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Abstract

We investigate the existence of three weak solutions for a Neumann boundary value
problem driven by a p-Laplacian operator. The technical approach is fully based
on a three critical points theorem.
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1. Introduction

Throughout the paper, � ⊂ RN(N ≥ 1) is non-empty bounded open set with smooth
boundary ∂�, p > N and f : � × R → R is a L1- Carathéodory function.

Remark 1.1. We recall that a function f : � × R → R is said to be L1-Carathéodory
if (δ1) x → f (x, t) is measurable for every t ∈ R; (δ2) t → f (x, t) is continuous for
almost every x ∈ �; (δ3) for every � > 0 there exists a function l� ∈ L1(�) such that

sup
|t |≤�

|f (x, t)| ≤ l�(x)
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for almost every x ∈ �.

We are interested to study the following boundary value problem⎧⎨⎩ −�pu + a(x)|u|p−2u = λf (x, u) in �,
∂u

∂n
= 0 on ∂�,

(1.1)

where �pu =div(|∇u|p−2∇u) is the p-Laplacian operator, a ∈ L∞(�) with ess inf
�

a >

0 and λ > 0, based on a very recent three critical points theorem due to Bonanno and
Marano [1].

In the sequel, X will denote the Sobolev space W 1,p(�) equipped with the norm

||u|| =
(∫

�

(|∇u(x)|p + a(x)|u(x)|p)dx

)1/p

.

Put

F(x, t) =
∫ t

0
f (x, ξ)dξ

for each (x, t) ∈ � × R, and

c = sup
u∈X\{0}

maxx∈� |u(x)|
||u|| .

Since p > N, one has c < +∞. In addition, if � is convex, it is known [2] that

sup
u∈W 1,p(�)\{0}

maxx∈� |u(x)|
||u|| ≤ 2

p−1
p

× max

{(
1

||a||1
) 1

p ; diam(�)

N
1
p

(
p − 1

p − N
m(�)

)p−1
p ||a||∞

||a||1

}

where m(�) is the Lebesgue measure of the set �, and equality occurs when � is a ball.
By a solution (weak) of problem (1), we mean any u ∈ W 1,p(�) such that∫

�

(|∇u(x)|p−2∇u(x)∇v(x)+a(x)|u(x)|p−2u(x)v(x))dx−λ

∫
�

f (x, u(x))v(x)dx = 0

for every v ∈ W 1,p(�).
For a thorough account on the subject we refer to [3-9] and therein references.
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2. Main results

First we here recall for the reader’s convenience Theorem 2.6 of [1] with � replaced by
−J :

Theorem 2.1. Let X be a reflexive real Banach space, let 	 : X −→ R be a sequentially
weakly lower semicontinuous, coercive and continuously Gâteaux differentiable whose
Gâteaux derivative admits a continuous inverse on X∗, and let J : X −→ R be a
sequentially weakly lower semicontinuous and continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact. Assume that there exist r ∈ R and
u0, u1 ∈ X with 	(u0) < r < 	(u1) and J (u0) = 0, such that

(i) sup
u∈	−1(]−∞,r])

(−J (u)) < (r − 	(u0))
−J (u1)

	(u1) − 	(u0)
,

(ii) for each λ ∈ 
r :=
]

	(u1) − 	(u0)

−J (u1)
,

r − 	(u0)

supu∈	−1(]−∞,r])(−J (u))

[
the functional

	 + λJ is coercive.

Then, for each λ ∈ 
r the functional 	+λJ has at least three distinct critical points
in X.

Now we formulate our main result as follows:

Theorem 2.2. Let f : � × R → R be a L1-Carathéodory function, and denote

F(x, t) =
∫ t

0
f (x, ξ)dξ for each (x, t) ∈ � × R. Assume that there exist a positive

constant r and a function w ∈ X such that
(α1) ||w||p > pr;

(α2)

∫
�

supt∈[−c p
√

pr, c p
√

pr] F(x, t)dx

r
< p

∫
�

F(x, w(x))dx

||w||p ;

(α3) lim sup
|t |→+∞

F(x, t)

|t |p <

∫
�

supt∈[−c p
√

pr, c p
√

pr] F(x, t)dx

m(�)pcpr
uniformly with respect to

x ∈ �.

Then, for each λ ∈
[

||w||p
p

∫
�

F(x, w(x))dx
,

r∫
�

supt∈[−c p
√

pr, c p
√

pr] F(x, t)dx

]
the prob-

lem (2.1) admits at least three weak solutions in X.

Proof. In order to apply Theorem A, we begin by setting

	(u) = 1

p
||u||p (2.1)

and

J (u) = −
∫

�

F(x, u(x))dx (2.2)
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for each u ∈ X. Since p > N , X is compactly embedded in C0(�) and it is well known
that 	 and J are well defined and continuously Gâteaux differentiable functionals
whose Gâteaux derivatives at the point u ∈ X are the functionals 	′(u), J ′(u) ∈ X∗,
given by

	′(u)(v) =
∫

�

(|∇u(x)|p−2∇u(x)∇v(x) + a(x)|u(x)|p−2u(x)v(x))dx

and

J ′(u)(v) = −
∫

�

f (x, u(x))v(x)dx

for every v ∈ X, respectively, as well as J is sequentially weakly lower semicontinuous
and J ′ : X → X∗ is a compact operator.

We claim that 	′ admits a continuous inverse on X∗. To keep our claim, first we
shall show that 	′ is a uniformly monotone operator in X. Moreover, taking into account
(2.2) of [10], for every u, v ∈ X there exists a positive constant cp such that

< |∇u(x)|p−2∇u(x) − |∇v(x)|p−2∇v(x), ∇u(x) − ∇v(x) >≥ cp|∇u(x) − ∇v(x)|p
and

< |u(x)|p−2u(x) − |v(x)|p−2v(x), u(x) − v(x) >≥ cp|u(x) − v(x)|p

where < ., . > denotes the usual inner product in RN. So, we have

(	′(u) − 	′(v))(u − v) ≥ cp||u − v||p
for every u, v ∈ X, which means that 	′ is uniformly monotone. Therefore, since 	 is
coercive and hemicontinuous in X, by applying Theorem 26.A. of [11], we have that 	′
admits a continuous inverse on X∗. Using again that 	′ is monotone, we obtain that 	

is sequentially weakly lower semi continuous (see [11, Proposition 25.20]).
Choose u0 = 0 and u1 = w, from (α1) and (2) we get 	(u0) < r < 	(u1), and by

(3) we have J (u0) = 0. Moreover, since

sup
x∈�

|u(x)| ≤ c||u|| (2.3)

for each u ∈ X, we obtain

	−1(] − ∞, r]) = {u ∈ X; 	(u) ≤ r}
= {

u ∈ X; ||u|| ≤ p
√

pr
}

⊆ {
u ∈ X; |u(x)| ≤ c p

√
pr for all x ∈ �

}
,

and it follows that

sup
u∈	−1(]−∞,r])

(−J (u)) = sup
u∈	−1(]−∞,r])

∫
�

F(x, u(x))dx

≤
∫

�

sup
t∈[−c p

√
pr, c p

√
pr]

F(x, t)dx.
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Therefore, owing to (α2), we have

sup
u∈	−1(]−∞,r])

(−J (u)) = sup
u∈	−1(]−∞,r])

∫
�

F(x, u(x))dx

≤
∫

�

sup
t∈[−c p

√
pr, c p

√
pr]

F(x, t)dx

< pr

∫
�

F(x, w(x))dx

||w||p
= (r − 	(u0))

−J (u1)

	(u1) − 	(u0)
,

namely, Assumption (i) of Theorem A is fulfilled. Furthermore from (α3) there exist
two constants γ , τ ∈ R with

0 < γ <

∫
�

supt∈[−c p
√

pr, c p
√

pr] F(x, t)dx

r

such that
pcpm(�)F(x, t) ≤ γ |t |p + τ for a.e. x ∈ �.

Fix u ∈ X. Then

F(x, u(x)) ≤ 1

pcpm(�)
(γ |u(x)|p + τ) for a.e. x ∈ �. (2.4)

So, for any fixed

λ ∈
]

||w||p
p

∫
�

F(x, w(x))dx
,

r∫
�

supt∈[−c p
√

pr, c p
√

pr] F(x, t)dx

[
,

from (2), (3), (4) and (5), we have

	(u) + λJ (u) = 1

p
||u||p − λ

∫
�

F(x, u(x))dx

≥ 1

p
||u||p − λ

pcpm(�)
(γ

∫
�

|u(x)|pdx + m(�)τ)

≥ 1

p
||u||p − λ

pcpm(�)
(γ cpm(�)||u||p + m(�)τ)

≥ 1

p

(
1 − γ

r∫
�

supt∈[−c p
√

pr, c p
√

pr] F(x, t)dx

)
||u||p

− rτ

pcp
∫
�

supt∈[−c p
√

pr, c p
√

pr] F(x, t)dx
,
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and thus
lim||u||→+∞(	(u) + λJ (u)) = +∞,

which means the functional 	 + λJ is coercive. So, Assumption (ii) of Theorem A is
satisfies. Now, we can apply TheoremA. Hence, by using TheoremA, taking into account
that the weak solutions of (1) are exactly the solutions of the equation	′(u)+λJ ′(u) = 0,

the problem (1) admits at least three weak solutions. �

Remark 2.3. Note F(x, 0) = 0, so
∫

�

sup
t∈[−c p

√
pr, c p

√
pr]

F(x, t)dx ≥ 0 and now by

applying (α2) since ||w||p > 0, we have that
∫ b

a

F (x, w(x))dx > 0.

Let us here give a consequence of Theorem 2.2 for a fixed test function w.

Corollary 2.4. Let f : � × R → R be a L1-Carathéodory function, and denote

F(x, t) =
∫ t

0
f (x, ξ)dξ for each (x, t) ∈ � × R. Assume that there exist two positive

constants θ and τ with
θ

c
< τ such that

(α4)

∫
�

supt∈[−θ,θ ] F(x, t)dx

θp
<

∫
�

F(x, τ ||a||−
1
p

1 )dx

(cτ)p
;

(α5) lim sup
|t |→+∞

F(x, t)

|t |p <

∫
�

supt∈[−θ,θ ] F(x, t)dx

m(�)θp
uniformly with respect to x ∈ �.

Then, for each λ satisfying
λ

p
∈

⎤⎦ τp∫
�

F(x, τ ||a||−
1
p

1 )dx

,
θp

cp
∫
�

supt∈[−θ,θ ] F(x, t)dx

⎡⎣
the problem (1) admits at least three weak solutions in X.

Proof. We claim that all the assumptions of Theorem 2.2 are satisfied by choosing

w(x) = τ ||a||−
1
p

1 (2.5)

and r = 1

p
(
θ

c
)p. It follows from (2.5) that w ∈ X and ||w||p = τp, so the assumption

τ >
θ

c
follows that Assumption (α1) is fulfilled. Also, from (α4) and (α5) we arrive at

(α2) and (α3), respectively. Hence, Theorem 2.2 follows the conclusion. �

We now present a particular case of Corollary 2.4, in which the function f has
separated variables.

Corollary 2.5. Let f̃1 ∈ L1(�) be a positive function and f̃2 ∈ C(R) be a function.

Put F̃ (t) =
∫ t

0
f̃2(ξ)dξ for all t ∈ R. Assume that there exist two positive constants θ
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and τ with
θ

c
< τ such that

(α6)
maxt∈[−θ,θ ] F̃ (t)

θp
<

F̃ (τ ||a||−
1
p

1 )

(cτ )p
;

(α7)
f̃1(x)∫

�
f̃1(x)dx

lim sup
|t |→+∞

F̃ (t)

|t |p <
maxt∈[−θ,θ ] F̃ (t)

m(�)θp
uniformly with respect to x ∈ �.

Then, for each λ satisfying
λ

p
∫
�

f̃1(x)dx
∈

⎤⎦ τp

F̃ (τ ||a||−
1
p

1 )

,
θp

cp maxt∈[−θ,θ ] F̃ (t)

⎡⎣ the

problem ⎧⎨⎩ −�pu + a(x)|u|p−2u = λf̃1(x)f̃2(u) in �,
∂u

∂n
= 0 on ∂�,

admits at least three weak solutions in X.

Proof. Set f (x, t) = f̃1(x)f̃2(t) for each (x, u) ∈ � × R. Since

F(x, t) = f̃1(x)F̃ (t),

from (α6) and (α7) we obtain (α4) and (α5), respectively. Hence, Corollary 2.4 yields
the conclusion. �

Let us present an application of Corollary 2.5.

Example 2.6. Consider the problem⎧⎪⎨⎪⎩ −�3u + x2 + y2

π
|u|u = λ(2e−u2

u9(5 − u2) + 1) in �,

∂u

∂n
= 0 on ∂�

(2.6)

where � = {(x, y) ∈ R2; x2 + y2 < 9}. We choose p = 3, a(x, y) = x2 + y2

π
for

each (x, y) ∈ �, f̃1(x, y) = 1 for each (x, y) ∈ � and f̃2(t) = 2e−t2
t9(5 − t2) + 1

for each t ∈ R. Note that F̃ (t) = e−t2
t10 + t for all t ∈ R, by choosing θ = 1 and

τ = 3, taking into account that c =
(

1536

π

) 1
3

, it is easy to check that all hypotheses of

Corollary 2.5 are satisfied. Hence, Corollary 2.5 is applicable to the problem (2.6) for
each λ satisfying

λ

27π
∈

⎡⎣ 27

310
(81

2

)− 10
3 e−9( 81

2 )
− 2

3 + 3
(81

2

)− 1
3

,
π

1536(e−1 + 1)

⎤⎦ .
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Let us here give the following special case of Corollary 2.5 when N = 1 and p = 2.
For simplicity, we fix � = (β1, β2). In this case, we have

c = √
2 max{||a||−

1
2

1 , (β2 − β1)
3
2 ||a||∞||a||−1

1 }.

Corollary 2.7. Let f̃1 ∈ L1(β1, β2) be a positive function and f̃2 ∈ C(R) be a function

such that f̃2(t) ≥ 0 for all t ∈ [−θ, θ ]. Put F̃ (t) =
∫ t

0
f̃2(ξ)dξ for all t ∈ R, there

exist two positive constants θ and τ with
θ

c
< τ such that

(α8)
F̃ (θ)

θ2
<

F̃ (τ ||a||−
1
2

1 )

(cτ )2
;

(α9)
f̃1(x)dx∫ β2

β1
f̃1(x)dx

lim sup
|t |→+∞

F̃ (t)

|t |2 <
F̃ (θ)

(β2 − β1)θ
2

.

Then, for each λ satisfying
λ

2
∫ β2
β1

f̃1(x)dx
∈

⎡⎣ τ 2

F̃ (τ ||a||−
1
2

1 )

,
θ2

c2F̃ (θ)

⎤⎦ the problem

{ −u′′ + a(x)|u|u = λf̃1(x)f̃2(u) in (β1, β2),

u′(β1) = u′(β2) = 0

admits at least three weak solutions in W 1,2(β1, β2).

We conclude this paper by giving a simple consequence of Corollary 2.7 when a(x) ≡
1 for all x ∈ (0, 1).

Corollary 2.8. Let f̃2 ∈ C(R) be a function such that f̃2(t) ≥ 0 for all t ∈ [−θ, θ ].
Put F̃ (t) =

∫ t

0
f̃2(ξ)dξ for all t ∈ R, there exist two positive constants θ and τ with

θ <
√

2τ such that

(α10)
F̃ (θ)

θ2
<

1

2

F̃ (τ )

τ 2
;

(α11) lim sup
|t |→+∞

F̃ (t)

|t |2 <
F̃ (θ)

θ2
.

Then, for each λ satisfying
λ

2
∈

]
τ 2

F̃ (τ )
,

θ2

2F̃ (θ)

[
the problem

{ −u′′ + |u|u = λf̃2(u) in (0, 1),

u′(0) = u′(1) = 0

admits at least three weak solutions in W 1,2(0, 1).



Elliptic Equations Driven by a p-Laplacian Operator 37

References

[1] G. Bonanno, S. A. Marano, On the structure of the critical set of non-differentiable
functions with a weak compactness condition, Appl. Anal., 89:1–10, 2010.

[2] G. Anello, G. Cordaro, An existence theorem for the Neumann problem involving
the p-Laplacian, J. Convex Anal., 10:185–198, 2003.

[3] G. Bonanno, P. Candito, Three solutions for a Neumann problem for elliptic equa-
tions involving the p-Laplacian, Arch. Math. (Basel), 80:424–429, 2003.

[4] G. Bonanno, G. Riccobono, Multiplicity results for Sturm-Liouville bondary value
problems, Appl. Math. Comp., 210:294–297, 2009.

[5] S.A. Marano, D. Motreanu, On a three critical points theorem for non-differentiable
functions and applications nonlinear boundary value problems, Nonlinear Anal.,
48:37–52, 2002.

[6] B. Ricceri, A three critical points theorem revisited, Nonlinear AnaL., 70/9:3084–
3089, 2009.

[7] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problem,
Math. Comput. Modelling, 32:1485–1494, 2000.

[8] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel), 75:220–226,
2000.

[9] B. Ricceri, Three solutions for a Neumann problem, Topol. Methods Nonlinear
Anal., 20:257–281, 2002.

[10] J. Simon, Regularitè de la solution d’une equation non lineaire dans RN . LMN 665,
P. Benilan ed., Berlin-Heidelberg-New York, 1978.

[11] E. Zeidler, Nonlinear functional analysis and its applications, Vol. II/B. Berlin-
Heidelberg-New York, 1985.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


