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Abstract

In this paper, we obtain some new sufficient conditions for oscillation of all
solutions of the first order linear neutral delay difference equations are
established. Our new results improve many well known results in the
literature. Some examples are considered to illustrate our results.
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Introduction
During the last several years many research papers on the oscillatory behavior of

solutions of neutral delay difference equations have appeared in the literature, as these
equations occur as mathematical models of some real world problems, see [4,8].

In this paper, we consider the linear first-order neutral delay difference equation of
the form

A r(n)(x(n) + p(n)x(n — 1))] + q(n)x(n—oc) = 0, n > ny, D

where A is the forward difference operator given by A x(n) = x(n+1) — x(n), {p(n)}
is a sequence of real numbers, {r(n)}, {q(n)} are sequences of positive real numbers
and 1, o are positive integers.

Let us choose a positive integer n* > max {t,c}. By a solution of (1) on
N(ny) ={ng,ny+1,..} , we mean a nontrivial real sequence {x (n)} which is
defined on n > ng — n” and which satisfies (1) for neN(no). A solution { x(n)} of (1)
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on N(no) is said to be oscillatory if for every positive integer No > no there exists n >
Nosuch that x (n) x(n+1) <0, otherwise { x(n)} is said to be nonoscillatory.

Recently some investigations have appeared which are concerned with the
oscillation as well as the nonoscillation behavior of (1). For the oscillation of (1)
when r(n) = 1 and p(n) and q(n) are constants, we refer the readers to the articles by
D. A. Georgiu et al. [5] and Gyori and Ladas [6]. For the oscillation of (1) when r(n) =
1 and p(n) is equal to a constant, we refer the readers to the paper by B. S. Lalli [7]
and the references cited there in. For further oscillation results on the oscillatory
behavior of solutions of (1), we refer the readers to the monographs by R. P. Agarwal
[1, 2] as well as the papers of Ying Gao and Guang Zhang [11], M. P. Chen et al. [3],
X. H. Tang et al. [10] and O. Ocalan and O. Duman [9] and the references cited there
in. The purpose of this work is to find some sufficient conditions for oscillations of all
solutions of the first order neutral delay difference equation (1).

Remark 1.1.
I. When we write a functional inequality we assume that it holds for all
sufficiently large n.
Il. Without loss of generality, we will deal only with the eventually positive
solutions of (1).
In the proof of our main results, we need the following lemmas. The Lemmas 1.4,
1.5 and 1.6 are the discrete analogues of the Lemmas 1.5.1, 1.5.2, and 1.5.3
respectively in [6].

Lemma 1.2. [6] Assume that k is a positive integer with k > 1. Let {h(n)} be a
sequence of nonnegative real numbers and suppose that

n-1 k k+1
s=n-k
Then
0] the delay difference inequality
Ax(n) + h(n)x(n—k) <0, n = n,, (€))

has no eventually positive solution.

(i) the delay difference inequality
Ax(n) + h(n)x(n—k) =0, n=>n,, 4
has no eventually negative solution.

Lemma 1.3. [6] Assume that k is a positive integer with k > 1. Let {h(n)} be a

sequence of nonnegative real numbers and suppose that
n+k-1

lim inf z h(s) > (%)k (5)

s=n+1
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Then
(i) the advanced difference inequality
Ax(n) —h(n)x(n+k) <0, n=n,, (6)

has no eventually negative solution.
(ii) the advanced difference inequality

Ax(n) — h(n)x(n+k) = 0, n = n,, @)
has no eventually positive solution.

Lemma 1.4. Let {f(n)} and {g(n)} be sequence of real numbers such that
f(n) =g(n) + ug(n-c); n=no+max{0,c},

Where u € R, u# 1 and c is a positive integer. Assume that lim,_,, f(n) =1 € R
existand lim inf,_., g(n) =a € R. Then | = (1+p)a.

Lemma 1.5. Let {f(n)}, {g(n)} and {1(n)} be sequences of real numbers and c is a
positive integer such that

f(n) =g(n) + Am)g(n—-c); for n>ng+ max{0,c},

Assume that -1 < A(n) < 0. Suppose that g(n) >0 for n>ng lim inf,_.,.g(n) =0
and that lim,,_,., f(n) = L € R exist. ThenL =0.

Lemma 1.6. Let 0 <A < I, ¢ be a positive integer and ny € N and {x(n)} be a
sequence of positive real numbers and assume that for every & > 0 there exists a n. >
no such that

x(n) <(Atg)x(n-c)+e for n>n

Then
lim x(n) = 0.
n—-oo
Lemma 1.7. Assume that
Yin=ny q(n) = . (8)
Let {x(n)} be an eventually positive solution of equation (1). Set
z(n) = x(n) + p(n)x(n — 7). (C©))

Then the following statements are true.

@) if p(n) < -1thenz(n)<O0;

(i) if -1 < p(m) <0 and {r(n)} is a decreasing sequence of positive real numbers,

then z(n) >0and lim,_ z(n) = 0.
Proof. (i) Otherwise, z(n) >0 and so
x(n) = —pm)x(n—1) = x(n—1)
which implies that { x(n)} is bounded from below by a positive constant, say m.
From (1) and (9), we have

A(r(n)z(n)) = —q(n)x(n — o) < —mq(n) (10)
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which in view of (8) implies that
lim (r(n)z(n)) = —oo.
n—oo
This is a contradiction and so the proof of (i) is complete.
(i) First we claim that z(n) > 0. Otherwise, z(n) < 0, which implies that
x(n) < —pm)x(n—1) <x(n—r1)

and so {x(n)} is bounded sequence. Hence {z(n)} is also bounded. Since {r(n)} is
decreasing sequence, {z(n)} is also decreasing sequence. Then both the limits
lim,_.(r(n)z(n))and lim,,_,, z(n) exists.

Let
lim (r(n)z(n)) = |, eR, (1D
n—-oo
and
limz(n) = I, eR. (12)
n—-oo
But then because of (8),
lim inf,_,x(n) =0. (13)

Otherwise, by summing (10) from n; to oo, with n; sufficiently large, we are lead to
the contradiction that

lim (r(n)z(n)) = —.
n—ooo
In view of (12) and (13), by applying Lemma 1.5, we find that 1,=0. This implies
that z(n) >0, which contradicts our hypothesis that z(n)<0. Therefore we have

established that z(n) >0. But then (12) and (13) are also true and by Lemma 1.4, |, = 0.
The proof of (ii) is complete.

Lemma 1.8. Assume that (8) holds and let { x(n)} be an eventually positive solution
of the neutral difference equation

Alx(n) + px(n — )] + q(n)x(n —0) =0, n < n,, (14)

where p is a real numbers with p # 1, { q (n)} is a T — periodic sequence of positive
real numbers and 7 and o are positive integers. Set

z(n) = x(n)+ px(n— 1) (15)
and

w(n) = z(n) +pz(n — 7). (16)
Then

{z(n)} is a decreasing sequence and either

1I1i_r)roloz(n) = —oo, 17)
or

lim z(n) = 0. (18)

(@) The following statements are equivalent:
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(i) (17) holds;

(i) P<-1;

@ii))  lim, . x(n) = oo;
(iv)  w(n)>0,A w(n) > 0.

(b) The following statements are equivalent :
0] (18) holds;
(i) P>-1;
@)  lim,L,x(n) = 0;
@iv)  w(n)>0, Awm) > 0.

Proof. (a) We have
Az(n) = —q(n)x(n—0) <0 (19)
and so {z(n)} is strictly decreasing sequence. If (17) is not true, then there exits le

R such that lim,_. z(n) = [. By summing (19) from n; to o, with n; sufficiently
large, we find

l—z(ny) =— Z q(s)x(s — o). (20)
S=n;

In view of (8) this implies that lim inf,_ x(n) =0 and so by Lemma 1.4, [ =
(1+p) 0 = 0. The proof of (a) is complete.

Now we turn to the proofs of (b) and (c). First assume that (17) holds. Then p must
be negative and{ x (n)} is unbounded. Therefore there exists an integer n* > ny such
that z(n*) <0 and

x(n*) = max x(s) > 0.
Then
0>z(n*) =x(n*) + px(n* —1)
> x(n")(1+p)

which implies that p < -1. Also z(n) = x(n) + px(n — 1) > px(n — ) and (17)
implies that lim,,_,, x(n) = . Now assume that (18) holds. If p > 0, then from (15),
it follows that lim,,_,, x(n) = 0. Next assume that p e(-1,0). Then by Lemma 1.6,
lim,_, x(n) =0. Finally if p <-1, then x(n) > -px(n- ) > x(n — t) which shows
that { x(n)} is bounded from below by a positive constant, say m. Then (20) yields.

l—z(ny)+m Z q(s) <0,
s=n,
which is a contradiction. Therefore, if (18) holds, p> -1. Observe that under the
hypothesis (17), we have

Aw(n) = —q(n)z(n — o) > 0. (21)
If (17) holds, then
limw(n) = oo. (22)

n—oo
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From (21) and (22), we have w(n) > 0 eventually. By a similar proof, under the
hypothesis (18), we have Aw(n) <0 and w(n) > 0. On the basis of the above
discussions, the proofs of (b) and (c) are now obvious.

Main Results
In this section we give some new sufficient conditions for all solutions of the neutral
delay difference equation (1) to be oscillatory.

Theorem 2.1. Assume that (8) holds, p(n) <-1, - ¢ > 1, and

n+t—-o-1

liminf { 9(s) } > (g)

n-w —r(s+1—0)p(s+71—0) T—0

T—0

s=n+1
Then every solution of (1) is oscillatory.

Proof. Assume, for the sake of a contradiction, that (1) has an eventually positive
solution { x (n)}. Set

z(n) = x(n) + p(n)x(n — 1), (23)
Then by Lemma 1.7 (i),
z(n) < 0. (24)
Observe that
z(n) > p(n)x(n — 7). (25)
From which we find eventually
A(r(mz(m) + 22— 2(n+1-0) <0, (26)
Set y(n) = r(n)z(n). This implies that y(n) < 0. Substituting in (26) yields
q(n)

By ) + e Ty YT T ) <0, 27)
Or

q(n)
Ay(n) B (—r(n+r—a)p(n+r—0))y(n tr- O-) <0. (28)

In view of (22) and Lemma 1.3 (i), it is impossible for (28) to have an eventually
negative solution. This contradicts the fact that y(n) < 0 and the proof is complete.

Example 2.2. Consider the first order neutral delay difference equation

A I e’ (x(n) — (n * 1>x(n — 3))] +e™2x(n—1)=0, n

n+1 n
=123,... (Ey)

Here we have

-+
p) == <-1 qm)=em
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en

)= ——=.

Then all the hypotheses of Theorem 2.1 are satisfies where

T=3ando =1.

n+t—o-1

{ q(s)

_T(S+T_G)p(s+r_0)}=1l1i1£1oinf(n+2) = oo,

liminf
n—-oo
s=n+1

Hence every solution of (E,) is oscillatory
Remark 2.3. Theorem 2.1 is an extent of [6, Theorem 7.5.1].

Theorem 2.4. Assume that (8) hold, -1 <p(n) <0, {r(n)} is a decreasing sequence of
positive real numbers and

n—-1

q(s) >( g )a+1.

c+1 (29)

liminf
n—o r(s — o')
S=n-o

Then every solution of equation (1) oscillates.

Proof. Assume, for the sake of contradiction, that (1) has an eventually positive
solution {x(n)}. Set

z(n) = x(n) + p(n)x(n). (30)

Then by Lemma 1.7 (ii), it follows that

z(n) > 0. (31)
As x(n) > z(n), it follows from (1), that

A(r(n)z(n)) +q(n)z(n—o) <0. (32)

Set

y(n) =r(n)z(n). (33)

This implies that y(n) > 0. From (32) and (33), we have

By(n) + LB y(n - 0) <O0. (34)

In view of Lemma 1.2 (i), it is impossible for (34) to have an eventually positive
solution. This contradicts the fact that y(n) > 0 and the proof is complete.

Example 2.5. Consider the first order neutral delay difference equation
n

1 1
A[m(x(n)—n+lx(n—2))]+£ x(n—1)=0, n
=123,... (Ey)
Note that all the hypotheses of Theorem 2.4 are satisfied:




762 A.Murugesan and R. Suganthi

n-1 ( ) 1

.. qls

I f =1>-

il r(s — o) 4
S=n—o

Therefore every solution of (E,) is oscillatory.

Remark 2.6. Theorem 2.4 is an extent of [6, Theorem 7.5.1]

Theorem 2.7. Assume thatp(n) =p > -1, r(n) =r >0, q(n) is a t periodic ,
o >T1and

n—1
1 . i o—1T o—-T+1
_ >S>——
T(l + p) Ilnm—>!xlj‘]f z q(s) (0- — T+ 1)

S=n-o+t

(35)

Then every solution of equation (1) is oscillatory.
Proof. Assume, for the sake of contradiction, that (1) has an eventually positive
solution { x(n)}. Set

z(n) = x(n) + px(n — 1)
And
w(n) = z(n) + pz(n — 7).
It is easily seen, by direct substituting, that {z(n)} and { w(n)} are also solutions of

(35).

That is,
rAz(n) + prAz(n — 1) + gq(n)z(n — o) =0, (36)
And
rAw(n) + praw(n — 1) + g(n)w(n —a) = 0. (37

By Lemma 1.8, {z(n)} is decreasing w(n) > 0 and Aw(n) > 0. We claim that

Aw(n — 1) < Aw(n). (38)
Indeed,
Aw(n) = _qu(n)z(n —0) = _—1rq(n)z(n —0—1)

Tq(n —1)z(n—0 — 1)

= Aw(n — 7).
Using (38) in (37) implies
r(1+p)Aw(n — 1) + g(n)w(n — o) <0, (39)
Or
Aw(n — 1) + 22 wn—o) < 0. (40)

r(1+p)
Since q(n) is a periodic of period t , we find
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Aw(n) + (c—1) <0 (41)

In view of Lemma 1.2 (i) and (35), it is impossible for (41) to have an eventually
positive solution. This contradicts the fact that w(n) > 0 and the proof is complete.

Theorem 2.8. Assume that p(n)=p <-1,r(n) = r >0, q(n) is a 7 periodic, t — ¢ >
1 and

n+t—o—1 —c

ﬁnm inf Z q(s)>(%)

s=n+1
Then every solution of (1) is oscillatory.
Proof of the theorem is similar to that of the Theorem 2.7.
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