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Abstract

Using fibering method, we prove the existence of multiple positive solutions of
qausilinear problem

—Apu(x) = ra()|ul'u+ be)ul”'u x € Q,
u(x) =0, x € 0Q

where A and « are real parameters, 2 is an open bounded domain in RN, N > 3,
with the smooth boundary 92, a,b : 2 — R are smooth sign changing functions.
The existence results are obtained by the variational method.
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1. Introduction

In this paper we study the existence of positive solutions of the Dirichlet boundary value
problem:

{ —Apu(x) = ra(Ou* u+ b 'u x e Q, (1.1)

u(x) =0, x €
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where Qis abounded region with smooth boundary in R”, where A ,(x) = div(|Vu|? _2Vu)
is the p-Laplacian A > 0 is areal parameter, | <a+1 <2 < p <y +1 < p*, where

*

pr = P for p<n and p* =00 for p>n
n—p

and a,b : Q — R are smooth sign changing functions.

Equation (1.1) had been studied by Figueiredo et al. in the case p = 2 by using the
Mountain Pass lemma [2] and by II’yasova et al. and Afrouzi et al. by using the Negari
manifold [5],[6] and [7]. Furthermore this problem in the case p = 2 has been studied
by Brown and Wu [8].

In [4] and [3] the results are obtained by using fibering maps (i.e maps of the from
t — J,(tu)) which are closely related to the Nehari manifold. In this paper we show
how a fairly complete knowledge of all possible froms of the fibering maps provides a
very simple and comparatively elementary means of establishing results similar to those
proved in [5] and [7] on the existence of multiple solutions of (1.1). The plan of the
paper is as follows:

In section 2 we recall the properties which we shall require of fibering maps and of
the Nehari manifold. In section 3 we give a fairly complete description of the fibering
maps associated with (1.1) and in section 4 we use this information to give a very simple
variational proof of the existence of at least two positive solutions of (1.1) for sufficiently
small A.

2. Notation and Preliminaries

Let Q be a bounded domain in R". We will work in the Sobolev space W := WO1 P(Q)

equipped with the norm
1
P
i = ([ 19urar)”.
Q

First we give the definition of the weak solution of (1.1).

Definition 2.1. We say that u € W is a positive weak solution to (1.1) if for any v € W
we have

/ |Vu|P"2VuVvdx :A/ a(x)|u|“vdx—|—/ b(x)|u|”vdx.
Q Q Q

It is clear that problem (1.1) has a variational structure. Let J, : W — R be the
corresponding Euler functional of problem (1.1) which is defined by:

1 A 1
J(u) = —/ |Vu|de——/ a()u)*Hdx — —/ b(x)|u|’ Tdx. (2.1)
pJa x+1 /g y+1Ja
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It is well known that the weak solutions of Eq. (1.1) are the critical points of the Euler
functional J,.

When J;, is bounded below on W; J, has a minimizer on W which is a critical point
of J,. In many problems such as (1.1) J; is not bounded below on W but is bounded
below on an appropriate subset of W and a minimizer on this set (if it exists) may give
rise to a solution of the corresponding differential equation.

A good candidate for an appropriate subset of W is the so-called Nehari manifold

M () ={ue W : (J,(u),u) =0},

where (, ) denotes the usual duality between W and W*. It is clear that all critical points
of J, must lie on M, (£2) and, as we will see below, local minimizers on M, (2) are
usually critical points of J;.

It is easy to see that u € M, (€2) if and only if

f |Vul|Pdx —x/ a(x)|u*dx —/ b(x)|u|’ Tldx = 0.
Q Q Q

Hence if u € M, (2), then

o I I "
Lw=[—-—- |[VulPdx + — b(x)|u|¥ ™ dx
p aoa+1)Jao a+1 y+1) Jg

1 1 1 1
_ (_ _ —) | rvurrax - ( _ )/ a0 lul*dx

The Nehari manifold is closely linked to the behaviour of the functions of the form
¢y it —> J,(tu) (¢t > 0). Such maps are known as fibering maps and were introduced
by Drabek and Pohozaev in [4] and are also discussed in Brown and Zhang [3].

It is clear that if u is a local minimizer of J,, then ¢, has a local minimum at r = 1.

2.2)

Theorem 2.2. [3] Letu € W — {0} and ¢ > 0. Then tu € M,(L2) if and only if
¢,(1) = 0.

It is easy to see that u € M, (£2) if and only if ¢,’4(1) =0.
If u € W, we have

1 ta—l—l
bu(t) = —tp/ |VulPdx — A /a(x)|u|“+1dx
P Ja a+1 /g
— /b(x)|u|y+1dx, (2.3)
y+1Jg

¢;(t)=r!’—1/ |Vu|de—m“/ a(x)|u|“+1dx—t’”/ b(x)|u|’ Tdx, (2.4)
Q Q Q
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o!(t) = (p — 1)rP—2/ |Vu|de—mr“—1/ a(x)|u*tdx
Q Q
—yt”_]/ b()|ul” dx. (2.5)
Q

Thus points in M, (£2) correspond to stationary points of fibering maps ¢, and so it
is natural to divide M, (£2) three subsets M f (2), M, (€2) and M )(3 (£2) corresponding to
local minima, local maxima and points of inflexion of fibering maps.

Hence we define:

MF(Q) = {ueMyQ): (1) >0},
M;(Q) = {ueMy(Q):¢,(l) <0},
M)(Q) = {ue My (Q):¢,(1)=0}.

Note that if u € M; (), i.e., ¢,(1) = 0, then
() = (p—a — 1)/ Vauldx — (v — a)f b(o)lul” Hdx
«Q Q

(2.6)
=(p—y— l)f [VulPdx + My — a)/ a(x)|u|°‘+1dx
Q Q

Also as, proved in Binding, Drabek and Huang [1] or in Brown and Zhang [3], we
have the following Lemma.

Lemma 2.3. Suppose that uq is a local maximum or minimum for J;, on M, (£2).
Then, if ug ¢ M }(3 (£2), uq is a critical point of Jj.

Lemma 2.4. J, is coercive and bounded below on M, (2).

Proof. Itfollows from (2.2) and the Sobolev embedding theorems that there exist positive
constants ¢y, ¢2 and ¢3 such that

1 1
5w = enful?, - c2/ W dx > ey lull?y — esulsr
Q

and so J, is coercive and bounded below on M, (£2). |

Define
mu(t)ztp_“_lf |Vu|pdx—ty_°‘/ b(x)|ul” tldx
Q Q

Then for t > 0, tu € M, (£2) if and only if 7 is a solution of

m, (1) :k/ a(x)|ul*dx. (2.7)
Q
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(a) (b)

Figure 1: Possible forms of m,,

Moreover,

m(t)=(p—a— 1)#’—“—2/ |VulPdx — (y — a)tV—“—I/ b)u|"dx  (2.8)
Q Q

Theorem 2.5.

1) If / b(x)|u|y+1dx < 0, m, is a strictly increasing function for ¢ > 0.
Q

(i1) If/ b(x)|u|7’+1dx > 0, my(t) > 0 for ¢ small and positive but m,(t) - —oo as
t —>Qoo, also m,(t) has a unique (maximum) stationary point. (see Fig.1)
Lemma 2.6.
(i) Suppose tu € M;(2). Then ¢,/ () = t*m, (¢).
(i) If m)(t) > 0( < 0), then fu € Mf(Q)(M;(Q)).
We shall now describe the nature of the fibering maps for all possible signs of

/ a(x)|ul*dx and / b(x)|u|” H1dx. We have the following results.
Q Q

@) If/ a()ul*Tdx < Oandf b(x)|ul” Tldx < 0, ¢, is an increasing function of
Q Q
t. And so no multiple of u lies in M, (2). (see Fig 2(a)).

(ii) Iff a(@)|ul*'dx > 0 and / b()|u|”ldx < 0, ¢u(t) < O for ¢ small and

Q Q
positive but ¢,(t) — 400 as t — 00, also there is exactly one solution of (2.7).
Thus there is a unique value #(x) > 0 such that t(v)u € M )’f (€2). Hence ¢, has a
unique critical point at ¢ = #(«) which is a local minimum. (see Fig.2(b)).

(iii) If/ a()ul*tdx < 0 and f b()|u|”ldx > 0, ¢u(r) > 0 for ¢ small and

Q Q
positive but ¢, (1) — —oo as t — 00, also there is exactly one solution of (2.7).
Thus there is a unique value 7(u) > 0 such that #(u)u € M, (£2). Hence ¢, has a
unique critical point at ¢ = #(«) which is a local maximum. (see Fig.2(c)).
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Figure 2: Possible forms of fibering maps.

(iv) Iff a()|ul*dx > Oand/ b(x)|u|’Tdx > 0,
Q Q

a) If A > 0 is sufficiently large, (2.7) has no solution and so ¢, has no critical
points, in case ¢, is a decreasing function. Hence no multiple of u lies in
M, (2).

b) If A > 0 is sufficiently small, there are exactly two solutions #1(u) < t2(u)
of (2.7) with m,(t1(u)) > 0 and m,(t2(u)) < 0. Thus there are exactly two
multiples of u € M, (€2), namely #(v)u € M;(Q) and n(wu € M, (2). It
follows that ¢, has exactly two points - a local minimum at ¢ = #1(u#) and a
local maximum at ¢t = #,(u); moreover ¢, is decreasing in (0, ¢1), increasing
in (21, t7) and decreasing in (f;, 00). (see Fig 2(d)).

The following result ensures that when A is sufficiently small the graph of ¢, must
be as shown in Figure 2(a — d) for all non-zero u.

Lemma 2.7. There exists A1 > 0 such that, when A < A, ¢, takes on positive values
for all non-zerou € W.

Proof. If/ b(x)|u|7’+1dx < 0, then ¢,(¢) > 0 for ¢ sufficiently large. Suppose u € W
Q

and/ b)|ul” Tldx > 0. Let
Q

hy(t) = —tl’/ |VulPdx —
P Ja y +1

/ b(x)|u|’ dx.
Q
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Hence
B () =P~ f |VulPdx — 17 f b(x)|u|’ Tdx,
Q Q
and so if we have A/ (r) = 0 then 7! fQ |VulPdx — 17 fgb(x)mv“dx = 0 and so

fQ [Vu|Pdx

7Pt = :
fQ b(x)|ulrHdx

Therefore we let

1
t t Jo |VulPdx  7=r¥1
T L o bOOlulrHdx '

when

1
— 1 YulPdx)y+tl |r—rt!
Thus h, takes on a maximum value of y-prt |: (Jq|VulPdx) i|

py + 1 | ([ bo)lulr+1dx)p
I = Imax-

By the Sobolev embedding: Wol’p(Q) — LVH(Q), we have

y+1 ﬁ P %
|ul” " dx <S84 |Vulfdx | .
Q Q

where S, ;1 denotes the Sobolev constant.

Hence
([q IVulPdx)r+! o1
(Jo lul+idxyr = grlrh”
Thus
hu(tmax) Z ypa/l:_—'_l)l |:||b+||p 1Sp(y+l)i| - 5’
o0 7/+1

where § is independent of u.
We shall now show that there exists A; > 0 such that ¢,(fax) > 0, i.e.,

)\' l- 0[+1
Ty (fmax) — %/ a(x)|ul*dx > 0,
o+ 1 Q
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for all u € W — {0} provided A < A1. We have

a+1
(fmax)™ ! / a(x)|u|“+1dx - 1 fQ [Vu|Pdx y—p+1
a+1 Jo T a4 1 [ b(0)|ulr+dx)

o+l

p
lalloo ST ( f |W|de)
Q

[ _afl
lall SoH—] (fQ |Vu|1’dx)7/+1 ply—p+1)
= o+ 1 alloo a+1 (fgz b(x)|u|V+1dx)P)

_ atl
ply +1 |7 atl

= rpleleSit | S| i)

a+1

= chy(tmax) 7

where c is independent of u. Hence

p—a—1

atl atl o
Gu(tmax) = hu(tmax) — Achy(tmax) » = hy(tmax) ? I:hu(tmax) P = )\C] .
and so, since h,(fmax) > 6 for all u € W — {0}, it follows that

a+l p—a—1
Gutmax) = 6 7 [8 p—= )LC:I .

p—a—1

s 7

Thus ¢, (fmax) > 0 for all non-zero u provided A < = A1. This completes the

c
proof. [

It follows from the Lemma 2.7 that when A < Aj, / a(x)|u|°‘+1dx > 0 and
Q

f b(x)|u|”+1dx > 0 then ¢, must have exactly two critical points as discussed in
Q

the remarks preceding the Lemma 2.7.
Thus when A < A we have obtained a complete knowledge of the number of critical
points of ¢, of the intervals on which ¢, is increasing and decreasing and of the multiples

of u which lie in M, (2) for every possible choice of signs of f a(x)lul““dx and
Q

f b(x)|u|” dx. In particular we have the following result.
Q
Corollary 2.8. MS(Q) =@ when0 < A < Aj.

Corollary 2.9. If A < Ay, then there exists §; > 0 such that J,(u) > &; for all u €
M, (2).
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Proof. Consider u € M, (£2). Then ¢, has a positive global maximum at 7 = 1 and
/ b(x)|ul” Tldx > 0. Thus
Q

a+1 p—a—1
) = ¢u(1) > Gu(tmax) = hu(tmax) 7 (hy(tmax) 7 — AC)
a+1 —a—1
> 576 7 — )
and the left hand side is uniformly bounded away from O provided that A < Aj. |

3. Existence results
Now we can state our main result.
Theorem 3.1. If X < A1, there exists a minimizer of J, on M ;’ (2).

Proof. Since Jj is bounded below on M, (£2) and so on M }'f (£2), there exists a minimizing

sequence {u,} C M/{"(Q) such that lim J)(u,) = inf Jy(u). Then by Lemma 2.4
n—00 ueM; ()

and Rellich-Kondrachov Theorem, there exit a subsequence {u,} and uy € W such that

u, — ug weakly in W, u,, — ug strongly in L™ (Q) for 1 < r <

n—p
If we choose u € W such that | a(x)|u|/*T'dx > 0, then the graph of the fibering

Q
map ¢, must be of one the forms shown in Figure 2(b) or (d) and so there exists #1(u)

such that r{(v)u € M;(SZ) and J, (t;(u)u) < 0. Hence, in+f Ji(u) < 0. By (2.2),
ueM;H ()

Jy (i) (1 1)f|v Pd A(l 1)/(» @ 1g
173 = _— u X — — a\x)lu X,
M p yv+1)Jog " a+1 y+1/)J)q "

and so

1 1 il 11
A — a)|uy,|*dx = — — —— |[Vu,|Pdx — Jy(uy,).
a+1l y+1)Jq p v+1/Ja

Letting n — o0, we see thatf a(x)|uol®dx > 0.

Q
Suppose u, # upin W. We shall obtain a contradiction by discussing the fibering

map. Since a(x)|u0|0‘+1dx > 0, the graph of ¢,, must be either of the from shown
Q

in Figure 2(b) or (d). Hence there exists typ > 0 such that fouy € M)T (£2) and ¢, 1s
decreasing on (0, fo) with ¢, (t0) = 0.
Since u;,, /> ug in W, then

lugll < lim inf |ju, || :>/ |VuglPdx < lim inf/ |Vu, |Pdx.
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Thus, as
2 <f>=f”/ IWnI”dx—M“f a(x)lunlade—tVf b(x) |, " dx,
n Q Q Q
and
(1) = tp/ |Vuo|Pdx _Ma/ a(x)|up|* Tdx — ty/ b(x)|uo|” Tdx.
Q Q Q

Since {u, } tends to ug strongly in L", we have

0 = qbl;o(to):té’_l/ |Vu0|pdx—ktg/a(x)|u0|“+1dx—tg/b(x)luoly“qd(x)
Q Q Q

n—oo

< lim inf (t(‘)v_I/ |Vun|de—Atg/ a(x)|un|“+1dx—rg/ b(x)|un|7/+1d(x))
Q Q Q

= liminfn — oog, (f).

It follows that d),;n (to) > O for n sufficiently large. Since {u,} S M ; (£2), by considering
the possible fibering maps it is easy to see that (b;n (t) <0Ofor0 <t < 1and ¢;n (1)=0
for all n. Hence we must have fg > 1. But foug € M/{"(Q) and so

Jultouo) = Guy(t0) < Puy(1) = Jpuo) < lim Jy(uy) = inf Jy(u).

ueM):F
and this is a contradiction. Hence u,, — up in W and so

J)\(u())z lim J}L(un)z inf JA(M).
n—00 ueM)L+

Thus ug is a minimizer for J, on M;(Q). [
Theorem 3.2. If A < A1, there exists a minimizer of J; on M, (L2).

Proof. By Corollary 2.9 we have J; (1) > §; > Oforallu € M, (2)andso inf J;(u) >
ueM, ()

0. Hence there exists a minimizing sequence {u,} € M, (£2) such that

lim Jy(uy) = inf Jy(u) > 0.
n—00 ueM; ()

As in the previous proof, since J, is coercive, {u,} is bounded in W and we may assume,
without loss of generality, that u, — ug weakly in W, u,, — ug strongly in L"(2) for

1l <r< . By (2.2)

J( ) 1 1 /‘l | 1 1 f ( )| |y+1
Uy) = — — — Vu 1dx+ — b(x)|u dx.
A\Un 1 n 1 1 n
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and, since lim Jy(u,) > 0 and lim /b(x)lun|y+ldx = / b(x)|uo|” T dx we must

have that / b(x)|ug|” H1dx > 0. Hence the fibering map ¢, must have graph as shown
Q

in Figure 2(c) or (d) and so there exists > 0 such that fuq € M, ().
Suppose u, /4 ugin W. Using the facts that

/qu0|pdx < lim inf/ |Vu,|Pdx,
Q n— oo Q

and that, since u, € M, (2), ¢,,(1) = Jy(u,) = Ji(sup) = ¢y, (s), forall s > 0, we
have

Ly +1

. 1. Afet! f
Ji(fup) = —z/’/ |Vuo|Pdx — /a(x)|u0|“+1dx— /b(x)|u0|y+1dx
14 Q a+1/g y+1Jg

1. )\fole nyrl
lim [—ﬂ’f |Vu,|Pdx — f a(x)|u,|*dx — / b(x)|un|y+1dx]
n—00| p Q a+1 /g Yy +1Jg

A

= lim J,(fu,)
n—oo

IA

lim J,(u,) = inf  Jy(u).
n—00 ueM; ()

which is a contradiction. Hence u,, — uo in W and the proof can be completed as in the
previous Theorem. u

Corollary 3.3. Equation (1.1) has at least two positive solutions whenever 0 < A < Aj.

Proof. By Theorems 3.1 and 3.2 there exist ut e M/{F(Q) and u~ € M, (£2) such that
Lwh = inf Jywand ,(u )= inf Jy(u).
ueM;H(Q) ueM; ()

Moreover Jx(ui) = J,\(luil) and |ui| € M;t(SZ) and so we may assume ut > 0.
By Lemma 2.3 ™ are critical points of J; on W and hence are weak solutions (and
so by standard regularity results classical solutions) of (1.1). Finally, by the Harnack
inequality due to Trudinger [9], we obtain that u™ are positive solutions of (1.1). |
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