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Abstract 
 

A mathematical model for immobilized enzyme system in porous spherical particles 
was developed. This model contains a non-linear term related to reversible Micahlies-
Menten kinetics. Analytical expression pertaining to the substrate concentration was 
reported for all possible values of Thiele moduleφ , parameters kc   and s . In this work, 
we report the theoretically evaluated steady-state concentration for immobilized 
enzyme systems in porous spherical particles for zero order, first order and second 
order reaction meacnisms. Herein we employ “Homotopy perturbation method” 
(HPM) to solve non-linear reaction /diffusion equation. 
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Introduction 
Non linear problems frequently arise in engineering, but many texts are oriented 
towards linear problems due to the difficulty of nonlinearity. In general, satisfactory 
results can be reached by using the first few terms of the approximate, series, solution. 
The Homotopy mehtod has been used to solve several mathematical problems in 
science and engineering, but there has been no reported application in chemical 
engineering to date.  
 The model for diffusion and reaction in fixed-bed reactor generates a typical 
differentiation equation in chemical engineering. Thiele [1] obtained the analytical 
solution for the first order reaction in 1939, and then Wheeler [2] and Aris [3], etc. 
discussed this problem in details in their books. However, most of their conclusions 
were based on the analytical solution for the irreversible reaction with the first 
reaction order. Several researchers, such as Satterfild [4], have considered solutions 
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for the nonlinear model with nth order reaction, but approximate solutions were not 
derived. Finlayson [5] has applied many numerical methods to solve nonlinear models 
of fluid flow, heat transfer and chemical reactor by using pre-programmed computer 
packages. The difficulty in the solution of such problems occurs when there is a large 
change in reaction rate, where the method does not always converge and convergence 
may depend critically on the initial guess. A disadvantage of numeircal techniques is 
that they cannot give analytical expressions as solution. 
 A steady state heterogeneous model of fixed-bed reactor is described by partial 
differential equation (PDE) both for fluid and for catalyst pellet. The real difficulty in 
a solution is the reason why this model, despite its quite good accuracy, is not 
willingly used for modelling. The ordinary differential equation (ODE) based on 
average concentration in the pellet is usually called “an approximate model “. Various 
approximate models have been reported for diffusion and adsorption processes. They 
differ from one another with respect to accuracy and validity range. One can find 
more information e.g., in the papers by Goto and Hirose [6] (1993), and Zhang and 
Ritter (1997) [7]. To make use of approximate models idea for diffusion and chemical 
reaction processes other models should be developed. In a diffusion and reaction 
process fields, only a small number of equations that approximate a mass balance in 
the porous particle has been found (Kim, 1989 [8]; Goto & Hirose, 1993; Szukiewiez, 
2000 [9]). Models reported so far in the literature concern only first-order reactions. 
 Recently, Miroslaw Szukiewicz and Roman Petrus [10] evaluated the 
effectiveness factor corresponding to the non-steady-state concentration of component 
observed at a porous pellet However, till date, to the best of our knowledge, there are 
no general analytical expressions that describe the concentration of component for all 
values of the Thiele modulus [ ]10,0⊂φ  and the normalized parameters kc   and s  
have been reported. As a result, herein, we have deduced analytical expressions 
corresponding to the concentrations of component immobilized in a porous pellet. The 
purpose of this communication is to derive simple accurate polynomial expressions of 
concentration generated at a porous spherical particle using Homotopy perturbation 
method. 
 
 
Mathematical formulation of the problem 
The predict of diffusion and reaction rates in porous catalysts in an important problem 
in chemical engineering, indeed when the reaction rate depends on concentration in a 
nonlinear case. In this heterogeneous system, the system is constructed as simple 
diffusion using an effective diffusion coefficient. Steady state diffusion and reaction 
in a porous spherical particle can be described by [10] 
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where c  is the concentration of component, φ is the Thiele module and )(cRA is the 
reaction rate. The boundary conditions are as follows. 
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Analytical approximate solution with three cases 
Most of engineering problems, especially some diffusion and reaction equations are 
nonlinear, and in most cases it is difficult to solve them, especially analytically. 
Perturbation method is one the well-known methods to solve nonlinear problems, it is 
based on the existence of small/large parameters, the so-called perturbation quantity 
[27, 30].  
 
 
Linear case 
Case (i): For zero order reaction, the reaction term ( ) 1=cRA . Analytical solution of 
equation (1) with the boundary conditions equations (2) and (3) using Modified 
Homotopy Perturbation method is  
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Case (ii): The reaction term ( ) ccRA =  for the first order reactions. In this case, 
solution of the equation (1) using Modified Homotopy perturbation method is  
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Non linear case  
(iii): When the reaction term ( ) 2ccRA =  (second order reactions) the analytical 
solution of the equation (1) with the boundary conditions equations (2) and (3) using 
Homotopy perturbation method ( Appendix-A) is 
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Case-(i).Figure-1 
(a) 

 
(b) 

 
 

Figure 1: Influence of Thiele modulus φ  on the concentration c  obtained from the 
equation  
 
 
(4). The curve is plotted for some fixed values of k  and sc  (a) 10,1. == sck ,  
(b) 1,1. == sck  
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Case-(ii). Figure-2 
( a ) 

 
(b) 

 
 

Figure 2: Influence of Thiele modulus φ  on the concentration c  obtained from the 
equation  
 
 
(5). The curve is plotted for some fixed values of k  and sc . (a) 1,01. == sck  
(b) 10,1. == sck  
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Case-(iii).Figure-3 
( a ) 

 
( b ) 

 
 

Figure 3: Influence of Thiele modulus φ  on the concentration c  obtained from the 
equation  
 
 
(6). The curve is plotted for some fixed values of k  and sc . ( a) 1,01. == sck   
 (b) 5.,1. == sck  
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Figure: 4 
 

 
 

 
 From fig.4, it is clear that when k increases, the concentration c increases. 
 
 
Discussion  
The equations (4) to (6) represents the new analytical expressions of concentrations c  
for zero, first and second order reactions. The kinetic response of a porous pellet 
depends on the concentration of component A. The concentration of component 
depends on the following three factors kc    and   ,  , sφ . Thiele modulus φ  represents 
the ratio of the characteristic time of the enzymatic reaction to that of component 
diffusion. The variation in the Thiele modulus φ  can be achieved by varying either 
the thickness of the enzyme layer or the amount of enzyme immobilized in the porous 
pellet. The Thiele modulus φ  is indicative of the competition between the diffusion 
and reaction in the enzyme layer. When φ  is small, the kinetics dominate and the 
uptake of component is kinetically controlled. Under these conditions, the 
concentration of component profile across the porous pellet is essentially uniform. 
The overall kinetics is governed by the total amount of active enzyme. Diffusion 
limitations are the principal determining factor when Thiele modulus is large.  
 Fig. 1 to 3 represents the normalized steady state concentration c versus 
dimensionless distance x  for different values of the dimensionless parameterφ . 
From the figure it is inferred that the value of the concentration c  increases when the 
value of φ  decreases. Fig.4 represents the concentration versus the dimensionless 

distance x  for various values ofk . From this figure it is observed that the 
concentration increases when the constant k  increases.  
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Conclusions 
The time independent linear and non-linear reaction/diffusion equation has been 
formulated and solved analytically. An approximate analytical expression for the 
concentrations in porous spherical particle under steady state conditions for various 
reaction order are obtained by using the Homotopy perturbation method. The primary 
result of this work is simple approximate calculation of concentration for all possible 
values of sparameters. This method can be easily extended to find the solution of all 
other non-linear reaction diffusion equations in porous cylindrical particle for various 
complex boundary conditions. 
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Appendix A 
We construct the Homotopy as follows 
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 The approximate analytical solution of (4) is  
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 The initial approximations is as follows  
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 Substituting eqn. (6) into equation (5) we have 
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 Comparing the coefficients of like powers of p in equation (9) we get  
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 Solving the equations (10) and (11), we can find the following results: 
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 According to HPM, we can conclude that  
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Notation 
c  Concentration of component A  

sc  Surface concentration of component A 

AR  Reaction rate 
x  Position in pellet 
φ  Thiele modulus 
k  Extremum value 


