

A Fibering Map Approach to Qausilinear Elliptic Boundary Value Problem

S. Khademloo

*Faculty of Basic Sciences,
Babol University of Technology Babol, Iran
E-mail: S.Khademloo@nit.ac.ir*

M. Kardoost

*Young Researchers Club, Islamic Azad University,
Ghaemshahr Branch, P.D.Box 163, Ghaemshahr, Iran
E-mail: M.Kardoost@yahoo.com*

Abstract

Using fibering method, we prove the existence of multiple positive solutions of quasilinear problem

$$\begin{cases} -\Delta_p u(x) = \lambda a(x)|u|^{\alpha-1}u + b(x)|u|^{\gamma-1}u & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega \end{cases}$$

where λ and α are real parameters, Ω is an open bounded domain in \mathbb{R}^N , $N \geq 3$, with the smooth boundary $\partial\Omega$, $a, b : \bar{\Omega} \rightarrow \mathbb{R}$ are smooth sign changing functions.

The existence results are obtained by the variational method.

AMS subject classification:

Keywords: Variational method, Nehari manifold, Fibering maps, minimizing sequence.

1. Introduction

In this paper we study the existence of positive solutions of the Dirichlet boundary value problem:

$$\begin{cases} -\Delta_p u(x) = \lambda a(x)|u|^{\alpha-1}u + b(x)|u|^{\gamma-1}u & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega \end{cases} \quad (1.1)$$

where Ω is a bounded region with smooth boundary in \mathbb{R}^n , where $\Delta_p(x) = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian $\lambda > 0$ is a real parameter, $1 < \alpha + 1 < 2 < p < \gamma + 1 < p^*$, where

$$p^* = \frac{np}{n-p} \text{ for } p < n \text{ and } p^* = \infty \text{ for } p \geq n$$

and $a, b : \bar{\Omega} \rightarrow \mathbb{R}$ are smooth sign changing functions.

Equation (1.1) had been studied by Figueiredo et al. in the case $p = 2$ by using the Mountain Pass lemma [2] and by Il'yasova et al. and Afrouzi et al. by using the Nehari manifold [5],[6] and [7]. Furthermore this problem in the case $p = 2$ has been studied by Brown and Wu [8].

In [4] and [3] the results are obtained by using fibering maps (i.e maps of the form $t \rightarrow J_\lambda(tu)$) which are closely related to the Nehari manifold. In this paper we show how a fairly complete knowledge of all possible forms of the fibering maps provides a very simple and comparatively elementary means of establishing results similar to those proved in [5] and [7] on the existence of multiple solutions of (1.1). The plan of the paper is as follows:

In section 2 we recall the properties which we shall require of fibering maps and of the Nehari manifold. In section 3 we give a fairly complete description of the fibering maps associated with (1.1) and in section 4 we use this information to give a very simple variational proof of the existence of at least two positive solutions of (1.1) for sufficiently small λ .

2. Notation and Preliminaries

Let Ω be a bounded domain in \mathbb{R}^n . We will work in the Sobolev space $W := W_0^{1,p}(\Omega)$ equipped with the norm

$$\|u\|_W = \left(\int_{\Omega} |\nabla u|^p dx \right)^{\frac{1}{p}}.$$

First we give the definition of the weak solution of (1.1).

Definition 2.1. We say that $u \in W$ is a positive weak solution to (1.1) if for any $v \in W$ we have

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v dx = \lambda \int_{\Omega} a(x) |u|^\alpha v dx + \int_{\Omega} b(x) |u|^\gamma v dx.$$

It is clear that problem (1.1) has a variational structure. Let $J_\lambda : W \rightarrow \mathbb{R}$ be the corresponding Euler functional of problem (1.1) which is defined by:

$$J_\lambda(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx - \frac{\lambda}{\alpha+1} \int_{\Omega} a(x) |u|^{\alpha+1} dx - \frac{1}{\gamma+1} \int_{\Omega} b(x) |u|^{\gamma+1} dx. \quad (2.1)$$

It is well known that the weak solutions of Eq. (1.1) are the critical points of the Euler functional J_λ .

When J_λ is bounded below on W ; J_λ has a minimizer on W which is a critical point of J_λ . In many problems such as (1.1) J_λ is not bounded below on W but is bounded below on an appropriate subset of W and a minimizer on this set (if it exists) may give rise to a solution of the corresponding differential equation.

A good candidate for an appropriate subset of W is the so-called Nehari manifold

$$M_\lambda(\Omega) = \{u \in W : \langle J'_\lambda(u), u \rangle = 0\},$$

where $\langle \cdot, \cdot \rangle$ denotes the usual duality between W and W^* . It is clear that all critical points of J_λ must lie on $M_\lambda(\Omega)$ and, as we will see below, local minimizers on $M_\lambda(\Omega)$ are usually critical points of J_λ .

It is easy to see that $u \in M_\lambda(\Omega)$ if and only if

$$\int_{\Omega} |\nabla u|^p dx - \lambda \int_{\Omega} a(x)|u|^{\alpha+1} dx - \int_{\Omega} b(x)|u|^{\gamma+1} dx = 0.$$

Hence if $u \in M_\lambda(\Omega)$, then

$$\begin{aligned} J_\lambda(u) &= \left(\frac{1}{p} - \frac{1}{\alpha+1} \right) \int_{\Omega} |\nabla u|^p dx + \left(\frac{1}{\alpha+1} - \frac{1}{\gamma+1} \right) \int_{\Omega} b(x)|u|^{\gamma+1} dx \\ &= \left(\frac{1}{p} - \frac{1}{\gamma+1} \right) \int_{\Omega} |\nabla u|^p dx - \lambda \left(\frac{1}{\alpha+1} - \frac{1}{\gamma+1} \right) \int_{\Omega} a(x)|u|^{\alpha+1} dx \end{aligned} \quad (2.2)$$

The Nehari manifold is closely linked to the behaviour of the functions of the form $\phi_u : t \mapsto J_\lambda(tu)$ ($t > 0$). Such maps are known as fiber maps and were introduced by Drabek and Pohozaev in [4] and are also discussed in Brown and Zhang [3].

It is clear that if u is a local minimizer of J_λ , then ϕ_u has a local minimum at $t = 1$.

Theorem 2.2. [3] Let $u \in W - \{0\}$ and $t > 0$. Then $tu \in M_\lambda(\Omega)$ if and only if $\phi'_u(t) = 0$.

It is easy to see that $u \in M_\lambda(\Omega)$ if and only if $\phi'_u(1) = 0$.

If $u \in W$, we have

$$\begin{aligned} \phi_u(t) &= \frac{1}{p} t^p \int_{\Omega} |\nabla u|^p dx - \lambda \frac{t^{\alpha+1}}{\alpha+1} \int_{\Omega} a(x)|u|^{\alpha+1} dx \\ &\quad - \frac{t^{\gamma+1}}{\gamma+1} \int_{\Omega} b(x)|u|^{\gamma+1} dx, \end{aligned} \quad (2.3)$$

$$\phi'_u(t) = t^{p-1} \int_{\Omega} |\nabla u|^p dx - \lambda t^\alpha \int_{\Omega} a(x)|u|^{\alpha+1} dx - t^\gamma \int_{\Omega} b(x)|u|^{\gamma+1} dx, \quad (2.4)$$

$$\begin{aligned}\phi''_u(t) &= (p-1)t^{p-2} \int_{\Omega} |\nabla u|^p dx - \lambda \alpha t^{\alpha-1} \int_{\Omega} a(x)|u|^{\alpha+1} dx \\ &\quad - \gamma t^{\gamma-1} \int_{\Omega} b(x)|u|^{\gamma+1} dx.\end{aligned}\tag{2.5}$$

Thus points in $M_{\lambda}(\Omega)$ correspond to stationary points of fibering maps ϕ_u and so it is natural to divide $M_{\lambda}(\Omega)$ three subsets $M_{\lambda}^+(\Omega)$, $M_{\lambda}^-(\Omega)$ and $M_{\lambda}^0(\Omega)$ corresponding to local minima, local maxima and points of inflection of fibering maps.

Hence we define:

$$\begin{aligned}M_{\lambda}^+(\Omega) &= \{u \in M_{\lambda}(\Omega) : \phi''_u(1) > 0\}, \\ M_{\lambda}^-(\Omega) &= \{u \in M_{\lambda}(\Omega) : \phi''_u(1) < 0\}, \\ M_{\lambda}^0(\Omega) &= \{u \in M_{\lambda}(\Omega) : \phi''_u(1) = 0\}.\end{aligned}$$

Note that if $u \in M_{\lambda}(\Omega)$, i.e., $\phi'_u(1) = 0$, then

$$\begin{aligned}\phi''_u(1) &= (p-\alpha-1) \int_{\Omega} |\nabla u|^p dx - (\gamma-\alpha) \int_{\Omega} b(x)|u|^{\gamma+1} dx \\ &= (p-\gamma-1) \int_{\Omega} |\nabla u|^p dx + \lambda(\gamma-\alpha) \int_{\Omega} a(x)|u|^{\alpha+1} dx\end{aligned}\tag{2.6}$$

Also as, proved in Binding, Drabek and Huang [1] or in Brown and Zhang [3], we have the following Lemma.

Lemma 2.3. Suppose that u_0 is a local maximum or minimum for J_{λ} on $M_{\lambda}(\Omega)$.

Then, if $u_0 \notin M_{\lambda}^0(\Omega)$, u_0 is a critical point of J_{λ} .

Lemma 2.4. J_{λ} is coercive and bounded below on $M_{\lambda}(\Omega)$.

Proof. It follows from (2.2) and the Sobolev embedding theorems that there exist positive constants c_1, c_2 and c_3 such that

$$J_{\lambda}(u) \geq c_1 \|u\|_W^p - c_2 \int_{\Omega} |u|^{\alpha+1} dx \geq c_1 \|u\|_W^p - c_3 \|u\|_W^{\alpha+1}$$

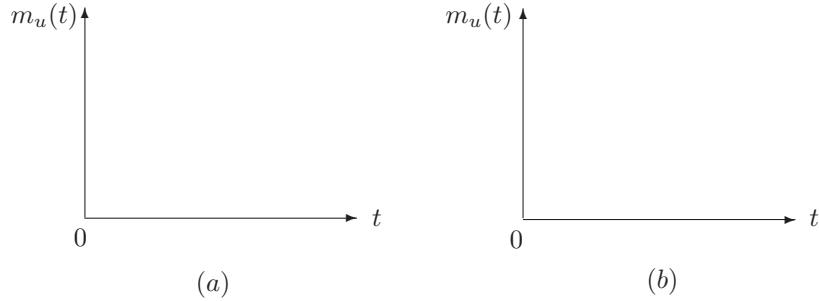
and so J_{λ} is coercive and bounded below on $M_{\lambda}(\Omega)$. ■

Define

$$m_u(t) = t^{p-\alpha-1} \int_{\Omega} |\nabla u|^p dx - t^{\gamma-\alpha} \int_{\Omega} b(x)|u|^{\gamma+1} dx$$

Then for $t > 0$, $tu \in M_{\lambda}(\Omega)$ if and only if t is a solution of

$$m_u(t) = \lambda \int_{\Omega} a(x)|u|^{\alpha+1} dx.\tag{2.7}$$

Figure 1: Possible forms of m_u

Moreover,

$$m'_u(t) = (p - \alpha - 1)t^{p-\alpha-2} \int_{\Omega} |\nabla u|^p dx - (\gamma - \alpha)t^{\gamma-\alpha-1} \int_{\Omega} b(x)|u|^{\gamma+1} dx \quad (2.8)$$

Theorem 2.5.

- (i) If $\int_{\Omega} b(x)|u|^{\gamma+1} dx \leq 0$, m_u is a strictly increasing function for $t \geq 0$.
- (ii) If $\int_{\Omega} b(x)|u|^{\gamma+1} dx > 0$, $m_u(t) > 0$ for t small and positive but $m_u(t) \rightarrow -\infty$ as $t \rightarrow \infty$, also $m_u(t)$ has a unique (maximum) stationary point. (see Fig.1)

Lemma 2.6.

- (i) Suppose $tu \in M_{\lambda}(\Omega)$. Then $\phi''_u(t) = t^{\alpha}m'_u(t)$.
- (ii) If $m'_u(t) > 0 (< 0)$, then $tu \in M_{\lambda}^+(\Omega) (M_{\lambda}^-(\Omega))$.

We shall now describe the nature of the fiber maps for all possible signs of $\int_{\Omega} a(x)|u|^{\alpha+1} dx$ and $\int_{\Omega} b(x)|u|^{\gamma+1} dx$. We have the following results.

- (i) If $\int_{\Omega} a(x)|u|^{\alpha+1} dx \leq 0$ and $\int_{\Omega} b(x)|u|^{\gamma+1} dx \leq 0$, ϕ_u is an increasing function of t . And so no multiple of u lies in $M_{\lambda}(\Omega)$. (see Fig 2(a)).
- (ii) If $\int_{\Omega} a(x)|u|^{\alpha+1} dx > 0$ and $\int_{\Omega} b(x)|u|^{\gamma+1} dx \leq 0$, $\phi_u(t) < 0$ for t small and positive but $\phi_u(t) \rightarrow +\infty$ as $t \rightarrow \infty$, also there is exactly one solution of (2.7). Thus there is a unique value $t(u) > 0$ such that $t(u)u \in M_{\lambda}^+(\Omega)$. Hence ϕ_u has a unique critical point at $t = t(u)$ which is a local minimum. (see Fig.2(b)).
- (iii) If $\int_{\Omega} a(x)|u|^{\alpha+1} dx \leq 0$ and $\int_{\Omega} b(x)|u|^{\gamma+1} dx > 0$, $\phi_u(t) > 0$ for t small and positive but $\phi_u(t) \rightarrow -\infty$ as $t \rightarrow \infty$, also there is exactly one solution of (2.7). Thus there is a unique value $t(u) > 0$ such that $t(u)u \in M_{\lambda}^-(\Omega)$. Hence ϕ_u has a unique critical point at $t = t(u)$ which is a local maximum. (see Fig.2(c)).

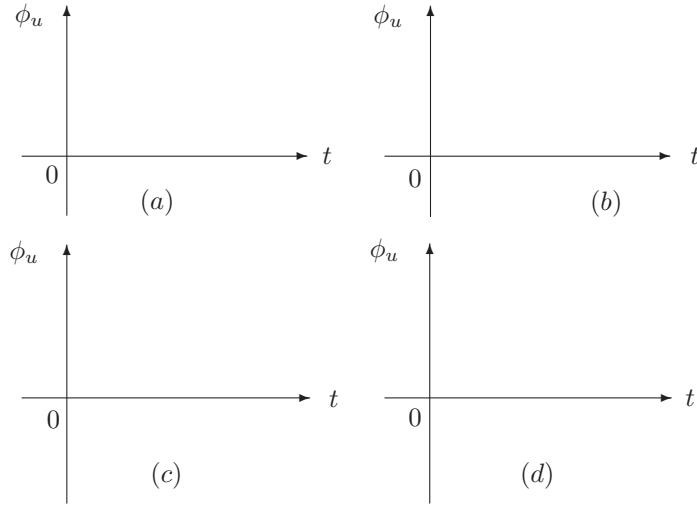


Figure 2: Possible forms of fibering maps.

(iv) If $\int_{\Omega} a(x)|u|^{\alpha+1}dx > 0$ and $\int_{\Omega} b(x)|u|^{\gamma+1}dx > 0$,

- a) If $\lambda > 0$ is sufficiently large, (2.7) has no solution and so ϕ_u has no critical points, in case ϕ_u is a decreasing function. Hence no multiple of u lies in $M_{\lambda}(\Omega)$.
- b) If $\lambda > 0$ is sufficiently small, there are exactly two solutions $t_1(u) < t_2(u)$ of (2.7) with $m'_u(t_1(u)) > 0$ and $m'_u(t_2(u)) < 0$. Thus there are exactly two multiples of $u \in M_{\lambda}(\Omega)$, namely $t_1(u)u \in M_{\lambda}^+(\Omega)$ and $t_2(u)u \in M_{\lambda}^-(\Omega)$. It follows that ϕ_u has exactly two points - a local minimum at $t = t_1(u)$ and a local maximum at $t = t_2(u)$; moreover ϕ_u is decreasing in $(0, t_1)$, increasing in (t_1, t_2) and decreasing in (t_2, ∞) . (see Fig 2(d)).

The following result ensures that when λ is sufficiently small the graph of ϕ_u must be as shown in Figure 2(a – d) for all non-zero u .

Lemma 2.7. There exists $\lambda_1 > 0$ such that, when $\lambda < \lambda_1$, ϕ_u takes on positive values for all non-zero $u \in W$.

Proof. If $\int_{\Omega} b(x)|u|^{\gamma+1}dx \leq 0$, then $\phi_u(t) > 0$ for t sufficiently large. Suppose $u \in W$ and $\int_{\Omega} b(x)|u|^{\gamma+1}dx > 0$. Let

$$h_u(t) = \frac{1}{p}t^p \int_{\Omega} |\nabla u|^p dx - \frac{t^{\gamma+1}}{\gamma+1} \int_{\Omega} b(x)|u|^{\gamma+1}dx.$$

Hence

$$h'_u(t) = t^{p-1} \int_{\Omega} |\nabla u|^p dx - t^{\gamma} \int_{\Omega} b(x)|u|^{\gamma+1} dx,$$

and so if we have $h'_u(t) = 0$ then $t^{p-1} \int_{\Omega} |\nabla u|^p dx - t^{\gamma} \int_{\Omega} b(x)|u|^{\gamma+1} dx = 0$ and so

$$t^{\gamma-p+1} = \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} b(x)|u|^{\gamma+1} dx}.$$

Therefore we let

$$t_{\max} = t = \left[\frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} b(x)|u|^{\gamma+1} dx} \right]^{\frac{1}{\gamma-p+1}}.$$

Thus h_u takes on a maximum value of $\frac{\gamma-p+1}{p(\gamma+1)} \left[\frac{(\int_{\Omega} |\nabla u|^p dx)^{\gamma+1}}{(\int_{\Omega} b(x)|u|^{\gamma+1} dx)^p} \right]^{\frac{1}{\gamma-p+1}}$ when $t = t_{\max}$.

By the Sobolev embedding: $W_0^{1,p}(\Omega) \hookrightarrow L^{\gamma+1}(\Omega)$, we have

$$\left(\int_{\Omega} |u|^{\gamma+1} dx \right)^{\frac{1}{\gamma+1}} \leq S_{\gamma+1} \left(\int_{\Omega} |\nabla u|^p dx \right)^{\frac{1}{p}}.$$

where $S_{\gamma+1}$ denotes the Sobolev constant.

Hence

$$\frac{(\int_{\Omega} |\nabla u|^p dx)^{\gamma+1}}{(\int_{\Omega} |u|^{\gamma+1} dx)^p} \geq \frac{1}{S_{\gamma+1}^{p(\gamma+1)}}.$$

Thus

$$h_u(t_{\max}) \geq \frac{\gamma-p+1}{p(\gamma+1)} \left[\frac{1}{\|b^+\|_{\infty}^p S_{\gamma+1}^{p(\gamma+1)}} \right]^{\frac{1}{\gamma-p+1}} = \delta,$$

where δ is independent of u .

We shall now show that there exists $\lambda_1 > 0$ such that $\phi_u(t_{\max}) > 0$, i.e.,

$$h_u(t_{\max}) - \frac{\lambda(t_{\max})^{\alpha+1}}{\alpha+1} \int_{\Omega} a(x)|u|^{\alpha+1} dx > 0,$$

for all $u \in W - \{0\}$ provided $\lambda < \lambda_1$. We have

$$\begin{aligned}
 \frac{(t_{\max})^{\alpha+1}}{\alpha+1} \int_{\Omega} a(x)|u|^{\alpha+1} dx &\leq \frac{1}{\alpha+1} \left[\frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} b(x)|u|^{\gamma+1} dx} \right]^{\frac{\alpha+1}{\gamma-p+1}} \\
 &\quad \|a\|_{\infty} S_{\alpha+1}^{\alpha+1} \left(\int_{\Omega} |\nabla u|^p dx \right)^{\frac{\alpha+1}{p}} \\
 &= \frac{1}{\alpha+1} \|a\|_{\infty} S_{\alpha+1}^{\alpha+1} \left[\frac{(\int_{\Omega} |\nabla u|^p dx)^{\gamma+1}}{(\int_{\Omega} b(x)|u|^{\gamma+1} dx)^p} \right]^{\frac{\alpha+1}{p(\gamma-p+1)}} \\
 &= \frac{1}{\alpha+1} \|a\|_{\infty} S_{\alpha+1}^{\alpha+1} \left[\frac{p(\gamma+1)}{\gamma-p+1} \right]^{\frac{\alpha+1}{p}} h_u(t_{\max})^{\frac{\alpha+1}{p}} \\
 &= ch_u(t_{\max})^{\frac{\alpha+1}{p}}
 \end{aligned}$$

where c is independent of u . Hence

$$\phi_u(t_{\max}) \geq h_u(t_{\max}) - \lambda ch_u(t_{\max})^{\frac{\alpha+1}{p}} = h_u(t_{\max})^{\frac{\alpha+1}{p}} \left[h_u(t_{\max})^{\frac{p-\alpha-1}{p}} - \lambda c \right].$$

and so, since $h_u(t_{\max}) \geq \delta$ for all $u \in W - \{0\}$, it follows that

$$\phi_u(t_{\max}) \geq \delta^{\frac{\alpha+1}{p}} \left[\delta^{\frac{p-\alpha-1}{p}} - \lambda c \right].$$

Thus $\phi_u(t_{\max}) > 0$ for all non-zero u provided $\lambda < \frac{\delta^{\frac{p-\alpha-1}{p}}}{c} = \lambda_1$. This completes the proof. \blacksquare

It follows from the Lemma 2.7 that when $\lambda < \lambda_1$, $\int_{\Omega} a(x)|u|^{\alpha+1} dx > 0$ and $\int_{\Omega} b(x)|u|^{\gamma+1} dx > 0$ then ϕ_u must have exactly two critical points as discussed in the remarks preceding the Lemma 2.7.

Thus when $\lambda < \lambda_1$ we have obtained a complete knowledge of the number of critical points of ϕ_u , of the intervals on which ϕ_u is increasing and decreasing and of the multiples of u which lie in $M_{\lambda}(\Omega)$ for every possible choice of signs of $\int_{\Omega} a(x)|u|^{\alpha+1} dx$ and $\int_{\Omega} b(x)|u|^{\gamma+1} dx$. In particular we have the following result.

Corollary 2.8. $M_{\lambda}^0(\Omega) = \emptyset$ when $0 < \lambda < \lambda_1$.

Corollary 2.9. If $\lambda < \lambda_1$, then there exists $\delta_1 > 0$ such that $J_{\lambda}(u) \geq \delta_1$ for all $u \in M_{\lambda}^-(\Omega)$.

Proof. Consider $u \in M_\lambda^-(\Omega)$. Then ϕ_u has a positive global maximum at $t = 1$ and $\int_{\Omega} b(x)|u|^{\gamma+1}dx > 0$. Thus

$$\begin{aligned} J_\lambda(u) = \phi_u(1) &\geq \phi_u(t_{\max}) \geq h_u(t_{\max})^{\frac{\alpha+1}{p}} (h_u(t_{\max})^{\frac{p-\alpha-1}{p}} - \lambda c) \\ &\geq \delta^{\frac{\alpha+1}{p}} (\delta^{\frac{p-\alpha-1}{p}} - \lambda c) \end{aligned}$$

and the left hand side is uniformly bounded away from 0 provided that $\lambda < \lambda_1$. \blacksquare

3. Existence results

Now we can state our main result.

Theorem 3.1. If $\lambda < \lambda_1$, there exists a minimizer of J_λ on $M_\lambda^+(\Omega)$.

Proof. Since J_λ is bounded below on $M_\lambda(\Omega)$ and so on $M_\lambda^+(\Omega)$, there exists a minimizing sequence $\{u_n\} \subseteq M_\lambda^+(\Omega)$ such that $\lim_{n \rightarrow \infty} J_\lambda(u_n) = \inf_{u \in M_\lambda^+(\Omega)} J_\lambda(u)$. Then by Lemma 2.4 and Rellich-Kondrachov Theorem, there exist a subsequence $\{u_n\}$ and $u_0 \in W$ such that $u_n \rightarrow u_0$ weakly in W , $u_n \rightarrow u_0$ strongly in $L^r(\Omega)$ for $1 < r < \frac{np}{n-p}$.

If we choose $u \in W$ such that $\int_{\Omega} a(x)|u|^{\alpha+1}dx > 0$, then the graph of the fibering map ϕ_u must be of one the forms shown in Figure 2(b) or (d) and so there exists $t_1(u)$ such that $t_1(u)u \in M_\lambda^+(\Omega)$ and $J_\lambda(t_1(u)u) < 0$. Hence, $\inf_{u \in M_\lambda^+(\Omega)} J_\lambda(u) < 0$. By (2.2),

$$J_\lambda(u_n) = \left(\frac{1}{p} - \frac{1}{\gamma+1} \right) \int_{\Omega} |\nabla u_n|^p dx - \lambda \left(\frac{1}{\alpha+1} - \frac{1}{\gamma+1} \right) \int_{\Omega} a(x)|u_n|^{\alpha+1} dx,$$

and so

$$\lambda \left(\frac{1}{\alpha+1} - \frac{1}{\gamma+1} \right) \int_{\Omega} a(x)|u_n|^{\alpha+1} dx = \left(\frac{1}{p} - \frac{1}{\gamma+1} \right) \int_{\Omega} |\nabla u_n|^p dx - J_\lambda(u_n).$$

Letting $n \rightarrow \infty$, we see that $\int_{\Omega} a(x)|u_0|^{\alpha+1} dx > 0$.

Suppose $u_n \not\rightarrow u_0$ in W . We shall obtain a contradiction by discussing the fibering map. Since $\int_{\Omega} a(x)|u_0|^{\alpha+1} dx > 0$, the graph of ϕ_{u_0} must be either of the from shown in Figure 2(b) or (d). Hence there exists $t_0 > 0$ such that $t_0 u_0 \in M_\lambda^+(\Omega)$ and ϕ_{u_0} is decreasing on $(0, t_0)$ with $\phi'_{u_0}(t_0) = 0$.

Since $u_n \not\rightarrow u_0$ in W , then

$$\|u_0\| < \liminf_{n \rightarrow \infty} \|u_n\| \Rightarrow \int_{\Omega} |\nabla u_0|^p dx < \liminf_{n \rightarrow \infty} \int_{\Omega} |\nabla u_n|^p dx.$$

Thus, as

$$\phi'_{u_n}(t) = t^p \int_{\Omega} |\nabla u_n|^p dx - \lambda t^\alpha \int_{\Omega} a(x)|u_n|^{\alpha+1} dx - t^\gamma \int_{\Omega} b(x)|u_n|^{\gamma+1} dx,$$

and

$$\phi'_{u_0}(t) = t^p \int_{\Omega} |\nabla u_0|^p dx - \lambda t^\alpha \int_{\Omega} a(x)|u_0|^{\alpha+1} dx - t^\gamma \int_{\Omega} b(x)|u_0|^{\gamma+1} dx.$$

Since $\{u_n\}$ tends to u_0 strongly in L^r , we have

$$\begin{aligned} 0 &= \phi'_{u_0}(t_0) = t_0^{p-1} \int_{\Omega} |\nabla u_0|^p dx - \lambda t_0^\alpha \int_{\Omega} a(x)|u_0|^{\alpha+1} dx - t_0^\gamma \int_{\Omega} b(x)|u_0|^{\gamma+1} dx \\ &< \liminf_{n \rightarrow \infty} \left(t_0^{p-1} \int_{\Omega} |\nabla u_n|^p dx - \lambda t_0^\alpha \int_{\Omega} a(x)|u_n|^{\alpha+1} dx - t_0^\gamma \int_{\Omega} b(x)|u_n|^{\gamma+1} dx \right) \\ &= \liminf_{n \rightarrow \infty} \phi'_{u_n}(t_0). \end{aligned}$$

It follows that $\phi'_{u_n}(t_0) > 0$ for n sufficiently large. Since $\{u_n\} \subseteq M_\lambda^+(\Omega)$, by considering the possible fiber maps it is easy to see that $\phi'_{u_n}(t) < 0$ for $0 < t < 1$ and $\phi'_{u_n}(1) = 0$ for all n . Hence we must have $t_0 > 1$. But $t_0 u_0 \in M_\lambda^+(\Omega)$ and so

$$J_\lambda(t_0 u_0) = \phi_{u_0}(t_0) < \phi_{u_0}(1) = J_\lambda(u_0) < \lim_{n \rightarrow \infty} J_\lambda(u_n) = \inf_{u \in M_\lambda^+} J_\lambda(u).$$

and this is a contradiction. Hence $u_n \rightarrow u_0$ in W and so

$$J_\lambda(u_0) = \lim_{n \rightarrow \infty} J_\lambda(u_n) = \inf_{u \in M_\lambda^+} J_\lambda(u).$$

Thus u_0 is a minimizer for J_λ on $M_\lambda^+(\Omega)$. ■

Theorem 3.2. If $\lambda < \lambda_1$, there exists a minimizer of J_λ on $M_\lambda^-(\Omega)$.

Proof. By Corollary 2.9 we have $J_\lambda(u) \geq \delta_1 > 0$ for all $u \in M_\lambda^-(\Omega)$ and so $\inf_{u \in M_\lambda^-(\Omega)} J_\lambda(u) > 0$. Hence there exists a minimizing sequence $\{u_n\} \subseteq M_\lambda^-(\Omega)$ such that

$$\lim_{n \rightarrow \infty} J_\lambda(u_n) = \inf_{u \in M_\lambda^-(\Omega)} J_\lambda(u) > 0.$$

As in the previous proof, since J_λ is coercive, $\{u_n\}$ is bounded in W and we may assume, without loss of generality, that $u_n \rightarrow u_0$ weakly in W , $u_n \rightarrow u_0$ strongly in $L^r(\Omega)$ for $1 < r < \frac{np}{n-p}$. By (2.2)

$$J_\lambda(u_n) = \left(\frac{1}{p} - \frac{1}{\alpha+1} \right) \int_{\Omega} |\nabla u_n|^p dx + \left(\frac{1}{\alpha+1} - \frac{1}{\gamma+1} \right) \int_{\Omega} b(x)|u_n|^{\gamma+1} dx.$$

and, since $\lim_{n \rightarrow \infty} J_\lambda(u_n) > 0$ and $\lim_{n \rightarrow \infty} \int_{\Omega} b(x)|u_n|^{\gamma+1} dx = \int_{\Omega} b(x)|u_0|^{\gamma+1} dx$ we must have that $\int_{\Omega} b(x)|u_0|^{\gamma+1} dx > 0$. Hence the fibering map ϕ_{u_0} must have graph as shown in Figure 2(c) or (d) and so there exists $\hat{t} > 0$ such that $\hat{t}u_0 \in M_\lambda^-(\Omega)$.

Suppose $u_n \not\rightarrow u_0$ in W . Using the facts that

$$\int_{\Omega} |\nabla u_0|^p dx < \liminf_{n \rightarrow \infty} \int_{\Omega} |\nabla u_n|^p dx,$$

and that, since $u_n \subseteq M_\lambda^-(\Omega)$, $\phi_{u_n}(1) = J_\lambda(u_n) \geq J_\lambda(su_n) = \phi_{u_n}(s)$, for all $s \geq 0$, we have

$$\begin{aligned} J_\lambda(\hat{t}u_0) &= \frac{1}{p} \hat{t}^p \int_{\Omega} |\nabla u_0|^p dx - \frac{\lambda \hat{t}^{\alpha+1}}{\alpha+1} \int_{\Omega} a(x)|u_0|^{\alpha+1} dx - \frac{\hat{t}^{\gamma+1}}{\gamma+1} \int_{\Omega} b(x)|u_0|^{\gamma+1} dx \\ &< \lim_{n \rightarrow \infty} \left[\frac{1}{p} \hat{t}^p \int_{\Omega} |\nabla u_n|^p dx - \frac{\lambda \hat{t}^{\alpha+1}}{\alpha+1} \int_{\Omega} a(x)|u_n|^{\alpha+1} dx - \frac{\hat{t}^{\gamma+1}}{\gamma+1} \int_{\Omega} b(x)|u_n|^{\gamma+1} dx \right] \\ &= \lim_{n \rightarrow \infty} J_\lambda(\hat{t}u_n) \\ &\leq \lim_{n \rightarrow \infty} J_\lambda(u_n) = \inf_{u \in M_\lambda^-(\Omega)} J_\lambda(u). \end{aligned}$$

which is a contradiction. Hence $u_n \rightarrow u_0$ in W and the proof can be completed as in the previous Theorem. \blacksquare

Corollary 3.3. Equation (1.1) has at least two positive solutions whenever $0 < \lambda < \lambda_1$.

Proof. By Theorems 3.1 and 3.2 there exist $u^+ \in M_\lambda^+(\Omega)$ and $u^- \in M_\lambda^-(\Omega)$ such that $J_\lambda(u^+) = \inf_{u \in M_\lambda^+(\Omega)} J_\lambda(u)$ and $J_\lambda(u^-) = \inf_{u \in M_\lambda^-(\Omega)} J_\lambda(u)$.

Moreover $J_\lambda(u^\pm) = J_\lambda(|u^\pm|)$ and $|u^\pm| \in M_\lambda^\pm(\Omega)$ and so we may assume $u^\pm \geq 0$. By Lemma 2.3 u^\pm are critical points of J_λ on W and hence are weak solutions (and so by standard regularity results classical solutions) of (1.1). Finally, by the Harnack inequality due to Trudinger [9], we obtain that u^\pm are positive solutions of (1.1). \blacksquare

References

- [1] P. A. Binding, P. Drabek and Y. X. Huang; On Neumann boundary value problems for some quasilinear elliptic equations, *Electron. J. Differential Equations*, 5:1–11, 1997.
- [2] D. G. de Figueiredo, J. P. Gossez and P. Ubilla; Local superlinearity and sublinearity for indefinite semilinear elliptic problems, *J. Funct. Anal.*, 199:452–467, 2003.
- [3] K. J. Brown, Y. Zhang; The Nehari manifold for a semilinear elliptic problem with a sign changing weight function, *J. Differential Equations*, 193:481–499, 2003.

- [4] P. Drabek and S. I. Pohozaev; Positive solutions for the p -Laplacian: application of the fibering method, *Proc. Royal Soc. Edinburgh Set A*, 127:211–236, 1997.
- [5] Y. Il'yasov; On non-local existence results for elliptic operators with convex-concave nonlinearities, *Nonlinear Analysis*, 61:211–236, 2005.
- [6] G. Afrouzi and S. Khademloo; The Nehari manifold for a class of indefinite weight semilinear elliptic equations, *Bulletin of the Iranian Mathematical Society*, 33(2):49–59, 2007.
- [7] T. F. Wu, Multiplicity results for a semilinear elliptic equation involving sign-changing weight function, *Rocky Mountain J. Math.*, 39:995–1011, 2009.
- [8] K. J. Brown and T. F. Wu; A fibering map approach to a semilinear elliptic boundary value problem, *Electronic J. of Differential Equations*, 69:1–9, 2007.
- [9] N. S. Trudinger, On Hardy type inequalities and their application to quasilinear elliptic equations, *Comm. Pure Applied Math.*, 20:721–747, 1967.