It follows from the Lemma 2.7 that when λ < λ1,
∫

�

a(x)|u|α+1dx > 0 and∫
�

b(x)|u|γ+1dx > 0 then φu must have exactly two critical points as discussed in

the remarks preceding the Lemma 2.7.
Thus when λ < λ1 we have obtained a complete knowledge of the number of critical

points of φu, of the intervals on which φu is increasing and decreasing and of the multiples

of u which lie in Mλ(�) for every possible choice of signs of
∫

�

a(x)|u|α+1dx and∫
�

b(x)|u|γ+1dx. In particular we have the following result.

Corollary 2.8. M0
λ(�) = ∅ when 0 < λ < λ1.

Corollary 2.9. If λ < λ1, then there exists δ1 > 0 such that Jλ(u) ≥ δ1 for all u ∈
M−

λ (�).
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Proof. Consider u ∈ M−
λ (�). Then φu has a positive global maximum at t = 1 and∫

�

b(x)|u|γ+1dx > 0. Thus

Jλ(u) = φu(1) ≥ φu(tmax) ≥ hu(tmax)
α+1
p (hu(tmax)

p−α−1
p − λc)

≥ δ
α+1
p (δ

p−α−1
p − λc)

and the left hand side is uniformly bounded away from 0 provided that λ < λ1. �

3. Existence results

Now we can state our main result.

Theorem 3.1. If λ < λ1, there exists a minimizer of Jλ on M+
λ (�).

Proof. Since Jλ is bounded below on Mλ(�) and so on M+
λ (�), there exists a minimizing

sequence {un} ⊆ M+
λ (�) such that lim

n→∞ Jλ(un) = inf
u∈M+

λ (�)
Jλ(u). Then by Lemma 2.4

and Rellich-Kondrachov Theorem, there exit a subsequence {un} and u0 ∈ W such that

un → u0 weakly in W , un → u0 strongly in Lr (�) for 1 < r <
np

n − p
.

If we choose u ∈ W such that
∫

�

a(x)|u|α+1dx > 0, then the graph of the fibering

map φu must be of one the forms shown in Figure 2(b) or (d) and so there exists t1(u)
such that t1(u)u ∈ M+

λ (�) and Jλ(t1(u)u) < 0. Hence, inf
u∈M+

λ (�)
Jλ(u) < 0. By (2.2),

Jλ(un) =
(

1

p
− 1

γ + 1

) ∫
�

|∇un|pdx − λ

(
1

α + 1
− 1

γ + 1

) ∫
�

a(x)|un|α+1dx,

and so

λ

(
1

α + 1
− 1

γ + 1

) ∫
�

a(x)|un|α+1dx =
(

1

p
− 1

γ + 1

) ∫
�

|∇un|pdx − Jλ(un).

Letting n → ∞, we see that
∫

�

a(x)|u0|α+1dx > 0.

Suppose un 
→ u0 in W . We shall obtain a contradiction by discussing the fibering

map. Since
∫

�

a(x)|u0|α+1dx > 0, the graph of φu0 must be either of the from shown

in Figure 2(b) or (d). Hence there exists t0 > 0 such that t0u0 ∈ M+
λ (�) and φu0 is

decreasing on (0, t0) with φ′
u0

(t0) = 0.
Since un 
→ u0 in W , then

‖u0‖ < lim
n→∞ inf ‖un‖ ⇒

∫
�

|∇u0|pdx < lim
n→∞ inf

∫
�

|∇un|pdx.
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Thus, as

φ′
un

(t) = tp
∫

�

|∇un|pdx − λtα
∫

�

a(x)|un|α+1dx − tγ
∫

�

b(x)|un|γ+1dx,

and

φ′
u0

(t) = tp
∫

�

|∇u0|pdx − λtα
∫

�

a(x)|u0|α+1dx − tγ
∫

�

b(x)|u0|γ+1dx.

Since {un} tends to u0 strongly in Lr , we have

0 = φ′
u0

(t0) = t
p−1
0

∫
�

|∇u0|pdx − λtα0

∫
�

a(x)|u0|α+1dx − t
γ
0

∫
�

b(x)|u0|γ+1d(x)

< lim
n→∞ inf

(
t
p−1
0

∫
�

|∇un|pdx − λtα0

∫
�

a(x)|un|α+1dx − t
γ
0

∫
�

b(x)|un|γ+1d(x)

)
= lim inf n → ∞φ′

un
(t0).

It follows that φ′
un

(t0) > 0 for n sufficiently large. Since {un} ⊆ M+
λ (�), by considering

the possible fibering maps it is easy to see that φ′
un

(t) < 0 for 0 < t < 1 and φ′
un

(1) = 0
for all n. Hence we must have t0 > 1. But t0u0 ∈ M+

λ (�) and so

Jλ(t0u0) = φu0(t0) < φu0(1) = Jλ(u0) < lim
n→∞ Jλ(un) = inf

u∈M+
λ

Jλ(u).

and this is a contradiction. Hence un → u0 in W and so

Jλ(u0) = lim
n→∞ Jλ(un) = inf

u∈M+
λ

Jλ(u).

Thus u0 is a minimizer for Jλ on M+
λ (�). �

Theorem 3.2. If λ < λ1, there exists a minimizer of Jλ on M−
λ (�).

Proof. By Corollary 2.9 we haveJλ(u) ≥ δ1 > 0 for all u ∈ M−
λ (�) and so inf

u∈M−
λ (�)

Jλ(u) >

0. Hence there exists a minimizing sequence {un} ⊆ M−
λ (�) such that

lim
n→∞ Jλ(un) = inf

u∈M−
λ (�)

Jλ(u) > 0.

As in the previous proof, since Jλ is coercive, {un} is bounded in W and we may assume,
without loss of generality, that un → u0 weakly in W , un → u0 strongly in Lr (�) for

1 < r <
np

n − p
. By (2.2)

Jλ(un) =
(

1

p
− 1

α + 1

) ∫
�

|∇un|pdx +
(

1

α + 1
− 1

γ + 1

) ∫
�

b(x)|un|γ+1dx.
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and, since lim
n→∞ Jλ(un) > 0 and lim

n→∞

∫
�

b(x)|un|γ+1dx =
∫

�

b(x)|u0|γ+1dx we must

have that
∫

�

b(x)|u0|γ+1dx > 0. Hence the fibering map φu0 must have graph as shown

in Figure 2(c) or (d) and so there exists t̂ > 0 such that t̂u0 ∈ M−
λ (�).

Suppose un 
→ u0 in W . Using the facts that∫
�

|∇u0|pdx < lim
n→∞ inf

∫
�

|∇un|pdx,

and that, since un ⊆ M−
λ (�), φun

(1) = Jλ(un) ≥ Jλ(sun) = φun
(s), for all s ≥ 0, we

have

Jλ(t̂u0) = 1

p
t̂p

∫
�

|∇u0|pdx − λt̂α+1

α + 1

∫
�

a(x)|u0|α+1dx − t̂ γ+1

γ + 1

∫
�

b(x)|u0|γ+1dx

< lim
n→∞

[
1

p
t̂p

∫
�

|∇un|pdx − λt̂α+1

α + 1

∫
�

a(x)|un|α+1dx − t̂ γ+1

γ + 1

∫
�

b(x)|un|γ+1dx

]
= lim

n→∞ Jλ(t̂un)

≤ lim
n→∞ Jλ(un) = inf

u∈M−
λ (�)

Jλ(u).

which is a contradiction. Hence un → u0 in W and the proof can be completed as in the
previous Theorem. �

Corollary 3.3. Equation (1.1) has at least two positive solutions whenever 0 < λ < λ1.

Proof. By Theorems 3.1 and 3.2 there exist u+ ∈ M+
λ (�) and u− ∈ M−

λ (�) such that
Jλ(u+) = inf

u∈M+
λ (�)

Jλ(u) and Jλ(u−) = inf
u∈M−

λ (�)
Jλ(u).

Moreover Jλ(u±) = Jλ(|u±|) and |u±| ∈ M±
λ (�) and so we may assume u± ≥ 0.

By Lemma 2.3 u± are critical points of Jλ on W and hence are weak solutions (and
so by standard regularity results classical solutions) of (1.1). Finally, by the Harnack
inequality due to Trudinger [9], we obtain that u± are positive solutions of (1.1). �
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